[go: up one dir, main page]

JPH0469637B2 - - Google Patents

Info

Publication number
JPH0469637B2
JPH0469637B2 JP59262493A JP26249384A JPH0469637B2 JP H0469637 B2 JPH0469637 B2 JP H0469637B2 JP 59262493 A JP59262493 A JP 59262493A JP 26249384 A JP26249384 A JP 26249384A JP H0469637 B2 JPH0469637 B2 JP H0469637B2
Authority
JP
Japan
Prior art keywords
formula
reaction
salt
glucose
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59262493A
Other languages
Japanese (ja)
Other versions
JPS61140595A (en
Inventor
Takashi Imamura
Kazuhiro Yamaki
Tomihiro Kurosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP59262493A priority Critical patent/JPS61140595A/en
Publication of JPS61140595A publication Critical patent/JPS61140595A/en
Publication of JPH0469637B2 publication Critical patent/JPH0469637B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は次の一般式() (式中、R1はグルコースの活性水素残基を示し、
MはH又はカチオンを示す) で表わされる糖リン酸エステルの製造方法に関す
る。 〔従来の技術〕 従来、毛髪にしつとりした感触を付与する目的
で、シヤンプー、リンス、化粧品等に保湿剤を配
合することが行われている。そして、従来保湿剤
としては、プロピレングリコール、グリセリン、
尿素、ソルビトール、アルコールのアルキレンオ
キサイド付加物等が使用されている。しかし、こ
れらは保湿性、吸湿速度等の点で満足し得るもの
ではなかつた。 一方、構造中にヒドロキシル基、ポリエーテル
基等を有する化合物は保湿性、吸湿性を示すこと
が知られており、このような観点から糖などのヒ
ドロキシル基を有する化合物にアルキレンオキサ
イドを付加したグルカムE−10(アマコール社)
などが提供されている。しかしこれも低湿度下に
おける保湿性が低く、またべとつく等の感触の面
でも保湿剤として満足のいくものではなかつた。 斯かる実情において、種々研究の結果、本発明
者らは、糖リン酸エステルにヒドロキシル基を有
するグリセリンを導入した()式で表わされる
化合物が優れた保湿性を有することを見出した。 しかし、()式で表わされる糖リン酸エステ
ルを製造する方法としては、グラム陽性菌から抽
出されるタイコニツク酸(Teichonicacid)を加
水分解する方法が知られている〔Biochem.J.、
151(1975)〕のみであり、化学的合成法は知られ
ていなかつた。又、式()で示される化合物の
β体の化学合成法が知られている〔Bioorg.
Khim.、3、248、(1977)〕が、この方法も保護
基の導入と除去という複雑な操作を必要とするた
め工業的製造法として適しているとは言いがたい
ものであつた。 〔発明が解決しようとする問題点〕 従つて、式()で表される化合物の工業的製
造可能な化学的合成法の開発が望まれていた。 〔問題点を解決するための手段〕 かかる状況において本発明者らは鋭意研究の結
果、本発明を完成した。 本発明方法は次の反応式によつて示される。 (式中、R1及びMは前記と同じ意味を有する) すなわち、本発明は、リン酸モノエステル又は
その塩()にグリシドール()を反応させて
糖リン酸エステル()を製造する方法である。 本発明の一般式()中のR1で示されるグル
コースの活性水素残基とは、グルコース分子から
ヒドロキシル基の水素原子を1個除いたものであ
り、例えば式()で表されるリン酸モノエステ
ルとしてグルコース−1−リン酸、グルコース−
2−リン酸、グルコース−4−リン酸、グルコー
ス−6−リン酸又はその塩等が挙げられる。グル
コースは他のヒドロキシル基が保護基で保護され
ていてもよい。保護基としては、例えばアセチ
ル、ベンジル、ベンゾイル、メチレンアセター
ル、イソプロピリデンアセタール等が挙げられ
る。また本発明の一般式()中のMは水素又は
アルカリ金属、アルカノールアミン、塩基性アミ
ノ酸、アンモニア等のカチオンを指し、例えばア
ルカリ金属としてはナトリウム、カリウム等が、
アルカノールアミンとしてはエタノールアミン、
トリエタノールアミン等が、塩基性アミノ酸とし
てはアルギニン、リジン等が挙げられるが、好ま
しくはナトリウム、カリウムのモノ塩が用いられ
る。 本発明を実施するには、式()で示されるリ
ン酸モノエステルに対し1ないし10倍モルの、好
ましくは1ないし5倍モルの式()で示される
グリシドールを反応させる。反応は不活性溶媒の
存在下において、30〜150℃、好ましくは40〜90
℃の温度で行われる。 不活性溶媒としては、例えば、水、メタノー
ル、エタノール、イソプロパノール等の極性溶媒
が使用されるが、その中でも水が特に好ましい。 反応生成物には、本発明の目的たる一般式
()で表される糖リン酸エステルの他に、副生
成物としての無機塩、未反応のリン酸塩やグリシ
ドールあるいはそのエポキシ開環物が含まれてい
る。又、反応条件によつては、一般式()で表
わされる糖リン酸エステルの異性体である一般式
()で表わされる糖リン酸エステルが少量生産
されることがある。 (式中、R1およびMは前記と同じ意味を有する) この反応物中の各成分の割合は、使用するリン
酸モノエステル又はその塩の種類、リン酸モノエ
ステル又はその塩とグリシドールの反応モル比、
使用する溶媒の種類及び量、反応温度等の条件に
依存する。 従つて、使用目的によつては反応生成物をその
まま用いることも可能であるが、更に高純度品が
必要とされる場合には、アセトン、エタノール等
の溶剤により反応生成物を析出させる方法、ある
いは限外ろ過等により99%以上の高純度の糖リン
酸エステル()を得ることができる。 例えば、市販のポリスルフオン系の限外ろ過膜
を使用して副生成物としての無機塩、未反応のリ
ン酸モノエステル塩、グリシドールあるいはその
エポキシ開環物を除去すると、糖リン酸エステル
()のみが残り、他の不純物は除去され、その
残留物から水を留去すれば高純度の糖リン酸エス
テルが得られる。また、このようにして得られた
糖リン酸エステルをイオン交換樹脂
(Dowex50W−X8)に通した後、アルカリ金属、
アルカノールアミン、塩基性アミノ酸、アンモニ
アで中和することにより塩交換を行うことも可能
である。 〔発明の効果〕 以上のような本発明の糖リン酸エステルの製造
法は、糖骨格の保護基を導入する操作が不要であ
り、優れた保湿性を有する糖リン酸エステルを簡
単な操作で工業的有利に製造することができる。 〔実施例〕 次に本発明の実施例及び試験例を挙げて説明す
る。 実施例 1 α−D−グルコピラノース、1−(2,3−ジ
ヒドロキシプロピルハイドロゲンホスフエー
ト)ナトリウム塩: 反応器にα−D−グルコース−1−ホスフエー
トジナトリウム塩3水和物107g(0.3モル)を入
