JPH0466393B2 - - Google Patents
Info
- Publication number
- JPH0466393B2 JPH0466393B2 JP61290421A JP29042186A JPH0466393B2 JP H0466393 B2 JPH0466393 B2 JP H0466393B2 JP 61290421 A JP61290421 A JP 61290421A JP 29042186 A JP29042186 A JP 29042186A JP H0466393 B2 JPH0466393 B2 JP H0466393B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- light
- junction
- solar cell
- receiving surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 14
- 238000005468 ion implantation Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims 2
- 238000005215 recombination Methods 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
〔発明の利用分野〕
本発明は、イオン打ち込み法によりPN接合を
形成する太陽電池の製造方法に関する。
〔発明の背景〕
従来は、特開昭59−79580号公報に記載のよう
に、太陽電池受光面電極形成部に深い接合、受光
部に浅い接合を形成するためには、気相拡散(二
重拡散法、横方向拡散)、塗布拡散(二重塗布法)
が用いられており、スループツトに対する配慮及
び、熱処理時基板ライフタイム低下防止、受光面
表面再結合速度低減のための考慮がなされていな
かつた。
〔発明の目的〕
本発明の目的は、短波長側分光感度の向上、熱
処理時の基板ライフタイム低下防止、受光面表面
再結合速度低減、スループツト向上に好適な太陽
電池の製造方法を提供するにある。
〔発明の概要〕
本発明製造方法の特徴は、基板表面酸化膜層を
通したイオン打込みにより、PN接合を形成する
太陽電池の製造方法を用いることにより、バスバ
ー以外の受光面電極部に深い接合、受光部に浅い
接合を形成し、さらに前述酸化膜を熱処理時の汚
染防止膜及び、受光面表面再結合速度低減のため
のパツシベーシヨン膜として使用し、スループツ
トを高めると共に高効率な太陽電池を得ることに
ある。
高効率太陽電池を得るためには、受光面接合深
さの最適化、及び受光面表面再結合速度の低減が
要求される。第2図に、受光面表面再結合速度を
パラメータとした時の接合深さと光生成電流との
関係計算結果を示す。接合深さが深くなると、短
波長側の光が素子面で吸収され結合部に達するこ
とができず光生成電流が低下する。しかし、接合
を浅くすると、受光面電極形成時、電極材料が
PN接合を破壊し、リーク電流の増加をまねくと
ともに、表面シート抵抗(P型基ばを用いた場合
n+層のシート抵抗)が増加し、直列抵抗を増加
させたり、重金属が、接合付近まで拡散しやすく
なり、特性が低下したりする。また受光面表面再
結合速度が低いほど光生成電流が増加し、さら
に、飽和電流密度が低くなり、開放電圧をも増加
させることができる。さらに、低コストプロセス
では、一貫連続生産方式が必須であり、熱処理に
はベルト炉が使用されるが、ベルト等からの汚染
による基板ライフタイム低下が重要な問題となつ
ている。
本発明は、第3図に示すように、イオン打込み
では、基板表面酸化膜厚を変えることにより、基
板内打込み量を制御出来ることに着目し、受光面
電極部のうち、フインガー電極部を設ける部分の
酸化膜は除いてイオン打込みを行い、ここには低
シート抵抗でかつ深い接合、受光部となる部分は
酸化膜を介してイオン打込みを行い、浅い接合を
形成し受光部およびバスバーを形成する部分には
酸化膜を浅した状態にしておくことにより、表面
再結合速度のより一層の低減、さらに、酸化膜を
熱処理時のライフタイム低下防止のための保護膜
としても利用することを可能にしたものである。
〔発明の実施例〕
本発明の一実施例を第1図により説明する。
p型シリコン基板1を用い、基板表面に100〜
150Åの酸化膜層2を全面に形成する。次に、受
光面電極パターンのうちのバスバ電極部7aがな
いものと同一パターンでエツチングレジストを印
刷形成し、受光面電極形成部のうちフインガー電
極6形成部と裏面の酸化膜をHF:H2O=1:10
液にて除去する。この基板の受光面表面に、イオ
ン打込みエネルギー25keV、打込み量5×1015cm
-2の条件でリンイオン打込みを行ない、基板の裏
面表面へのAlペースト印刷後、750℃5分の熱処
理によりn+層3、p+層4の接合と電極5を形成
する。さらにAgペースト印刷、熱処理により受
光面及び裏面電極6,7a,7bを形成する。但
し、受光面電極のフインガー部6の下には酸化膜
なしであり、バスバー部7aの下には酸化膜がつ
いた状態となつており、ここでの表面再結合速度
をおさえている。そのあと半田が各電極の上にほ
どこそれて太陽電池を得る。この様にして製作し
た太陽電池特性は、比較のため表面酸化膜形成な
しの比較用太陽電池特性と比較して、次表の如く
となつている。
[Field of Application of the Invention] The present invention relates to a method for manufacturing a solar cell in which a PN junction is formed by an ion implantation method. [Background of the Invention] Conventionally, as described in Japanese Unexamined Patent Publication No. 59-79580, in order to form a deep junction in the solar cell light-receiving surface electrode formation part and a shallow junction in the light-receiving part, vapor phase diffusion (two Heavy diffusion method, lateral diffusion), coating diffusion (double coating method)
was used, and no consideration was given to throughput, prevention of substrate lifetime deterioration during heat treatment, and reduction of light-receiving surface recombination speed. [Object of the Invention] An object of the present invention is to provide a method for manufacturing a solar cell suitable for improving short wavelength side spectral sensitivity, preventing reduction in substrate lifetime during heat treatment, reducing recombination rate on the light-receiving surface, and improving throughput. be. [Summary of the Invention] The feature of the manufacturing method of the present invention is that by using a solar cell