[go: up one dir, main page]

JPH0465552B2 - - Google Patents

Info

Publication number
JPH0465552B2
JPH0465552B2 JP58113295A JP11329583A JPH0465552B2 JP H0465552 B2 JPH0465552 B2 JP H0465552B2 JP 58113295 A JP58113295 A JP 58113295A JP 11329583 A JP11329583 A JP 11329583A JP H0465552 B2 JPH0465552 B2 JP H0465552B2
Authority
JP
Japan
Prior art keywords
region
resistance
drain region
exposed
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58113295A
Other languages
Japanese (ja)
Other versions
JPS605568A (en
Inventor
Masahiro Ogino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP58113295A priority Critical patent/JPS605568A/en
Publication of JPS605568A publication Critical patent/JPS605568A/en
Publication of JPH0465552B2 publication Critical patent/JPH0465552B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/441Vertical IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/126Top-view geometrical layouts of the regions or the junctions
    • H10D62/127Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/141Anode or cathode regions of thyristors; Collector or emitter regions of gated bipolar-mode devices, e.g. of IGBTs
    • H10D62/142Anode regions of thyristors or collector regions of gated bipolar-mode devices

Description

【発明の詳細な説明】 技術分野 本発明は縦型の絶縁ゲート電界効果トランジス
タ(以下MOSFETと呼ぶ)に関し、更に詳細に
は、電力損失の少ない縦型MOSFETに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a vertical insulated gate field effect transistor (hereinafter referred to as MOSFET), and more particularly to a vertical MOSFET with low power loss.

従来技術 従来の縦型nチヤンネルMOSFETは、第1図
及び第2図に示す如く、シリコン半導体基板1の
表面に露出する部分2aを有するように設けられ
たn-型(第1導電型)の高抵抗ドレイン領域2
と、この高抵抗ドレイン領域2の下部に設けられ
たn+型の低抵抗ドレイン領域3とを有し、ドレ
イン電流が基板1の厚み方向に流れるように構成
されている。4はp型(第2導電型)のベース領
域即ちバルク領域であり、高抵抗ドレイン領域2
の表面露出部分2aを環状に囲むように形成され
ている。なお、この表面露出部分によつてチヤネ
ル領域4aが環状に設けられている。5はn+
(第1導電型)のソース領域であり、ベース領域
4に囲まれるように形成されている。このソース
領域5は第2図から明らかなように高抵抗ドレイ
ン領域2の表面露出部分2aを環状に囲むように
形成され且つ基板1の表面に露出する部分を有す
る。6はSiO2から成るゲート絶縁膜であり、チ
ヤネル領域4aの上に設けられている。7はゲー
ト絶縁膜6の上に設けられたゲート電極、8はソ
ース領域5の上に設けられたソース電極、8aは
ベース領域4の上にソース電極8と一体に設けら
れたソース接続用電極、9は低抵抗ドレイン領域
3に設けられたドレイン電極、10は保護絶縁膜
である。
Prior Art As shown in FIGS. 1 and 2, a conventional vertical n-channel MOSFET is an n - type (first conductivity type) MOSFET provided with a portion 2a exposed on the surface of a silicon semiconductor substrate 1. High resistance drain region 2
and an n + type low-resistance drain region 3 provided below the high-resistance drain region 2, and is configured such that a drain current flows in the thickness direction of the substrate 1. 4 is a p-type (second conductivity type) base region, that is, a bulk region, and a high-resistance drain region 2
It is formed so as to annularly surround the surface exposed portion 2a of. Note that a channel region 4a is provided in an annular shape by this surface exposed portion. Reference numeral 5 denotes an n + type (first conductivity type) source region, which is formed so as to be surrounded by the base region 4 . As is clear from FIG. 2, this source region 5 is formed so as to annularly surround the exposed surface portion 2a of the high-resistance drain region 2, and has a portion exposed to the surface of the substrate 1. A gate insulating film 6 is made of SiO 2 and is provided on the channel region 4a. 7 is a gate electrode provided on the gate insulating film 6, 8 is a source electrode provided on the source region 5, and 8a is a source connection electrode provided on the base region 4 integrally with the source electrode 8. , 9 is a drain electrode provided in the low resistance drain region 3, and 10 is a protective insulating film.

