[go: up one dir, main page]

JPH0470550A - Evaluation method for small-diameter hole degassing properties of printed circuit boards - Google Patents

Evaluation method for small-diameter hole degassing properties of printed circuit boards

Info

Publication number
JPH0470550A
JPH0470550A JP18479890A JP18479890A JPH0470550A JP H0470550 A JPH0470550 A JP H0470550A JP 18479890 A JP18479890 A JP 18479890A JP 18479890 A JP18479890 A JP 18479890A JP H0470550 A JPH0470550 A JP H0470550A
Authority
JP
Japan
Prior art keywords
holes
printed circuit
small
defoaming
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18479890A
Other languages
Japanese (ja)
Inventor
Yasuhiro Morita
森田 靖宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18479890A priority Critical patent/JPH0470550A/en
Publication of JPH0470550A publication Critical patent/JPH0470550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PURPOSE:To enhance the reliability of the quality of a product by carrying out the simulation of defoaming operation before performing actual manufacturing and quantifying the defoamed states under respective operating conditions to measure the same to calculate the optimum operating condition. CONSTITUTION:A definite solution 2 to be tested is received in an experimental tank 1 at least a part of which is made transparent. A large number of small holes 4 having a diameter same to that of the small size via-holes of a printed circuit board ready to manufacture are formed on a transparent plate 3 having the same thickness as the printed circuit board and this plate 3 is dipped in the solution 3. Thereafter, defoaming operation ready to be carried out in an actual manufacturing process is performed so that the plate 3 is allowed to stand as it is or inclined or struck to be vibrated. Then, the end surface of the plate 3 is seen through from the outside of the experimental tank 1 to observe the small size holes 4 by an eye 6 and a defoaming ratio (number of defoamed holes/total number of holes) is calculated to quantify a defoamed state. By this method, simulation is performed and the optimum operating condition imparting the highest defoaming ratio is calculated.

Description

【発明の詳細な説明】 〔概要〕 プリント基板の小径孔脱泡性の評価方法に関し、プリン
ト基板の生産前に操業条件をシュミレートして小径孔脱
泡性を定量的に評価し、最適の操業条件を究明できるよ
うにすることを目的とし、少なくとも一部分を透明にし
た実験槽に、被験液を充填し、所定の孔径を存する多数
の小径孔を形成した透明板を前記被験液に漫清し、所定
の脱泡操作をした後に実験槽の外から透明板を観察し小
径孔のうち気泡が抜けた小径孔の割合を測定する構成と
した。
[Detailed Description of the Invention] [Summary] Regarding the evaluation method for the degassing performance of small diameter holes in printed circuit boards, the operating conditions are simulated before the production of printed circuit boards to quantitatively evaluate the degassing performance of small diameter holes, and the optimization of the operation is evaluated. In order to be able to investigate the conditions, an experimental tank made at least partially transparent was filled with a test solution, and a transparent plate with a large number of small pores having a predetermined pore diameter was immersed in the test solution. After performing a predetermined defoaming operation, the transparent plate was observed from outside the experimental tank and the proportion of small diameter holes from which air bubbles had escaped was measured.

〔産業上の利用分野〕[Industrial application field]

本発明は、プリント基板の小径孔脱泡性の評価方法に関
する。
The present invention relates to a method for evaluating the degassing properties of small diameter holes in printed circuit boards.

〔従来の技jネi〕[Traditional technique]

近年、プリント基板の回路密度が高密度化されるのに伴
いプリント基板に形成されるピアホールがますます小径
化されつつある。ピアホールが小径化されると、例えば
メツキ工程においてピアホール内に気泡が残留し易くな
り、メツキ皮膜の形成が阻害され易くなる。そこで、メ
ツキ液中でピアホール内の気泡を排除するため、プリン
ト基板を傾斜させたり、振動させたり、メツキ液に低表
面張力液を配合したりしている。
In recent years, as the circuit density of printed circuit boards has increased, the diameter of peer holes formed in printed circuit boards has become smaller and smaller. When the diameter of the pier hole is reduced, air bubbles tend to remain in the pier hole during the plating process, for example, and the formation of the plating film is likely to be inhibited. Therefore, in order to eliminate air bubbles inside the peer holes in the plating solution, the printed circuit board is tilted or vibrated, or a low surface tension liquid is added to the plating solution.

そして、プリント基板の傾斜角度、プリント基板を叩く
打撃力や周波数、低表面張力液の種類、濃度、温度等の
最適条件は実際にプリント基板を生産してその結果を確
認することによって求められている。しかしながら、こ
の結果の確認は、例えば、振動を与えないよりはプリン
ト基板を叩いて振動させた方が良いとか、アルコール等
の低表面張力液を加えないよりは加えた方が良いとかい
うように、非常に大雑把な定性的評価がなされているに
過ぎない。
The optimum conditions, such as the angle of inclination of the printed circuit board, the impact force and frequency of striking the printed circuit board, the type, concentration, and temperature of the low surface tension liquid, are determined by actually producing the printed circuit board and confirming the results. There is. However, to confirm this result, for example, it is better to vibrate the printed circuit board by hitting it than not to apply it, or it is better to add a low surface tension liquid such as alcohol rather than not. Only a very rough qualitative evaluation has been made.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような事後的(事前には把握できない)で定性的評
価によってメツキの最適条件を求める場合には、結果に
対する原因の究明が不十分であるため、例えば最適の低
表面張力液の種類、濃度、温度等の最適条件を求めるの
に時間がかかる上、試行中に多量の不良品が発生すると
いう問題がある。また、生産を開始した後に製品の品質
を改善するために導入した設備を改造しなければならな
くなることがあるという問題がある。
When determining the optimal conditions for plating through qualitative evaluation after the fact (which cannot be determined in advance), the causes of the results are not fully investigated, so for example, the type and concentration of the optimal low surface tension liquid is determined. However, there are problems in that it takes time to find the optimal conditions such as temperature, and a large number of defective products are produced during trials. Another problem is that the installed equipment may have to be modified in order to improve the quality of the product after production has started.

本発明は、上記の事情を鑑みてなされたものであり、プ
リント基板の生産前に操業条件をシュミレートして小径
孔脱泡性を定量的に評価し、最適の操業条件を究明でき
るようにすることを目的としている。
The present invention has been made in view of the above circumstances, and makes it possible to quantitatively evaluate the degassing performance of small diameter holes by simulating operating conditions before producing printed circuit boards, and to determine the optimal operating conditions. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るプリント基板の小径孔脱泡性の評価方法は
、上記の目的を達成するため、例えば第1図に示すよう
に、少なくとも一部分を透明にした実験槽1に、被験液
2を充填し、所定の孔径を有する多数の小径孔4を形成
した透明板3を前記被験液2に浸漬し、所定の脱泡操作
をした後に実験槽lの外から透明板3を観察し、小径孔
4のうち気泡5が抜けた小径孔4の割合(以下、脱泡率
という)を測定する、という手段を講じている。
In order to achieve the above-mentioned purpose, the method for evaluating the degassing properties of small holes in a printed circuit board according to the present invention is, for example, as shown in FIG. Then, the transparent plate 3 in which a large number of small diameter holes 4 having a predetermined pore size were formed was immersed in the test liquid 2, and after a predetermined defoaming operation was performed, the transparent plate 3 was observed from outside the experimental tank l, and the small diameter holes were A measure is taken to measure the proportion of small-diameter holes 4 from which air bubbles 5 have escaped (hereinafter referred to as defoaming rate).

〔作   用〕[For production]

本発明においては、実験槽l内で所定の脱泡操作をした
後の透明板3の脱泡率を測定することにより、プリント
基板の生産を開始する前に、実験的に設定された操業条
件下での透明板3の脱泡状態が定量的に評価される。
In the present invention, by measuring the defoaming rate of the transparent plate 3 after performing a predetermined defoaming operation in the experimental tank l, the experimentally set operating conditions can be determined before starting the production of printed circuit boards. The defoaming state of the transparent plate 3 below is quantitatively evaluated.

〔実 施 例〕〔Example〕

以下、・本発明の一実施例に係るプリント基板の小径孔
脱泡性の評価方法を第1図に基づき説明する。
Hereinafter, a method for evaluating the defoaming properties of small diameter holes in a printed circuit board according to an embodiment of the present invention will be described with reference to FIG.

第1図に示す実験槽1は、その一部分が透明に作られて
おればよいが、ここでは、全体を例えばガラス、アクリ
ル樹脂等の透明材料で作っている。
The experimental tank 1 shown in FIG. 1 only needs to be made partially transparent, but here, the entire experimental tank 1 is made of a transparent material such as glass or acrylic resin.