manufacturing method that forms a PN junction by ion implantation through the substrate surface oxide film layer, a deep junction can be formed in the light-receiving surface electrode part other than the bus bar. , a shallow junction is formed in the light-receiving part, and the aforementioned oxide film is used as a contamination prevention film during heat treatment and a passivation film to reduce the recombination rate on the light-receiving surface, thereby increasing the throughput and obtaining a highly efficient solar cell. There is a particular thing. In order to obtain a highly efficient solar cell, optimization of the light-receiving surface bonding depth and reduction of the light-receiving surface surface recombination rate are required. FIG. 2 shows the calculation results of the relationship between junction depth and photogenerated current when the surface recombination rate of the light-receiving surface is used as a parameter. As the junction depth increases, light with shorter wavelengths is absorbed by the element surface and cannot reach the coupling portion, resulting in a decrease in photogenerated current. However, when the junction is made shallow, the electrode material is
This destroys the PN junction, increases leakage current, and increases the surface sheet resistance (when using a P-type substrate).
The sheet resistance of the n + layer increases, increasing the series resistance, and heavy metals tend to diffuse close to the junction, degrading the characteristics. Furthermore, the lower the surface recombination rate of the light-receiving surface, the more the photogenerated current increases, and furthermore, the saturation current density becomes lower, and the open-circuit voltage can also be increased. Furthermore, in a low-cost process, an integrated continuous production system is essential, and a belt furnace is used for heat treatment, but a reduction in substrate lifetime due to contamination from the belt etc. has become an important problem. As shown in FIG. 3, the present invention focuses on the fact that in ion implantation, the amount of implantation into the substrate can be controlled by changing the thickness of the oxide film on the substrate surface, and a finger electrode part is provided in the light-receiving surface electrode part. Ion implantation is performed by removing the oxide film in the area, and there is a low sheet resistance and deep junction, and in the part that will become the light receiving part, ion implantation is performed through the oxide film to form a shallow junction to form the light receiving part and bus bar. By keeping the oxide film shallow in the areas where the metal is exposed, the surface recombination rate can be further reduced, and the oxide film can also be used as a protective film to prevent lifetime reduction during heat treatment. This is what I did. [Embodiment of the Invention] An embodiment of the present invention will be described with reference to FIG. Using a p-type silicon substrate 1, 100 ~
An oxide film layer 2 of 150 Å is formed over the entire surface. Next, an etching resist is printed in the same pattern as the one without the busbar electrode part 7a of the light-receiving surface electrode pattern, and the oxide film on the finger electrode 6 forming part and the back surface of the light-receiving surface electrode forming part is coated with HF: H2. O=1:10
Remove with liquid. Ion implantation energy was 25keV and implantation amount was 5×10 15 cm on the light-receiving surface of this substrate.
Phosphorus ion implantation is performed under the conditions of -2 , and after printing Al paste on the back surface of the substrate, a heat treatment is performed at 750° C. for 5 minutes to form the bond between the n + layer 3 and the p + layer 4 and the electrode 5. Further, the light receiving surface and back surface electrodes 6, 7a, 7b are formed by Ag paste printing and heat treatment. However, there is no oxide film under the finger portion 6 of the light-receiving surface electrode, and there is an oxide film under the bus bar portion 7a to suppress the surface recombination rate there. Solder is then applied on top of each electrode to obtain a solar cell. The characteristics of the solar cell manufactured in this way are as shown in the following table, compared with the characteristics of a comparative solar cell without surface oxide film formation for comparison.
本発明によれば、フインガー電極以外の部分の
みならず、一般に受光電極面積全体の50%以上を
占めるバスバー電極の下の部分にもシリコン酸化
膜層が形成されており、表面再結合速度がバスバ
ー電極下部も含めて大巾に低減できるので、太陽
電池の開放電圧、短絡電流を向上させ、高効率な
太陽電池を短かい製造工程で高スループツトをも
つて得ることができる。
According to the present invention, a silicon oxide film layer is formed not only in areas other than the finger electrodes but also in the area below the busbar electrode, which generally occupies more than 50% of the total area of the light-receiving electrode. Since the area including the lower part of the electrode can be greatly reduced, the open circuit voltage and short circuit current of the solar cell can be improved, and a highly efficient solar cell can be obtained with a short manufacturing process and a high throughput.
第1図は本発明製造方法により得られる太陽電
池の斜視図、第2図はp型シリコン基板に設けた
n+層の厚さと光生成電流の関係を示す図、第3
図は酸化膜の厚さを基板へのイオン打込み量の関
係を示す図である。
1……p型Si基板、2……酸化膜、3……n+、
層4……裏面p+層、5……裏面Alペースト層、
6……受光面電極、7a……受光面電極、7b…
…裏面電極。
Figure 1 is a perspective view of a solar cell obtained by the manufacturing method of the present invention, and Figure 2 is a perspective view of a solar cell provided on a p-type silicon substrate.
Diagram showing the relationship between the thickness of the n + layer and the photogenerated current, 3rd
The figure shows the relationship between the thickness of the oxide film and the amount of ions implanted into the substrate. 1... p-type Si substrate, 2... oxide film, 3... n + ,
Layer 4...Back side p + layer, 5...Back side Al paste layer,
6... Light receiving surface electrode, 7a... Light receiving surface electrode, 7b...
...Back electrode.
Claims (1)
陽電池の製造方法において、一導電型の半導体基
板の受光面となる主表面に半導体酸化膜を形成
し、上記主表面に設けられる電極のうちフインガ
ー電極部が設けられる部分の酸化膜を除いてイオ
ン打込みを行い、熱処理して酸化膜を除いた部に
深く、その他の部分には浅いPN接合を形成し、
上記酸化膜はそのままにして酸化膜を除いた部分
にはフインガー電極部、酸化膜上にはバスバー電
極部を形成することを特徴とする太陽電池の製造
方法。1. In a method for manufacturing a solar cell in which a PN junction is formed by ion implantation, a semiconductor oxide film is formed on the main surface of a semiconductor substrate of one conductivity type, which becomes the light-receiving surface, and a finger electrode part of the electrodes provided on the main surface is Ion implantation is performed except for the oxide film in the part to be provided, and heat treatment is performed to form a deep PN junction in the part where the oxide film is removed and a shallow PN junction in the other parts.
A method for manufacturing a solar cell, characterized in that the oxide film is left as it is, and a finger electrode part is formed on the part from which the oxide film is removed, and a busbar electrode part is formed on the oxide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61290421A JPS63143876A (en) | 1986-12-08 | 1986-12-08 | Manufacture of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61290421A JPS63143876A (en) | 1986-12-08 | 1986-12-08 | Manufacture of solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63143876A JPS63143876A (en) | 1988-06-16 |
JPH0466393B2 true JPH0466393B2 (en) | 1992-10-23 |
Family
ID=17755811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61290421A Granted JPS63143876A (en) | 1986-12-08 | 1986-12-08 | Manufacture of solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63143876A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100543535B1 (en) * | 2003-05-07 | 2006-01-20 | 준 신 이 | Manufacturing Method of Polycrystalline Silicon Solar Cell Using Leakage Current Reduction Technique |
DE102005061820B4 (en) * | 2005-12-23 | 2014-09-04 | Infineon Technologies Austria Ag | Process for producing a solar cell |
CN102099870A (en) | 2008-06-11 | 2011-06-15 | 因特瓦克公司 | Application specific implant system and method for use in solar cell fabrications |
US8749053B2 (en) | 2009-06-23 | 2014-06-10 | Intevac, Inc. | Plasma grid implant system for use in solar cell fabrications |
TWI506719B (en) | 2011-11-08 | 2015-11-01 | Intevac Inc | Substrate processing system and method |
WO2014100506A1 (en) | 2012-12-19 | 2014-06-26 | Intevac, Inc. | Grid for plasma ion implant |
-
1986
- 1986-12-08 JP JP61290421A patent/JPS63143876A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63143876A (en) | 1988-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5928438A (en) | Structure and fabrication process for self-aligned locally deep-diffused emitter (SALDE) solar cell | |
US4703553A (en) | Drive through doping process for manufacturing low back surface recombination solar cells | |
JP3789474B2 (en) | Solar cell having back surface field and method for manufacturing the same | |
JPS6215864A (en) | How to manufacture solar cells | |
KR940010161B1 (en) | Solar cell | |
CN119008722A (en) | Interdigital back contact type solar cell with p-type conductivity | |
WO1995012898A1 (en) | High efficiency silicon solar cells and methods of fabrication | |
JPH09172196A (en) | Structure and fabrication of aluminum alloy bonded self-aligned back electrode type silicon solar cell | |
JP2010074134A (en) | Differential doped solar cell and method of fabricating the same | |
JP2000183379A (en) | Method for manufacturing solar cell | |
US6277667B1 (en) | Method for fabricating solar cells | |
JP2808004B2 (en) | Solar cell | |
JPH0466393B2 (en) | ||
TW201440235A (en) | Back junction solar cell with reinforced emitter layer | |
JP2661676B2 (en) | Solar cell | |
JP2928433B2 (en) | Method for manufacturing photoelectric conversion element | |
JPH0513543B2 (en) | ||
JPS6231834B2 (en) | ||
KR100366348B1 (en) | manufacturing method of silicon solar cell | |
JP3448098B2 (en) | Crystalline silicon solar cells | |
JPH01152761A (en) | Manufacture of solid-state image sensing device | |
JP2005136062A (en) | Manufacturing method of solar battery | |
JP2588464B2 (en) | Photoelectric conversion device | |
KR20030075783A (en) | High efficient solar cell and fabrication method thereof | |
JPH0562473B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |