JPH0474045B2 - - Google Patents
Info
- Publication number
- JPH0474045B2 JPH0474045B2 JP8812888A JP8812888A JPH0474045B2 JP H0474045 B2 JPH0474045 B2 JP H0474045B2 JP 8812888 A JP8812888 A JP 8812888A JP 8812888 A JP8812888 A JP 8812888A JP H0474045 B2 JPH0474045 B2 JP H0474045B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- alloy
- palladium
- curve
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は水素分離膜に関する。更に詳しくは水
素含有ガスから超高純度の水素を低温においても
高透過度で分離し、かつ耐久性に優れた水素分離
膜に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hydrogen separation membrane. More specifically, the present invention relates to a hydrogen separation membrane that separates ultra-high purity hydrogen from hydrogen-containing gas with high permeability even at low temperatures and has excellent durability.
近年、半導体産業、光フアイバー製造業などの
発展に伴い高純度水素の需要が高まつている。水
素は天然ガス、ナフサなどの化石燃料を原料と
し、水蒸気改質法あるいは部分酸化法などで主に
製造されている。その他に石油精製プロセスある
いは食塩電解による副産物として、また水電解に
よつて水素が製造されている。これらの方法によ
つて製造された水素ガス中には、CO、CO2、水
蒸気、炭化水素などの不純物が含有されているた
め、高純度の水素を得るためには水素を分離精製
する必要がある。 In recent years, the demand for high-purity hydrogen has increased with the development of the semiconductor industry, optical fiber manufacturing industry, etc. Hydrogen is produced from fossil fuels such as natural gas and naphtha using steam reforming or partial oxidation methods. Hydrogen is also produced as a byproduct of the oil refining process or salt electrolysis, and by water electrolysis. Hydrogen gas produced by these methods contains impurities such as CO, CO 2 , water vapor, and hydrocarbons, so it is necessary to separate and refine the hydrogen in order to obtain high-purity hydrogen. be.
従来技術
従来、水素の精製法としては、パラジウム合金
膜を用いる拡散法、カセイソーダ、ジイソプロパ
ノールアミンなどを用いる化学吸収法、水、深冷
メタノールなどを用いる物理吸収法、活性炭、ア
ルミナゲル、モレキユラーシーブスなどを用いる
吸着法、液体窒素、液体空気などを用いる深冷分
離法、ポリジメチルシロキサン、ポリイミドなど
を用いる高分子膜による分離法などが行われてい
る。Conventional technology Conventional hydrogen purification methods include diffusion methods using palladium alloy membranes, chemical absorption methods using caustic soda, diisopropanolamine, etc., physical absorption methods using water, deep-chilled methanol, etc., activated carbon, alumina gel, and Molecule. Adsorption methods using liquid nitrogen, liquid air, etc., separation methods using polymer membranes using polydimethylsiloxane, polyimide, etc. have been used.
しかし、99.99999%以上の超高純度の水素を得
る方法としては、前記のパラジウム合金膜を用い
る拡散法しかない。パラジウム合金膜としてはパ
ラジウムに銀を数10%添加した合金膜が代表的な
ものである。しかし、この合金は低温における水
素透過度が小さいため、水素分離能を上げるため
には300℃以上で使用しなければならなく、その
上高価である問題点がある。 However, the only way to obtain ultra-high purity hydrogen of 99.99999% or higher is the diffusion method using the palladium alloy membrane described above. A typical palladium alloy film is an alloy film in which several tens of percent silver is added to palladium. However, this alloy has a low hydrogen permeability at low temperatures, so it must be used at temperatures above 300°C in order to increase its hydrogen separation ability, and it is also expensive.
発明が解決しようとする課題
本発明は従来のパラジウム合金膜からなる水素
分離膜における問題点を解消しようとするもの
で、低温においても高透過度で超高純度の水素を
分離し得られ、かつ安価に耐久性の水素分離膜を
提供しようとするものである。Problems to be Solved by the Invention The present invention aims to solve the problems with conventional hydrogen separation membranes made of palladium alloy membranes, and is capable of separating ultra-high purity hydrogen with high permeability even at low temperatures. The purpose is to provide a durable hydrogen separation membrane at low cost.