このMOSFETのソース電極8に負の電圧、ゲ
ート電極7及びドレイン電極9に正電圧を印加す
ると、MOS効果によつてチヤネル領域4aがn
型反転層となり、ソース領域5とチヤネル領域4
aと高抵抗ドレイン領域2と低抵抗ドレイン領域
3とから成る多数キヤリア(電子)が流れる通路
が形成され、ドレイン電流が流れる。
When a negative voltage is applied to the source electrode 8 and a positive voltage is applied to the gate electrode 7 and drain electrode 9 of this MOSFET, the channel region 4a is
It becomes a type inversion layer, and the source region 5 and channel region 4
A path through which majority carriers (electrons) flow is formed by the high-resistance drain region 2 and the low-resistance drain region 3, and a drain current flows.

ところが、高耐圧の縦型MOSFETを得るため
には、高抵抗ドレイン領域2の不純物濃度をベー
ス領域4の不純物濃度よりも小に設計し、更にベ
ース領域4と高抵抗ドレイン領域4との間のpn
接合における空乏層の広がりを許すようにドレイ
ン領域4の幅Wを大に設計しなければならない。
従つて、大きなドレイン電流が流れた時に高抵抗
ドレイン領域2における電圧降下が大きくなり
(1000V級の素子では全電圧降下に占める割合が
70〜90%になる)、電力損失が大きくなつた。
However, in order to obtain a high-voltage vertical MOSFET, the impurity concentration of the high-resistance drain region 2 is designed to be lower than that of the base region 4, and the impurity concentration between the base region 4 and the high-resistance drain region 4 is designed to be lower than that of the base region 4. pn
The width W of the drain region 4 must be designed to be large so as to allow the depletion layer to spread at the junction.
Therefore, when a large drain current flows, the voltage drop in the high resistance drain region 2 becomes large (in a 1000V class element, the proportion of the total voltage drop is
70-90%), and the power loss increased.

この種の問題を解決するため、本件出願人は第
3図に示す構造の縦型MOSFETを作製した。次
にこのMOSFETを説明する。但し、第3図にお
いて、符号1〜10で示すものは第1図及び第2
図で同一符号で示すものと同一であるので、その
説明を省略する。第3図のMOSFETは、ドレイ
ン電極9に接続されたp型(第2導電型)のキヤ
リア注入領域11を有している。このキヤリア注
入領域11はドレイン電流の通路に小数キヤリア
(正孔)を注入するために、高抵抗ドレイン領域
2の表面露出部分2a及びチヤネル領域4aの下
部に相当する位置に設けられている。各領域の平
均不純物濃度を例示すると、高抵抗ドレイン領域
2は2×1014/cm3、低抵抗ドレイン領域3は1×
1019/cm3、ベース領域4は2×1017/cm3、ソース
領域は1×1019/cm3、キヤリア注入領域11は1
×1017/cm3の平均不純物濃度を有する。
In order to solve this kind of problem, the applicant has manufactured a vertical MOSFET having the structure shown in FIG. Next, this MOSFET will be explained. However, in Fig. 3, the items indicated by numerals 1 to 10 are
Since it is the same as that shown by the same reference numeral in the figure, the explanation thereof will be omitted. The MOSFET shown in FIG. 3 has a p-type (second conductivity type) carrier injection region 11 connected to a drain electrode 9. The MOSFET shown in FIG. This carrier injection region 11 is provided at a position corresponding to the surface exposed portion 2a of the high resistance drain region 2 and the lower part of the channel region 4a in order to inject fractional carriers (holes) into the path of the drain current. To illustrate the average impurity concentration of each region, the high resistance drain region 2 has an impurity concentration of 2×10 14 /cm 3 , and the low resistance drain region 3 has an impurity concentration of 1×
10 19 /cm 3 , base region 4 2×10 17 /cm 3 , source region 1×10 19 /cm 3 , carrier injection region 11 1
It has an average impurity concentration of ×10 17 /cm 3 .