れ4N塩酸水溶液80g(0.3モル)と水64gに溶解
させて60℃に昇温する。次に反応系を60℃に保ち
ながらグリシドール67g(0.9モル)を徐々に滴
下した後、60℃で9時間反応させる。反応終了
後、ろ過して浮遊性の不純物を除去する。この溶
液を限外ろ過装置(ポリスルフオン系の限外ろ過
膜、NaCl阻止率45%)に通じ不純物を除去し、
更に凍結乾燥を行つて白色粉末状の化合物40g
(0.11モル)を得た。反応率100%、単離収率37% 元素分析値(重量%)(分子式C9H18O11PNa) C H P 計算値 30.3 5.1 8.7 実測値 30.0 5.1 8.3 プロトンNMR(ppm)溶媒;D2O δ5.37〜5.57(q、1H) 3.43〜4.00(m、11H) 実施例 2 α−D−グルコピラノース、6−(2,3−ジ
ヒドロキシプロピルハイドロゲンホスフエー
ト)ナトリウム塩: 反応器にα−D−グルコース−6−ホスフエー
トジナトリウム塩3水和物107g(0.3モル)を入
れ4N塩酸水溶液80g(0.3モル)と水64gに溶解
させ60℃に昇温する。次に反応系を60℃に保ちな
がらグリシドール67g(0.9モル)を徐々に滴下
した後、60℃で9時間反応させる。反応終了後、
実施例1と同様にして目的化合物36g(0.10モ
ル)を得た。反応率100%、単離収率33% 実施例 3 α−D−グルコピラノース、1−(2,3−ジ
ヒドロキシプロピルハイドロゲンホスフエー
ト)カリウム塩: 反応器にα−D−グルコース−1−ホスフエー
トモノカリウム塩89g(0.3モル)を水64gに溶
解させ60℃に昇温する。次に反応系を60℃に保ち
ながらグリシドール67g(0.9モル)を徐々に滴
下した後、60℃で9時間反応させる。反応終了
後、実施例1と同様にして目的化合物45g(0.12
モル)を得た。反応率100%、単離収率40% 試験例 1 実施例1の化合物と保湿剤として知られている
グリセリン、グリカムE−10の保湿性を比較し
た。 方法:保湿試験−サンプルに50重量部%の水を添
加し、その1gをガラス容器にとり、0%Rh
(シリカゲル)、20%Rh(CH3COOK塩溶液)、
44%Rh(K2CO3・2H2O塩溶液)、65%Rh(Mg
(CH3COO)2・4H2O塩溶液)、80%Rh(NH4Cl
塩溶液)の各湿度下に3日間放置し、その重量
変化から評価した。 その結果を第1表に示す。
[Industrial Application Field] The present invention is based on the following general formula () (In the formula, R 1 represents the active hydrogen residue of glucose,
M represents H or a cation. [Prior Art] Conventionally, moisturizing agents have been added to shampoos, conditioners, cosmetics, etc. for the purpose of imparting a moist feel to the hair. Conventional moisturizers include propylene glycol, glycerin,
Urea, sorbitol, alkylene oxide adducts of alcohols, etc. are used. However, these were not satisfactory in terms of moisture retention, moisture absorption rate, etc. On the other hand, it is known that compounds having hydroxyl groups, polyether groups, etc. in their structures exhibit moisture retention and hygroscopicity. E-10 (Amacor)
etc. are provided. However, this also had low moisturizing properties under low humidity conditions, and was not satisfactory as a moisturizing agent due to its sticky feel. Under these circumstances, as a result of various studies, the present inventors have found that a compound represented by the formula ( ), in which glycerin having a hydroxyl group is introduced into a sugar phosphate ester, has excellent moisturizing properties. However, as a method for producing the sugar phosphate ester represented by the formula (), a method of hydrolyzing Teichonic acid extracted from Gram-positive bacteria is known [Biochem.J.,
151 (1975)], and no chemical synthesis method was known. In addition, a method for chemically synthesizing the β form of the compound represented by formula () is known [Bioorg.
Khim., 3, 248, (1977)], but this method could not be said to be suitable as an industrial production method because it required complicated operations such as introduction and removal of protecting groups. [Problems to be Solved by the Invention] Therefore, it has been desired to develop a chemical synthesis method that allows industrial production of the compound represented by the formula (). [Means for Solving the Problems] Under such circumstances, the present inventors completed the present invention as a result of intensive research. The method of the present invention is shown by the following reaction formula. (In the formula, R 1 and M have the same meanings as above.) That is, the present invention is a method for producing a sugar phosphate ester () by reacting a phosphoric acid monoester or a salt thereof () with glycidol (). be. The active hydrogen residue of glucose represented by R 1 in the general formula () of the present invention is a glucose molecule with one hydrogen atom of the hydroxyl group removed, and is, for example, a phosphoric acid residue represented by the formula (). Glucose-1-phosphate, glucose-1 as monoester
Examples include 2-phosphoric acid, glucose-4-phosphoric acid, glucose-6-phosphoric acid or a salt thereof. Glucose may have other hydroxyl groups protected with protective groups. Examples of the protecting group include acetyl, benzyl, benzoyl, methylene acetal, isopropylidene acetal, and the like. Furthermore, M in the general formula () of the present invention refers to hydrogen or a cation such as an alkali metal, an alkanolamine, a basic amino acid, or ammonia. Examples of the alkali metal include sodium, potassium, etc.
As alkanolamines, ethanolamine,
Examples of the basic amino acid include triethanolamine and the like, and examples of the basic amino acid include arginine and lysine, and sodium and potassium monosalts are preferably used. To carry out the present invention, 1 to 10 times the mole of glycidol represented by the formula (), preferably 1 to 5 times the mole, is reacted with the phosphoric acid monoester represented by the formula (). The reaction is carried out in the presence of an inert solvent at 30-150°C, preferably 40-90°C.
It is carried out at a temperature of °C. As the inert solvent, for example, polar solvents such as water, methanol, ethanol, and isopropanol are used, and among them, water is particularly preferred. In addition to the sugar phosphate ester represented by the general formula (), which is the object of the present invention, the reaction products include inorganic salts as by-products, unreacted phosphates, glycidol, or its epoxy ring-opened product. include. Furthermore, depending on the reaction conditions, a small amount of sugar phosphate represented by the general formula (), which is an isomer of the sugar phosphate represented by the general formula (), may be produced. (In the formula, R 1 and M have the same meanings as above.) The proportion of each component in this reaction product depends on the type of phosphoric acid monoester or its salt used, the reaction between the phosphoric acid monoester or its salt and glycidol. molar ratio,
It depends on the type and amount of solvent used, reaction temperature, and other conditions. Therefore, depending on the purpose of use, it is possible to use the reaction product as it is, but if a higher purity product is required, a method of precipitating the reaction product with a solvent such as acetone or ethanol, Alternatively, a sugar phosphate ester () with a purity of 99% or more can be obtained by ultrafiltration or the like. For example, if a commercially available polysulfone-based ultrafiltration membrane is used to remove inorganic salts as by-products, unreacted phosphate monoester salts, glycidol or its epoxy ring-opened products, only sugar phosphate esters () are removed. remains, other impurities are removed, and water is distilled off from the residue to obtain a highly pure sugar phosphate ester. In addition, after passing the sugar phosphate ester obtained in this way through an ion exchange resin (Dowex50W-X8), an alkali metal,
Salt exchange can also be carried out by neutralizing with alkanolamines, basic amino acids, or ammonia. [Effects of the Invention] The method for producing sugar phosphate esters of the present invention as described above does not require an operation to introduce a protecting group for the sugar skeleton, and can produce sugar phosphate esters with excellent moisture retention properties through simple operations. It can be manufactured with industrial advantage. [Example] Next, the present invention will be described with reference to Examples and Test Examples. Example 1 α-D-glucopyranose, 1-(2,3-dihydroxypropyl hydrogen phosphate) sodium salt: 107 g (0.3 mol) of α-D-glucopyranose-1-phosphate disodium salt trihydrate was added to a reactor. ) in 80 g (0.3 mol) of 4N hydrochloric acid aqueous solution and 64 g of water, and the temperature was raised to 60°C. Next, while maintaining the reaction system at 60°C, 67 g (0.9 mol) of glycidol was gradually added dropwise, and the mixture was allowed to react at 60°C for 9 hours. After the reaction is complete, it is filtered to remove floating impurities. This solution is passed through an ultrafiltration device (polysulfone-based ultrafiltration membrane, NaCl rejection rate 45%) to remove impurities.
Further freeze-drying yields 40g of white powder compound.
(0.11 mol) was obtained. Reaction rate 100%, isolated yield 37% Elemental analysis value (weight %) (molecular formula C 9 H 18 O 11 PNa) C H P Calculated value 30.3 5.1 8.7 Actual value 30.0 5.1 8.3 Proton NMR (ppm) Solvent; D 2 O δ5.37~5.57 (q, 1H) 3.43~4.00 (m, 11H) Example 2 α-D-glucopyranose, 6-(2,3-dihydroxypropyl hydrogen phosphate) sodium salt: α- 107 g (0.3 mol) of D-glucose-6-phosphate disodium salt trihydrate was dissolved in 80 g (0.3 mol) of a 4N aqueous hydrochloric acid solution and 64 g of water, and the temperature was raised to 60°C. Next, while maintaining the reaction system at 60°C, 67 g (0.9 mol) of glycidol was gradually added dropwise, and the mixture was allowed to react at 60°C for 9 hours. After the reaction is complete,
In the same manner as in Example 1, 36 g (0.10 mol) of the target compound was obtained. Reaction rate 100%, isolated yield 33% Example 3 α-D-glucopyranose, 1-(2,3-dihydroxypropyl hydrogen phosphate) potassium salt: α-D-glucose-1-phosphate was added to the reactor. 89 g (0.3 mol) of monopotassium salt is dissolved in 64 g of water and the temperature is raised to 60°C. Next, while maintaining the reaction system at 60°C, 67 g (0.9 mol) of glycidol was gradually added dropwise, and the mixture was allowed to react at 60°C for 9 hours. After the reaction, 45 g (0.12 g) of the target compound was added in the same manner as in Example 1.
mole) was obtained. Reaction rate: 100%, isolated yield: 40% Test Example 1 The moisturizing properties of the compound of Example 1 and glycerin and glycum E-10, which are known as humectants, were compared. Method: Moisture retention test - Add 50 parts by weight of water to the sample, take 1 g of it in a glass container, and add 0% Rh
(silica gel), 20% Rh (CH 3 COOK salt solution),
44% Rh (K 2 CO 3 2H 2 O salt solution), 65% Rh (Mg
( CH3COO ) 2.4H2O salt solution), 80 % Rh ( NH4Cl
The samples were left for 3 days under various humidity conditions (salt solution) and evaluated based on the weight change. The results are shown in Table 1.

【表】 第1表の結果より本化合物は低湿度下における
保湿性が良好であると結論できる。
[Table] From the results shown in Table 1, it can be concluded that this compound has good moisturizing properties under low humidity.

Claims (1)

【特許請求の範囲】 1 一般式() (式中、R1はグルコースの活性水素残基を示し、
MはH又はカチオンを示す) で表わされるリン酸モノエステル又はその塩にグ
リシドールを反応させることを特徴とする一般式
() (式中、R1及びMは前記と同じ意味を有する) で表わされる糖リン酸エステルの製造方法。
[Claims] 1 General formula () (In the formula, R 1 represents the active hydrogen residue of glucose,
General formula () characterized by reacting glycidol with a phosphoric acid monoester or its salt represented by (M represents H or a cation) (In the formula, R 1 and M have the same meanings as above.) A method for producing a sugar phosphate ester represented by the following.
JP59262493A 1984-12-12 1984-12-12 Production of sugar phosphate Granted JPS61140595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262493A JPS61140595A (en) 1984-12-12 1984-12-12 Production of sugar phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262493A JPS61140595A (en) 1984-12-12 1984-12-12 Production of sugar phosphate

Publications (2)

Publication Number Publication Date
JPS61140595A JPS61140595A (en) 1986-06-27
JPH0469637B2 true JPH0469637B2 (en) 1992-11-06

Family

ID=17376558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262493A Granted JPS61140595A (en) 1984-12-12 1984-12-12 Production of sugar phosphate

Country Status (1)

Country Link
JP (1) JPS61140595A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995323A1 (en) 2007-05-24 2008-11-26 Libragen Method for preparing C-6 phosphorylated D-aldohexoses and C-6 phosphorylated D-aldohexose derivatives

Also Published As

Publication number Publication date
JPS61140595A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
HU184626B (en) Congesting cosmetics first of all hair-restorers
JPH0469637B2 (en)
JPH0469159B2 (en)
JPS5934710B2 (en) Method for producing a molecular compound of allantoin and ornithine
EP0242781A2 (en) Phosphoric esters and process for preparing the same
US4740609A (en) Phosphoric esters and process for preparing same
JPH064652B2 (en) Phosphate ester
JPH0546346B2 (en)
JP3688304B2 (en) Phospholipid derivative, method for producing the derivative, purification method for the derivative, pharmaceutical product containing the derivative, and method for producing the pharmaceutical product
US4179464A (en) Preparation of N-(phosphonoacetyl)-L-aspartic acid
SU457696A1 (en) Method for preparing glycol mono-tosylate vinyl ethers
JPS636080B2 (en)
JP3202762B2 (en) Novel phosphobetaine and method for producing the same
JP3171279B2 (en) Method for producing alkylphosphocholine having 14 to 18 carbon atoms and method for purifying alkylphosphocholine
JP3266312B2 (en) Novel carboxybetaine and method for producing the same
JP3096277B2 (en) Process for producing 5,6-O-isopropylidene-L-ascorbic acid
JP2964179B2 (en) Novel phosphobetaine and method for producing the same
JP3076136B2 (en) New carbobetaine and its production method
JP2867206B2 (en) Method for producing L-ascorbic acid-2-phosphate
JPH04226996A (en) New phosphobetaine and its production
JP3069162B2 (en) 8-mercaptoadenosine-5'-monophosphate trimer and method for producing the same
JPS565499A (en) Preparation of thymine derivative
JP3268009B2 (en) Novel carboxybetaine and method for producing the same
JPS61130281A (en) Stabilized aqueous solution of glycidyl quaternary ammonium salt
JP3093898B2 (en) Phosphate ester containing N-alkyl lactam group and method for producing the same