課題を解決するための手段
水素分離膜における水素透過度は、水素の拡散
係数と水素の固溶度の積で表わすことができる。
バナジウムの水素の拡散係数はパラジウムのそれ
に比べて、200〜300℃の温度において5倍以上と
大きく、また水素の固溶度も大きい。従つて、バ
ナジウムの水素透過度はパラジウムのそれに比べ
て著しく大きい。Means for Solving the Problems Hydrogen permeability in a hydrogen separation membrane can be expressed as the product of hydrogen diffusion coefficient and hydrogen solid solubility.
The hydrogen diffusion coefficient of vanadium is more than five times larger than that of palladium at temperatures of 200 to 300°C, and the solid solubility of hydrogen is also large. Therefore, the hydrogen permeability of vanadium is significantly higher than that of palladium.
本発明者らは、バナジウムを水素分離膜の素材
として使用すべく研究の結果、バナジウムは低い
水素圧で多量の水素を吸収し、また200℃以下で
は水素化物を形成し水素脆性を起こし易い。ま
た、酸化し易く、表面に水素の透過の障害となる
酸化皮膜を形成する。従つてそのままでは水素分
離膜としては使用できない。 The present inventors conducted research to use vanadium as a material for hydrogen separation membranes, and found that vanadium absorbs a large amount of hydrogen at low hydrogen pressures, and forms hydrides at temperatures below 200°C, which tends to cause hydrogen embrittlement. In addition, it is easily oxidized, forming an oxide film on the surface that impedes hydrogen permeation. Therefore, it cannot be used as a hydrogen separation membrane as it is.
そこで、バナジウムにニツケルまたはコバル
ト、あるいはその両者を5〜20原子%の範囲に加
えて合金膜とすると、バナジウムの水素透過度を
大きく減ずることなく、水素脆性を改良し得ら
れ、水素分離用合金膜として使用し得られること
を見出した。 Therefore, by adding 5 to 20 atomic percent of nickel or cobalt, or both, to vanadium to form an alloy film, it is possible to improve the hydrogen embrittlement without significantly reducing the hydrogen permeability of vanadium. It has been found that it can be used as a membrane.
また、この合金膜の表面にパラジウムあるいは
パラジウム合金を被覆すると、耐酸化性となると
共に、200℃以上で使用すると、合金成分がパラ
ジウム皮膜に拡散し、これにより硬化し水素脆化
を起こし難くなると言う新しい知見を得た。これ
らの知見に基づいて本発明を完成した。 Additionally, if the surface of this alloy film is coated with palladium or palladium alloy, it will become oxidation resistant, and if used at temperatures above 200°C, the alloy components will diffuse into the palladium film, which will harden and make it less likely to cause hydrogen embrittlement. I gained new knowledge. The present invention was completed based on these findings.
本発明の要旨は、
Ni、Coの1種または2種の元素5〜20原子%、
残部バナジウムからなる合金膜の表面に、パラジ
ウムまたはパラジウム合金を被覆させたものから
なる水素分離膜、にある。 The gist of the present invention is that 5 to 20 atomic % of one or two of Ni and Co;
A hydrogen separation membrane consisting of an alloy membrane whose remainder is vanadium and whose surface is coated with palladium or a palladium alloy.
本発明におけるバナジウム合金のNi、Coまた
はその両元素の量が、5原子%未満では水素脆性
を改善しえなく、また20%原子を超えると合金中
の水素の固溶度が小さくなるため、水素透過度が
小さくなると共に著しく硬化し加工が困難とな
る。従つてそれらの量は5〜20原子%の範囲であ
ることが適当である。 If the amount of Ni, Co, or both elements in the vanadium alloy in the present invention is less than 5 atomic %, hydrogen embrittlement cannot be improved, and if it exceeds 20 atomic %, the solid solubility of hydrogen in the alloy decreases. As the hydrogen permeability decreases, it hardens significantly and becomes difficult to process. Therefore, their amount is suitably in the range of 5 to 20 atomic percent.
パラジウム、パラジウム合金の被覆はメツキ
法、蒸着法、スパツタ法などによつて行うことが
できる。パラジウム合金としては、パラジウム−
銀合金(銀20〜30原子%)、パラジウム−イツト
リウム合金等が挙げられる。 Coating with palladium or palladium alloy can be performed by a plating method, a vapor deposition method, a sputtering method, or the like. As a palladium alloy, palladium-
Examples include silver alloy (20 to 30 atomic % silver), palladium-yttrium alloy, and the like.
発明の効果
本発明の水素分離膜は次のような効果を有す
る。Effects of the Invention The hydrogen separation membrane of the present invention has the following effects.
1 200℃のような低温においても、大きな水素
透過度を示すので、水素分離を省エネルギーで
行うことができる。1. It exhibits high hydrogen permeability even at low temperatures such as 200°C, so hydrogen separation can be performed with energy savings.
2 水素透過度はパラジウムのみから成る膜より
も大きく、優れている。2. Hydrogen permeability is greater and superior to membranes made only of palladium.
3 水素化物を形成しないので、水素脆性が起こ
らず、また水素吸収・放出過程において塑性変
化が起こらないので耐久性に優れている。3. Since no hydride is formed, hydrogen embrittlement does not occur, and no plastic changes occur during the hydrogen absorption/release process, resulting in excellent durability.
4 合金膜表面にパラジウムまたはパラジウム合
金膜が被覆されているので、炭素、オイルミス
トなどの付着による水素分離性能の劣化は、
200〜300℃で空気を導入するベーキング処理に
より回復させることができ、高能率操業が可能
である。4 Since the alloy membrane surface is coated with palladium or palladium alloy membrane, deterioration of hydrogen separation performance due to adhesion of carbon, oil mist, etc.
It can be recovered by baking treatment that introduces air at 200 to 300°C, and high efficiency operation is possible.
5 バナジウムはパラジウムの約10分の1の価値
であるので、既存のパラジウム合金膜に比較し
て安価である。5 Vanadium is about 1/10th the value of palladium, so it is cheaper than existing palladium alloy membranes.
実施例 1
アルゴン中のアーク溶解法により、V−15原子
%Ni合金およびV−15原子%Co合金を溶製し、
熱間圧延により約1mm厚の膜とした。これらの膜
の表面に電解メツキ法により厚さ10nmのパラジ
ウム被覆をした。これらの水素透過の温度依存性
を示すと、第1図の曲線1(V−Ni合金)、曲線
2(V−Co合金)の通りである。なお、曲線3は
比較のためのパラジウムのみから成る膜の場合を
示す。この結果が示すように本発明の水素分離膜
の水素透過度は、パラジウム膜のそれよりも大き
いことが分かる。Example 1 A V-15 atomic% Ni alloy and a V-15 atomic% Co alloy were produced by arc melting in argon,
A film with a thickness of about 1 mm was obtained by hot rolling. The surfaces of these films were coated with palladium to a thickness of 10 nm by electrolytic plating. The temperature dependence of hydrogen permeation is shown in curve 1 (V-Ni alloy) and curve 2 (V-Co alloy) in FIG. 1. Note that curve 3 shows the case of a film made only of palladium for comparison. As shown by these results, the hydrogen permeability of the hydrogen separation membrane of the present invention is greater than that of the palladium membrane.
本発明の水素分離膜を数気圧の水素圧下で繰り
返し水素透過試験を行つたがき裂は発生しなかつ
た。また、炭素あるいはオイルミストなどによる
水素分離性能の劣化は、200〜300℃での空気を導
入するベーキング処理により回復した。 Hydrogen permeation tests were repeatedly conducted on the hydrogen separation membrane of the present invention under several atmospheres of hydrogen pressure, but no cracks were found. Furthermore, deterioration in hydrogen separation performance due to carbon or oil mist was recovered by baking treatment at 200-300°C by introducing air.
実施例 2
アルゴン中のアーク溶解法によりV−15原子%
Ni合金を溶製し、その水素圧力−組成等温曲線
を測定した。その結果を第2図に示す。図中の曲
線は175℃における吸収曲線(1−a)と放出曲
線(1−b)、250℃における吸収曲線(2−a)
と放出曲線(2−b)、350℃における吸収曲線
(3−a)と放出曲線(3−b)を示す。いずれ
の圧力−組成等温曲線においても、一定の水素圧
で急激に水素濃度が増大する所謂プラトーが認め
られないことから、測定温度、圧力範囲において
水素化物が形成されないことが分かる。すなわ
ち、この合金は水素脆性を起こしにくいことが分
かる。Example 2 V-15 atomic% by arc melting method in argon
A Ni alloy was melted and its hydrogen pressure-composition isotherm curve was measured. The results are shown in FIG. The curves in the figure are the absorption curve (1-a) and release curve (1-b) at 175°C, and the absorption curve (2-a) at 250°C.
and release curve (2-b), absorption curve (3-a) and release curve (3-b) at 350°C. In any of the pressure-composition isothermal curves, there is no so-called plateau in which the hydrogen concentration rapidly increases at a constant hydrogen pressure, indicating that no hydride is formed within the measured temperature and pressure range. In other words, it can be seen that this alloy is less likely to cause hydrogen embrittlement.
また、同一温度における水素吸収・放出曲線に
おいて大きな差がない。すなわち、ヒステリシス
が小さいことから水素吸収・放出過程において塑
性変形が殆んど起らず、耐久性がよいことを示し
ている。 Furthermore, there is no significant difference in the hydrogen absorption/release curves at the same temperature. In other words, since the hysteresis is small, almost no plastic deformation occurs during the hydrogen absorption/release process, indicating good durability.
第1図Pd膜(曲線3)、及び表面に10nmのパ
ラジウムメツキしたV−15原子%Ni合金膜(曲
線1)とV−15原子%Co合金膜(曲線2)の水
素透過度と温度の関係図、第2図はV−15原子%
Ni合金の水素圧力−組成等温曲線図を示す。吸
収曲線(1−a)、放出曲線(1−b)は175℃、
吸収曲線(2−a)、放出曲線(2−b)は250
℃、吸収曲線(3−a)、放出曲線(3−b)は
350℃における場合を示す。
Figure 1: Hydrogen permeability and temperature of Pd film (curve 3), V-15 atomic% Ni alloy film (curve 1) and V-15 atomic% Co alloy film (curve 2) with 10 nm palladium plating on the surface. Relationship diagram, Figure 2 shows V-15 atomic%
The hydrogen pressure-composition isotherm curve diagram of Ni alloy is shown. Absorption curve (1-a) and release curve (1-b) at 175°C,
Absorption curve (2-a) and release curve (2-b) are 250
°C, absorption curve (3-a), and release curve (3-b) are
The case at 350℃ is shown.
Claims (1)
%、残部バナジウムからなる合金膜の表面に、パ
ラジウムまたはパラジウム合金を被覆させたもの
からなる水素分離膜。1. A hydrogen separation membrane consisting of an alloy membrane consisting of 5 to 20 atomic percent of one or two of Ni and Co, with the balance being vanadium, and the surface of the membrane is coated with palladium or a palladium alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8812888A JPH01262924A (en) | 1988-04-12 | 1988-04-12 | hydrogen separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8812888A JPH01262924A (en) | 1988-04-12 | 1988-04-12 | hydrogen separation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01262924A JPH01262924A (en) | 1989-10-19 |
JPH0474045B2 true JPH0474045B2 (en) | 1992-11-25 |
Family
ID=13934280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8812888A Granted JPH01262924A (en) | 1988-04-12 | 1988-04-12 | hydrogen separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262924A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2106838A1 (en) | 2008-03-24 | 2009-10-07 | The Japan Steel Works, Ltd. | Hydrogen permeable module and usage thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100247557B1 (en) * | 1997-12-24 | 2000-03-15 | 김충섭 | Method for producing a composite membrane for separating hydrogen gas |
US6478853B1 (en) | 1999-03-09 | 2002-11-12 | Secretary Of Agency Of Industrial Science And Technology | Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof |
JP2003001381A (en) | 2001-02-19 | 2003-01-07 | Fukuda Metal Foil & Powder Co Ltd | Manufacturing method for vanadium alloy foil |
JP3837481B2 (en) * | 2001-09-19 | 2006-10-25 | 独立行政法人物質・材料研究機構 | Method for thinning V-Ni alloy |
JP2003305346A (en) * | 2002-04-11 | 2003-10-28 | Toyo Kohan Co Ltd | Separation film laminate and production method for component using the same |
US7708809B2 (en) | 2002-11-20 | 2010-05-04 | Mitsubishi Materials Corporation | Hydrogen permeable membrane |
JP4577775B2 (en) * | 2005-03-28 | 2010-11-10 | 日立金属株式会社 | Method for producing double phase alloy for hydrogen separation and purification |
US20060230927A1 (en) * | 2005-04-02 | 2006-10-19 | Xiaobing Xie | Hydrogen separation |
JP4684069B2 (en) * | 2005-09-30 | 2011-05-18 | Jx日鉱日石エネルギー株式会社 | Production method of high purity hydrogen |
JP2008055295A (en) * | 2006-08-30 | 2008-03-13 | Ihi Corp | Hydrogen separation membrane |
KR20090110897A (en) * | 2007-02-19 | 2009-10-23 | 미츠비시 가스 가가쿠 가부시키가이샤 | Hydrogen Purification Method, Hydrogen Separator and Hydrogen Purifier |
KR101227454B1 (en) * | 2010-10-06 | 2013-01-30 | 한국에너지기술연구원 | A hydrogen permeable alloy and the manufacturing method of hydrogen separation membrane using the same |
-
1988
- 1988-04-12 JP JP8812888A patent/JPH01262924A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2106838A1 (en) | 2008-03-24 | 2009-10-07 | The Japan Steel Works, Ltd. | Hydrogen permeable module and usage thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH01262924A (en) | 1989-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Adhikari et al. | Hydrogen membrane separation techniques | |
Paglieri et al. | A new preparation technique for Pd/alumina membranes with enhanced high-temperature stability | |
JP5229503B2 (en) | Hydrogen purification method, hydrogen separation membrane, and hydrogen purification apparatus | |
Roa et al. | Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium− copper membranes | |
US6946015B2 (en) | Cross-linked polybenzimidazole membrane for gas separation | |
Lewis et al. | PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide | |
JPH0474045B2 (en) | ||
US3344582A (en) | Irreversible hydrogen membrane | |
Iulianelli et al. | A supported Pd-Cu/Al2O3 membrane from solvated metal atoms for hydrogen separation/purification | |
Edlund et al. | Hydrogen-permeable metal membranes for high-temperature gas separations | |
CN100420624C (en) | Multiphase alloy for hydrogen separation and purification and method for producing same, metal film for hydrogen separation and purification and method for producing same | |
Bhalani et al. | Hydrogen separation membranes: a material perspective | |
JPH0579367B2 (en) | ||
JPH0429728A (en) | Alloy membrane for separating hydrogen | |
CN104492279A (en) | Method for preparing sulfur resistant palladium composite membrane by separating hydrogen from synthesis gas from coal | |
JP6625698B2 (en) | Gas filtration structure and method for filtering gas | |
JP5000115B2 (en) | Hydrogen permeable alloy | |
JP4860969B2 (en) | Hydrogen permeable alloy and method for producing the same | |
JP4006107B2 (en) | Method and apparatus for producing high purity CO | |
KR102012010B1 (en) | Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane | |
KR101284115B1 (en) | Yttrium-doped vanadium based metallic membranes for separation of hydrogen and method of separating hydrogen using the same | |
KR20170131967A (en) | Hydrogen filtering membrane and method of manufacturing the same | |
JP2009166005A (en) | Method for producing hydrogen permeable membrane | |
KR20150007364A (en) | Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane | |
JP2002119834A (en) | Method of manufacturing inorganic hydrogen separating membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |