[go: up one dir, main page]

JPH04700B2 - - Google Patents

Info

Publication number
JPH04700B2
JPH04700B2 JP60038128A JP3812885A JPH04700B2 JP H04700 B2 JPH04700 B2 JP H04700B2 JP 60038128 A JP60038128 A JP 60038128A JP 3812885 A JP3812885 A JP 3812885A JP H04700 B2 JPH04700 B2 JP H04700B2
Authority
JP
Japan
Prior art keywords
platinum
preparing
acid
catalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60038128A
Other languages
Japanese (ja)
Other versions
JPS61197034A (en
Inventor
Yoshinori Nishihara
Masahiro Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60038128A priority Critical patent/JPS61197034A/en
Publication of JPS61197034A publication Critical patent/JPS61197034A/en
Publication of JPH04700B2 publication Critical patent/JPH04700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、白金と担体から成る高分散白金担
持触媒の調製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for preparing a highly dispersed supported platinum catalyst comprising platinum and a carrier.

〔従来技術とその問題点〕[Prior art and its problems]

従来、電気化学セルに用いる白金触媒として
は、周知の方法により調製した白金黒を用いる方
法が知られている。ところが、触媒として白金黒
を使用した場合には白金比表面積が小さく、満足
し得る程の特性が得られなかつた。そこで大きい
比表面積を有する白金触媒を得るために、カーボ
ンブラツクなどの比較的高表面積を有する多孔性
微粉体を担体として用いて、これに白金微粒子を
担持させる方法がとられてきた。この白金担持触
媒の調製方法の従来技術としては、大別して次の
三種類の方法がある。
Conventionally, as a platinum catalyst used in an electrochemical cell, a method using platinum black prepared by a well-known method is known. However, when platinum black was used as a catalyst, the specific surface area of platinum was small, and satisfactory characteristics could not be obtained. Therefore, in order to obtain a platinum catalyst having a large specific surface area, a method has been adopted in which a porous fine powder having a relatively high surface area, such as carbon black, is used as a carrier and platinum fine particles are supported on the carrier. Conventional techniques for preparing this platinum-supported catalyst can be broadly classified into the following three types.

まず第1の方法(以下気相還元法と称する)と
しては、担体に塩化白金酸水溶液などの白金塩を
含浸させた後に、水分を乾燥除去し、これを水素
気流中で所定の温度において直接水素還元を行な
う方法が知られている。しかしながらこの方法に
おいては、担体の種類によつては白金塩が担体表
面に吸着されず、単に担体間の細孔あるいは担体
内の細孔に白金塩が吸収されているにすぎず、こ
れを乾燥する事により白金塩水溶液が徐々に細孔
内で濃縮される。この事により、白金の結晶子径
が大きくなり(白金の比表面積が減少することに
相当)、期待する程の高表面積白金触媒が得られ
なかつた。また、白金塩水溶液の濃縮により担体
の表面に均一に白金を分散させる事が困難であつ
た。更に、他の問題点としては、乾燥された白金
塩含浸済粉体を水素気流中で直接還元し、白金担
持触媒を得るためには通常100℃〜400℃の高温に
しなければならない。そこで、この条件下で処理
を行なうと白金のシンタリング(白金粒子の径の
増加)が起き、更に白金比表面積が減少するとい
う欠点があつた。
The first method (hereinafter referred to as gas phase reduction method) involves impregnating a carrier with a platinum salt such as an aqueous solution of chloroplatinic acid, removing water by drying, and then directly heating the carrier at a predetermined temperature in a hydrogen stream. Methods of hydrogen reduction are known. However, in this method, depending on the type of carrier, the platinum salt may not be adsorbed onto the carrier surface, but may simply be absorbed into the pores between the carriers or within the carrier. By doing so, the platinum salt aqueous solution is gradually concentrated within the pores. As a result, the crystallite diameter of platinum increased (corresponding to a decrease in the specific surface area of platinum), and a platinum catalyst with a high surface area as expected could not be obtained. Furthermore, it has been difficult to uniformly disperse platinum on the surface of the carrier by concentrating the platinum salt aqueous solution. Furthermore, another problem is that in order to directly reduce the dried platinum salt-impregnated powder in a hydrogen stream to obtain a supported platinum catalyst, it is necessary to raise the temperature to a high temperature of usually 100 DEG C. to 400 DEG C. Therefore, when the treatment is carried out under these conditions, platinum sintering (increase in the diameter of platinum particles) occurs, and the platinum specific surface area further decreases.

次に第2の方法(以下熱分解法と称する)とし
ては、特開昭50−56545に開示されているように、
白金塩としてジニトロジアンミン白金(Pt
(NH32(NO22)を用い、これを30%硝酸に溶解
した後にカーボンブラツクと接触させ、充分にな
じませた後に乾燥し、その後これを260℃空気中
で処理し、白金塩を熱的に分解して白金担持触媒
を得る方法がある。しかしながらこの場合にも、
白金塩を粉体に吸収、乾燥させているために、気
相還元法と同様な濃縮による白金結晶子径の増大
あるいは白金の分散状態の不均一さがある。また
白金塩の熱分解時には、白金のシンタリング及び
担体であるカーボンブラツクの消失(酸化)が予
想され、必ずしも期待する特性の触媒が得られな
いと考えられる。
Next, as a second method (hereinafter referred to as pyrolysis method), as disclosed in Japanese Patent Application Laid-Open No. 50-56545,
Dinitrodiammine platinum (Pt) as a platinum salt
(NH 3 ) 2 (NO 2 ) 2 ) was dissolved in 30% nitric acid, brought into contact with carbon black, thoroughly blended and dried. There is a method of thermally decomposing salt to obtain a supported platinum catalyst. However, even in this case,
Since the platinum salt is absorbed into powder and dried, the platinum crystallite size increases due to concentration similar to the gas phase reduction method, or the platinum dispersion state becomes non-uniform. Furthermore, during thermal decomposition of platinum salts, sintering of platinum and disappearance (oxidation) of carbon black, which is a carrier, are expected, and it is considered that a catalyst with the expected characteristics cannot necessarily be obtained.

また第3の方法(以下液相還元法と称する)と
しては、特開昭54−92588に開示されている様に、
水に分散させたカーボンブラツクに塩化白金酸水
溶液を添加し、充分に接触させた後に、ニチオン
酸ナトリウムを用いて塩化白金酸を還元する方法
がある。しかしながら、この方法においては所定
量の白金を担体上に担持させる事が困難であり、
実用的でないことが判つた。
Furthermore, as a third method (hereinafter referred to as liquid phase reduction method), as disclosed in JP-A-54-92588,
There is a method in which an aqueous solution of chloroplatinic acid is added to carbon black dispersed in water, the carbon black is brought into sufficient contact with the carbon black, and then the chloroplatinic acid is reduced using sodium dithionate. However, with this method, it is difficult to support a predetermined amount of platinum on the carrier.
It turned out to be impractical.

〔発明の目的〕[Purpose of the invention]

この発明は従来の欠点を除去して、白金担持触
媒の調製段階で不必要に白金の結晶子径を増加さ
せることなく、均一に分散した白金担持触媒を短
時間で安全に、しかも要求される白金担持量を確
実に担持させる方法を提供することを目的とす
る。
This invention eliminates the drawbacks of the conventional method and can safely produce a uniformly dispersed platinum-supported catalyst in a short time without unnecessarily increasing the platinum crystallite diameter during the preparation stage of the platinum-supported catalyst. It is an object of the present invention to provide a method for reliably supporting a certain amount of platinum.

〔発明の要点〕[Key points of the invention]

この発明は、白金塩の水溶液が担体表面とより
良く充分に接触出来る様に、親水処理を施した担
体と白金塩を充分に接触させた後に、系がPHをア
ルカリ側にして還元剤を用いて還元が充分起こり
うる条件下において白金塩の還元を行ない、同時
に担体表面上に還元された白金を吸着させる事に
より、白金結晶子径の小さい高表面積高分散白金
担持触媒が、確実に、安全に、しかも短時間で調
製出来るようにしたものである。
In this invention, in order to enable the platinum salt aqueous solution to contact the surface of the carrier well, the system uses a reducing agent to adjust the pH to an alkaline level after bringing the platinum salt into sufficient contact with the carrier that has been subjected to hydrophilic treatment. By reducing the platinum salt under conditions that allow sufficient reduction to occur, and at the same time adsorbing the reduced platinum onto the surface of the carrier, a high surface area, highly dispersed platinum supported catalyst with a small platinum crystallite diameter can be produced reliably and safely. Moreover, it can be prepared in a short time.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

実施例 1 触媒担体としてのアセチレンブラツク9gに
10wt%硝酸水溶液360mlを添加し、これを撹拌し
ながら60℃まで昇温し、更にこの温度で3時間撹
拌を続けた。3時間経過後、濾別し、PH=7にな
るまで充分脱イオン水でケーキを洗浄した。次に
このケーキを、2.1g−Pt/の塩化白金酸水溶液
500mlに充分に分散させ、更にアセチレンブラツ
クと塩化白金酸が充分に接触する様に2時間室温
で撹拌した。これに0.1M炭酸ナトリウム水溶液
を添加し、PHを9.5に調製した。この後、0.1M蟻
酸水溶液213mlを約10分間かけて撹拌している液
に滴下した。滴下完了後、反応物を撹拌しながら
上昇し、50℃まで昇温した。更に昇温後、2時間
加熱撹拌を続けた。その後、反応物を濾別し、ケ
ーキを60℃の温水で洗浄した。洗浄後、ケーキを
50℃で10時間加熱真空乾燥して白金担持触媒を得
た。得られた触媒の物性を評価した結果、白金比
表面積は180m2/g−Pt、白金担持量は10.4%で
あつた。
Example 1 9g of acetylene black as a catalyst carrier
360 ml of a 10 wt % nitric acid aqueous solution was added, and the temperature was raised to 60° C. while stirring, and stirring was continued at this temperature for 3 hours. After 3 hours, it was filtered off and the cake was thoroughly washed with deionized water until pH=7. Next, this cake was mixed with a 2.1g-Pt/chloroplatinic acid aqueous solution.
The mixture was thoroughly dispersed in 500 ml and further stirred at room temperature for 2 hours so that the acetylene black and chloroplatinic acid were brought into sufficient contact with each other. A 0.1M aqueous sodium carbonate solution was added to this to adjust the pH to 9.5. After this, 213 ml of 0.1M aqueous formic acid solution was added dropwise to the stirring liquid over about 10 minutes. After the addition was completed, the reaction mixture was raised to 50° C. while stirring. After further raising the temperature, heating and stirring were continued for 2 hours. Thereafter, the reaction product was filtered off, and the cake was washed with 60°C warm water. After washing, remove the cake.
The platinum-supported catalyst was obtained by heating and vacuum drying at 50°C for 10 hours. As a result of evaluating the physical properties of the obtained catalyst, the platinum specific surface area was 180 m 2 /g-Pt, and the amount of platinum supported was 10.4%.

なお、実施例1においては、触媒担体の親水処
理に10wt%の硝酸水溶液を用いたが、硝酸水溶
液のかわりに1.6mol/の塩酸水溶液や、1Nの
硫酸あるいは0.1Nの酢酸を用いても同様の効果
が得られ、他にも本発明の要旨を逸脱しない範囲
で変形が可能な実施例が種々ある。以下に第1の
実施例と同様な結果が得られた第1の実施例の変
形例のいくつかを紹介する。
In Example 1, a 10wt% nitric acid aqueous solution was used for the hydrophilic treatment of the catalyst carrier, but the same result can be obtained by using a 1.6 mol/hydrochloric acid aqueous solution, 1N sulfuric acid, or 0.1N acetic acid instead of the nitric acid aqueous solution. There are various other embodiments that can be modified without departing from the gist of the present invention. Below, some modified examples of the first example that obtained results similar to those of the first example will be introduced.

1 実施例1において、担体の前処理を80℃で2
時間行なつた担体を用いる。
1 In Example 1, the carrier was pretreated at 80°C.
Use a carrier that has been used for a long time.

2 実施例1において、PHを調整するために
0.1N−NaOH水溶液を用いる。
2 In Example 1, to adjust the PH
Use 0.1N-NaOH aqueous solution.

3 実施例1において、アンモニア水を用いてPH
=9.5に調整した。
3 In Example 1, the pH was adjusted using ammonia water.
Adjusted to =9.5.

4 実施例1において、0.1M−蟻酸水溶液のか
わりに0.1N−シユウ酸水溶液を使用し、60℃
で1時間還元をする。
4 In Example 1, 0.1N-oxalic acid aqueous solution was used instead of 0.1M-formic acid aqueous solution, and the temperature was 60°C.
Get a refund for 1 hour.

5 実施例1において、0.1N−ホルムアルデヒ
ドを用いて80℃で1時間還元をする。
5 In Example 1, reduction is performed at 80°C for 1 hour using 0.1N formaldehyde.

6 実施例1で塩化白金酸水溶液に前処理した担
体を序々に分散させるかわりに、前処理した担
体を脱イオン水約500mlに分散させた後に、50
mg−Pt/mlの塩化白金酸水溶液を十分撹拌し
ながら序々に添加し、担体と白金塩を充分に接
触させる。
6 Instead of gradually dispersing the pretreated carrier in the aqueous chloroplatinic acid solution in Example 1, the pretreated carrier was dispersed in about 500 ml of deionized water and then
A chloroplatinic acid aqueous solution of mg-Pt/ml is gradually added with sufficient stirring to bring the support and platinum salt into sufficient contact.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明によ
れば、担体を白金塩水溶液と接触させる前に担体
に親水処理を施しかつ液相で還元反応が均一に行
われるような工程としたために、従来より担体と
白金塩との接触が良好となり、より広い白金比表
面積を有する均一分散白金担持触媒が得られるよ
うになつた。従来法での白金比表面積は約100〜
120m2/g−Ptであるのに対し、本発明の方法に
よれば、同比表面積は180m2/g−Ptであつて1.5
〜1.8倍となる。また、液相還元法を採用してい
るため白金塩の還元時に不必要な熱がかからず、
白金のシンタリングが改善された。更に、還元時
に白金が担体表面に吸着するために、白金の分散
性及び担体上への担持強度が向上した。更にま
た、要求される白金担持触媒が一連の工程をくり
返すことなく得られるという効果が得られた。な
お、前述のように白金比表面積が増加するので、
かかる触媒を電気化学セル例えば燐酸型燃料電池
に用いた場合には、白金上でのカソード反応が面
積増に比例して促進され、同一電流密度で比較し
た場合、セルの出力電圧が高くなり、燃料電池の
特性が向上する効果を奏する。
As is clear from the above description, according to the present invention, the carrier is subjected to hydrophilic treatment before being brought into contact with the platinum salt aqueous solution, and the reduction reaction is uniformly carried out in the liquid phase. The contact between the carrier and the platinum salt became better, and a uniformly dispersed supported platinum catalyst having a wider specific surface area of platinum was obtained. The specific surface area of platinum in the conventional method is approximately 100~
120 m 2 /g-Pt, whereas according to the method of the present invention, the specific surface area is 180 m 2 /g-Pt, which is 1.5
~1.8 times. In addition, since a liquid phase reduction method is adopted, unnecessary heat is not applied during reduction of platinum salt.
Improved platinum sintering. Furthermore, since platinum was adsorbed onto the surface of the carrier during reduction, the dispersibility of platinum and the strength of its support on the carrier were improved. Furthermore, it was possible to obtain the required platinum-supported catalyst without repeating a series of steps. Furthermore, as mentioned above, since the platinum specific surface area increases,
When such a catalyst is used in an electrochemical cell such as a phosphoric acid fuel cell, the cathode reaction on platinum is promoted in proportion to the increase in area, and when compared at the same current density, the output voltage of the cell becomes higher. This has the effect of improving the characteristics of the fuel cell.

Claims (1)

【特許請求の範囲】 1 カーボンブラツクやアセチレンブラツク等の
炭素粒子からなる触媒担体を酸水溶液に接触させ
て親水処理した後、白金塩の酸水溶液と充分に接
触させ、該系のPHをアルカリ側にして還元剤を加
え、しかる後に系を撹拌しながら白金塩の還元が
起こりうる温度に昇温して還元を行うことを特徴
とする電気化学セル用白金担持触媒の調製方法。 2 特許請求の範囲第1項記載の方法において、
酸水溶液として硝酸、塩酸、硫酸等の強酸を用い
ることを特徴とする白金担持触媒の調製方法。 3 特許請求の範囲第1項記載の方法において、
親水処理温度は40℃から90℃であることを特徴と
する白金担持触媒の調製方法。 4 特許請求の範囲第1項記載の方法において、
PHは9以上であることを特徴とする白金担持触媒
の調製方法。 5 特許請求の範囲第1項記載の方法において、
PH調整試薬はNaOH、KOH、Na2CO3、K2CO3
またはアンモニア水を用いることを特徴とする白
金担持触媒の調製方法。 6 特許請求の範囲第1項記載の方法において、
白金塩は塩化白金酸であることを特徴とする白金
担持触媒の調製方法。 7 特許請求の範囲第1項記載の方法において、
還元剤は蟻酸、ホルマリン、ギ酸ナトリウム等の
アルデヒド基に相当する置換基を有する試薬であ
ることを特徴とする白金担持触媒の調製方法。 8 特許請求の範囲第1項記載の方法において、
還元剤はヒドラジン、水素化ホウ素ナトリウムま
たはシユウ酸であることを特徴とする白金担持触
媒の調製方法。 9 特許請求の範囲第1項記載の方法において、
白金塩の還元の起こりうる温度は40℃から90℃で
あることを特徴とする白金担持触媒の調製方法。
[Scope of Claims] 1. A catalyst carrier made of carbon particles such as carbon black or acetylene black is brought into contact with an acid aqueous solution for hydrophilic treatment, and then sufficiently brought into contact with an acid aqueous solution of a platinum salt to bring the pH of the system to an alkaline side. A method for preparing a platinum-supported catalyst for an electrochemical cell, which comprises adding a reducing agent to the system, and then heating the system to a temperature at which reduction of the platinum salt can occur while stirring the system. 2. In the method described in claim 1,
A method for preparing a supported platinum catalyst, characterized by using a strong acid such as nitric acid, hydrochloric acid, or sulfuric acid as an acid aqueous solution. 3. In the method described in claim 1,
A method for preparing a supported platinum catalyst, characterized in that the hydrophilic treatment temperature is from 40°C to 90°C. 4. In the method described in claim 1,
A method for preparing a supported platinum catalyst, characterized in that the pH is 9 or more. 5. In the method described in claim 1,
PH adjustment reagents are NaOH, KOH, Na 2 CO 3 , K 2 CO 3
Alternatively, a method for preparing a supported platinum catalyst, characterized by using aqueous ammonia. 6. In the method recited in claim 1,
A method for preparing a supported platinum catalyst, characterized in that the platinum salt is chloroplatinic acid. 7. In the method described in claim 1,
A method for preparing a supported platinum catalyst, characterized in that the reducing agent is a reagent having a substituent corresponding to an aldehyde group, such as formic acid, formalin, or sodium formate. 8. In the method described in claim 1,
A method for preparing a supported platinum catalyst, characterized in that the reducing agent is hydrazine, sodium borohydride or oxalic acid. 9. In the method recited in claim 1,
A method for preparing a supported platinum catalyst, characterized in that the temperature at which platinum salt can be reduced is from 40°C to 90°C.
JP60038128A 1985-02-27 1985-02-27 Preparation method of platinum supported catalyst Granted JPS61197034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038128A JPS61197034A (en) 1985-02-27 1985-02-27 Preparation method of platinum supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038128A JPS61197034A (en) 1985-02-27 1985-02-27 Preparation method of platinum supported catalyst

Publications (2)

Publication Number Publication Date
JPS61197034A JPS61197034A (en) 1986-09-01
JPH04700B2 true JPH04700B2 (en) 1992-01-08

Family

ID=12516813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038128A Granted JPS61197034A (en) 1985-02-27 1985-02-27 Preparation method of platinum supported catalyst

Country Status (1)

Country Link
JP (1) JPS61197034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089032A (en) * 2008-10-09 2010-04-22 Jgc Catalysts & Chemicals Ltd Metal-particle supporting catalyst, and method of producing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271838A (en) * 1988-03-31 1990-03-12 Res Assoc Util Of Light Oil Production of noble metal catalyst
JP2681864B2 (en) * 1993-04-12 1997-11-26 福治 小林 Sacroiliac joint adjuster
JP2001216991A (en) 2000-02-02 2001-08-10 Toyota Motor Corp Fuel cell performance evaluation device and its evaluation method, specific surface area evaluation device for fuel cell electrode catalyst and its evaluation method, and fuel cell electrode catalyst and its manufacturing method
EP1320140A4 (en) * 2000-08-16 2007-10-10 Matsushita Electric Ind Co Ltd Fuel cell
US20060134506A1 (en) * 2004-12-17 2006-06-22 Kim Min S Electrode catalyst for fuel cell
CN103608954B (en) * 2011-04-25 2018-03-30 奥迪股份公司 The catalyst material of fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842990A (en) * 1971-10-07 1973-06-21
JPS59120250A (en) * 1982-12-27 1984-07-11 Toyota Central Res & Dev Lab Inc Preparation of catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842990A (en) * 1971-10-07 1973-06-21
JPS59120250A (en) * 1982-12-27 1984-07-11 Toyota Central Res & Dev Lab Inc Preparation of catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089032A (en) * 2008-10-09 2010-04-22 Jgc Catalysts & Chemicals Ltd Metal-particle supporting catalyst, and method of producing the same

Also Published As

Publication number Publication date
JPS61197034A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
KR100953545B1 (en) Supported catalyst and its manufacturing method
CN113178582A (en) Proton exchange membrane fuel cell anti-reversal electrode PtIr/CNT catalyst and preparation method thereof
CN1964782B (en) Platinum catalyst obtained by reduction of in situ formed platinum dioxide
CA2387379A1 (en) A process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
CN116154194A (en) Carbon material supported platinum catalyst and preparation method and application thereof
CN108963273B (en) Branch-shaped platinum electrocatalyst and preparation method and application thereof
CN111509240B (en) Carbon-supported platinum catalyst powder and preparation method and application thereof
JPH04700B2 (en)
CN110668415B (en) Method for preparing atomic-scale dispersed metal nitrogen carbon material based on fumed silica
US4054687A (en) Method for making a fuel cell electrode
RU2324538C1 (en) Catalyst with nanoparticles on carrier and method of its production
JPH04141235A (en) Electrode catalyst for an anode pole
JPH0463730B2 (en)
RU2446009C1 (en) Method of preparing platinum-ruthenium electrocatalysts
JP4082800B2 (en) Catalyst production method
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP3195180B2 (en) Method for producing electrode catalyst for fuel cell
JP2775771B2 (en) Manufacturing method of fuel electrode catalyst for liquid fuel cell
JPH0463731B2 (en)
JP3890653B2 (en) Methanol fuel cell
JPH0572711B2 (en)
JP4939005B2 (en) Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell
JP2002095969A (en) Method for producing platinum-cobalt alloy catalyst
JP2808867B2 (en) Method for producing fuel cell alloy catalyst
CN114784296B (en) Preparation method of a platinum-ruthenium-doped rare earth element ternary alloy nanoporous catalyst that efficiently catalyzes the oxidation of methanol and ethanol