この実験槽l内に、例えばアルコール、界面活性剤等を
含んだ低表面張力液を混入したメツキ処理液を被験液2
として充填する。
Into this experimental tank 1, a plating treatment solution mixed with a low surface tension solution containing, for example, alcohol, surfactant, etc., was added to the test solution 2.
Fill as.

そして、生産しようとするプリント基板と同じ厚さを有
する透明板3にそのプリント基板に形成する小径ピアホ
ールと同じ径の多数の小径孔4を形成し、この透明板3
を被験液2中に浸漬する。
Then, a large number of small-diameter holes 4 having the same diameter as the small-diameter peer holes formed in the printed circuit board are formed in a transparent plate 3 having the same thickness as the printed circuit board to be produced, and this transparent plate 3
immersed in test solution 2.

この時、透明板3の各小径孔4内には気泡5が閉じ込め
られる。
At this time, air bubbles 5 are trapped in each small diameter hole 4 of the transparent plate 3.

前記透明板3の素材は、実験槽1の外側から透明板3の
端面を透かして小径孔4及びその内部の気泡5の有無を
観察できる程度に透明であればよい。ここでは、短時間
で実験結果を得るため、疎水性及び加工性が高く、しか
も、被験液2に対して化学的に安定なアクリル樹脂で透
明板3を形成している。
The material of the transparent plate 3 may be transparent enough to allow observation of the small diameter hole 4 and the presence or absence of air bubbles 5 inside the small diameter hole 4 through the end face of the transparent plate 3 from the outside of the experimental tank 1. Here, in order to obtain experimental results in a short time, the transparent plate 3 is made of an acrylic resin that has high hydrophobicity and processability, and is chemically stable with respect to the test liquid 2.

また、小径孔4の配置は、特に限定されないが、ここで
は、全小径孔4を明確に視認し易くするため、縦1列に
並べである。
Further, the arrangement of the small diameter holes 4 is not particularly limited, but here, in order to make it easy to clearly see all the small diameter holes 4, they are arranged in a vertical line.

この後、透明板3をそのまま放置したり、傾斜させたり
、透明板3を叩いて振動させたりする等、実際の生産工
程で行おうとする脱泡操作のシュミレーションを行う。
Thereafter, the defoaming operation to be performed in the actual production process is simulated, such as leaving the transparent plate 3 as it is, tilting it, or hitting the transparent plate 3 to vibrate it.

この脱泡操作を終了してから、実験槽lの外側から透明
板3の端面を透かして小径孔4を目6で見て観察し、例
えば第2図に示すように全小径孔4のうち気泡5が無く
なっている小径孔4 (脱泡孔)の数を測定し、脱泡率
(pA泡孔数÷全孔数)を計算することにより、脱泡状
態を定量化することができる。
After completing this defoaming operation, look through the end face of the transparent plate 3 from the outside of the experimental tank l and observe the small diameter holes 4 with your eyes 6. For example, as shown in FIG. The defoaming state can be quantified by measuring the number of small-diameter holes 4 (defoaming holes) in which air bubbles 5 have disappeared and calculating the defoaming rate (number of pA bubble pores/total number of pores).

このような手順を、必要に応じて透明板3の傾斜角度、
衝撃力、振動周波数、低表面張力液の種類、濃度、温度
等を異ならせて繰り返すことにより最適の透明板3の傾
斜角度、振動周波数、低表面張力液の種類、濃度、温度
等の操業条件を究明することができる。
These steps can be carried out by changing the inclination angle of the transparent plate 3 as necessary.
Optimal operating conditions such as the inclination angle of the transparent plate 3, vibration frequency, type of low surface tension liquid, concentration, temperature, etc. can be determined by repeating different impact force, vibration frequency, type of low surface tension liquid, concentration, temperature, etc. can be investigated.

また、透明板3の板厚や小径孔4の孔径等を異ならせて
上記の手順を繰り返すことにより、所定の孔径に対する
プリント基板の最大板厚や所定の板厚のプリント基板に
形成できる最小孔径等を求めることができる。
In addition, by repeating the above procedure while changing the thickness of the transparent plate 3 and the diameter of the small diameter hole 4, the maximum thickness of the printed circuit board for a given hole diameter and the minimum hole diameter that can be formed on a printed circuit board of a given thickness can be determined. etc. can be obtained.

このように、このプリント基板の小径孔脱泡性によれば
、実際の生産を行う前に、種々の操業条件を異ならせて
脱泡操作のシュミレーションを行い、各操業条件下での
脱泡状態を定量化して測定することにより、脱泡率が最
も高い最適操業条件を求めることができる。そして、そ
の最適操業条件に則した設備を設置し、あるいは、設備
を改造することにより生産開始後に徒に設備改造をせず
に済み、メツキ装置の稼働効率を高めることができる上
、最適操業条件を求めるまでの試作を生産ラインで行わ
ずに済み、試作に伴う不良品の発生を防止できるととも
に、最適操業条件で作られた製品のみが製品として出荷
されるので、製品の品質に対する信転性を高めることが
できる。
In this way, according to the small-diameter hole degassing properties of this printed circuit board, before actual production, a degassing operation can be simulated under various operating conditions, and the degassing state under each operating condition can be evaluated. By quantifying and measuring , it is possible to determine the optimal operating conditions that give the highest defoaming rate. By installing or modifying equipment that meets the optimal operating conditions, it is possible to eliminate the need for equipment modifications after production has started, increase the operating efficiency of the plating equipment, and improve the optimal operating conditions. There is no need to carry out trial production on the production line until the final product is determined, which prevents the occurrence of defective products due to trial production, and because only products made under optimal operating conditions are shipped as products, confidence in product quality can be increased. can be increased.

上記の実施例では、脱泡操作後の気泡5の観察が目視に
よって行われているが、例えば工業用テレビジョンモニ
ター装置等を使用して観察するように構成してもよい。
In the above embodiment, the bubbles 5 are visually observed after the defoaming operation, but the bubbles 5 may be observed using, for example, an industrial television monitor.

また、各小径孔4内の気泡5の有無を光学センサを利用
して検出し、コンピュータ等を使用して脱泡率を演算す
ることも可能である。
It is also possible to detect the presence or absence of air bubbles 5 in each small-diameter hole 4 using an optical sensor, and calculate the defoaming rate using a computer or the like.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、実際の生産を行う前に
、脱泡操作のシュミレーションを行い、各操業条件下で
の脱泡状態を定量化して測定される。従って、種々の操
業条件を異ならせて脱泡操作のシュミレーションと脱泡
率の測定を繰り返すことにより、脱泡率が最も高い最適
操業条件を求めることができる。
As described above, according to the present invention, before actual production, a defoaming operation is simulated, and the defoaming state under each operating condition is quantified and measured. Therefore, by repeating the simulation of the defoaming operation and the measurement of the defoaming rate under various operating conditions, it is possible to determine the optimal operating conditions that provide the highest defoaming rate.

その結果、その最適操業条件に則した設備を設置し、あ
るいは、設備を改造してから生産を開始することにより
生産開始後に徒に設備改造をせずに済むようになり、メ
ツキ装置の稼働効率を高めることができる。
As a result, by installing equipment that meets the optimal operating conditions or modifying the equipment before starting production, it is no longer necessary to make unnecessary equipment modifications after the start of production, and the operating efficiency of the plating equipment is improved. can be increased.

また、最適操業条件かえられるまでの試作を生産ライン
で行わないので、試作に伴う不良品の発生を防止できる
とともに、最適操業条件で作られた製品のみが製品とし
て出荷されるので、製品の品質に対する信転性を高める
ことができる。
In addition, since trial production is not performed on the production line until the optimal operating conditions are changed, it is possible to prevent the occurrence of defective products due to trial production, and because only products manufactured under optimal operating conditions are shipped as products, the quality of the products is improved. It is possible to increase the credibility of

側面図である。FIG.

図中、 1・・・実験槽、 4・・・小径孔、 2・・・被験液、3・・・透明板、 5・・・気泡。In the figure, 1... Experimental tank, 4...small diameter hole, 2...Test solution, 3...Transparent plate, 5... Air bubbles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るプリント基板の小径孔
脱泡性の評価方法の説明図、第2図はその透明板の脱泡
状態の観察結果例を示す透明板の第 図 第 図
FIG. 1 is an explanatory diagram of a method for evaluating the degassing properties of small diameter holes in a printed circuit board according to an embodiment of the present invention, and FIG. 2 is a diagram of a transparent plate showing an example of the observation results of the degassing state of the transparent plate. figure

Claims (1)

【特許請求の範囲】 〔1〕 少なくとも一部分を透明にした実験槽(1)に
、被験液(2)を充填し、所定の孔径を有する多数の小
径孔(4)を形成した透明板(3)を前記被験液(2)
に浸漬し、所定の脱泡操作をした後に実験槽(1)の外
から透明板(3)を観察し、小径孔(4)のうち気泡(
5)が抜けた小径孔(4)の割合を測定することを特徴
とする、プリント基板の小径孔脱泡性の評価方法。
[Scope of Claims] [1] A transparent plate (3) filled with a test liquid (2) in an experimental tank (1) that is at least partially transparent, and in which a large number of small holes (4) having a predetermined hole diameter are formed. ) as the test solution (2)
The transparent plate (3) was observed from outside the experimental tank (1) after being immersed in the liquid and subjected to the prescribed degassing operation, and the air bubbles (
5) A method for evaluating small-diameter hole defoaming properties of a printed circuit board, the method comprising measuring the proportion of small-diameter holes (4) in which 5) has escaped.
JP18479890A 1990-07-11 1990-07-11 Evaluation method for small-diameter hole degassing properties of printed circuit boards Pending JPH0470550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18479890A JPH0470550A (en) 1990-07-11 1990-07-11 Evaluation method for small-diameter hole degassing properties of printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18479890A JPH0470550A (en) 1990-07-11 1990-07-11 Evaluation method for small-diameter hole degassing properties of printed circuit boards

Publications (1)

Publication Number Publication Date
JPH0470550A true JPH0470550A (en) 1992-03-05

Family

ID=16159482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18479890A Pending JPH0470550A (en) 1990-07-11 1990-07-11 Evaluation method for small-diameter hole degassing properties of printed circuit boards

Country Status (1)

Country Link
JP (1) JPH0470550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626196B2 (en) * 2001-06-15 2003-09-30 International Busines Machines Corporation Arrangement and method for degassing small-high aspect ratio drilled holes prior to wet chemical processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626196B2 (en) * 2001-06-15 2003-09-30 International Busines Machines Corporation Arrangement and method for degassing small-high aspect ratio drilled holes prior to wet chemical processing

Similar Documents

Publication Publication Date Title
JP2009109460A (en) Apparatus and method of inspecting panel
KR19990036494A (en) Plating method
JPH0470550A (en) Evaluation method for small-diameter hole degassing properties of printed circuit boards
US11872729B2 (en) Feature casting for manufacture observation
TW201508275A (en) Impacting tasting device
Silva et al. Water in oil emulsions from hydrophobized metal membranes and characterization of dynamic interfacial tension in membrane emulsification
US7434468B2 (en) Porosity reference standard for ultrasonic inspection of composite materials
CN116128829A (en) Special-shaped hole detection method and device, electronic equipment and storage medium
JP2003020255A (en) Chemical processing method for glass substrate
EP2531840B1 (en) Non-destructive liquid penetrant inspection process integrity verification test panel
KR20160046015A (en) An apparatus for measuring consistency of fresh concrete and a method for measuring consistency of fresh concrete using the same
CN107238492B (en) A method of the device of test 3D printing sanding gear performance parameter and its test
JP3046260B2 (en) A method for determining the diffusion coefficient in fiber walls
CN105675413A (en) Method of evaluating stress life of circuit board
US6125688A (en) Method of determining pulp properties
US3972227A (en) Method of ultrasonic measurements
CN109085129A (en) Quantitative measuring method of the solder mask to UV light absorption
CN105975698A (en) Differential via hole arrangement method and PCB (Printed Circuit Board)
JP2009076553A (en) Electroless plating method of printed circuit board
CN116586365A (en) Casting inner cavity efficient cleaning and cleanliness detection integrated method
JPH04154192A (en) Plating method for printed wiring boards
CN106969893A (en) Contactless stiffness of structural member detection device and method
JPS6239932B2 (en)
TWI874279B (en) Through via substrate etching apparatus and method
CN118886355A (en) Acoustic cavitation experimental device and method based on spherical resonant cavity sound field prediction