この第3図のMOSFETに第1図のMOSFET
と同様に電圧を印加すると、チヤネル領域4aが
n型反転層になり、ドレイン電流が流れる。この
場合、小電流領域では、キヤリア注入領域11と
ドレイン領域2,3との間のpn接合に立上り電
圧(約0.55V)以上の電圧が加らないので、点線
12で示すような通路で電流が流れる。一方、ド
レイン電流が増大すると、キヤリア注入領域11
とドレイン領域2,3との境界近傍を流れる電流
に基づく電圧降下がpn接合の順方向立上り電圧
以上になる部分が生じ、ここから小数キヤリア
(正孔)が高抵抗ドレイン領域2に点線13で示
すように注入される。この結果、高抵抗ドレイン
領域2が伝導度変調を受けて抵抗率が低下したと
等価な状態になり、ソース・ドレイン間の電圧降
下の増大が制限されて大電流領域に於ける電力損
失が少なくなる。なおスイツチオン時にキヤリア
注入領域11から注入された正孔は、チヤネル領
域4aからドレイン領域2に流れ込む電子と再結
合する。
This MOSFET in Figure 3 is replaced with the MOSFET in Figure 1.
When a voltage is applied in the same manner as above, the channel region 4a becomes an n-type inversion layer, and a drain current flows. In this case, in the small current region, a voltage higher than the rising voltage (approximately 0.55 V) at the pn junction between the carrier injection region 11 and the drain regions 2 and 3 is not applied, so the current flows through the path shown by the dotted line 12. flows. On the other hand, when the drain current increases, the carrier injection region 11
There is a part where the voltage drop due to the current flowing near the boundary between the and drain regions 2 and 3 exceeds the forward rising voltage of the pn junction, and from this point, fractional carriers (holes) flow into the high resistance drain region 2 as indicated by the dotted line 13. Injected as shown. As a result, the high-resistance drain region 2 undergoes conductivity modulation, resulting in a state equivalent to a decrease in resistivity, limiting the increase in voltage drop between the source and drain, and reducing power loss in the large current region. Become. Note that holes injected from the carrier injection region 11 at the time of switch-on recombine with electrons flowing into the drain region 2 from the channel region 4a.

ところで、p型のキヤリア注入領域11とn-
型のドレイン領域2とp型のベース領域4とn+
型のソース領域5とから成るpnpn四層構造がサ
イリスタとして動作するとMOSFETの機能が得
られない。従つて、このMOSFETはサイリスタ
として動作しないように構成されている。サイリ
スタとして動作しないための条件は、キヤリア注
入領域11、高抵抗ドレイン領域2、ベース領域
を夫々エミツタ、ベース、コレクタとするpnpト
ランジスタのベース接地電流増幅率をα1とし、ソ
ース領域5、ベース領域4、ドレイン領域2を
夫々エミツタ、ベース、コレクタとするnpnトラ
ンジスタのベース接地電流増幅率をα2とした時、
α1+α2<1である。
By the way, p-type carrier injection region 11 and n -
type drain region 2, p-type base region 4 and n +
If the pnpn four-layer structure consisting of the type source region 5 operates as a thyristor, the function of a MOSFET cannot be obtained. Therefore, this MOSFET is configured not to operate as a thyristor. The conditions for not operating as a thyristor are that the carrier injection region 11, the high resistance drain region 2 , and the base region are the emitter, the base, and the collector, respectively. 4. When the common base current amplification factor of an npn transistor with drain region 2 as emitter, base, and collector is α 2 ,
α 12 <1.

この条件を満足させるために、具体的には、高
抵抗ドレイン領域2の幅Wを約100μmとし、ドレ
イン領域2における正孔の拡散長Lを約80μmと
することにより、L≦Wとしている。また、p型
のキヤリア注入領域11の不純物濃度を1×
1017/cm3と低くすることによつてα1を小さくして
いる。またソース領域5の平均不純物濃度(1×
1019/cm3)とベース領域4の平均不純物濃度(2
×1017/cm3)との比を100倍以下にすることによ
つてα2を小さくしている。
In order to satisfy this condition, specifically, the width W of the high-resistance drain region 2 is set to about 100 μm, and the hole diffusion length L in the drain region 2 is set to about 80 μm, so that L≦W. Further, the impurity concentration of the p-type carrier injection region 11 is set to 1×
α 1 is made small by making it as low as 10 17 /cm 3 . Also, the average impurity concentration of the source region 5 (1×
10 19 /cm 3 ) and the average impurity concentration of base region 4 (2
×10 17 /cm 3 ) is made smaller by a factor of 100 or less.

しかし、サイリスタ動作を更に確実に防止する
ことできる縦型MOSFETが要求されている。
However, there is a need for a vertical MOSFET that can more reliably prevent thyristor operation.

そこで、本発明の目的は上述の要求に応えるこ
とができる縦型電界効果トランジスタを提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a vertical field effect transistor that can meet the above requirements.

発明の構成 上記目的を達成するための本発明は、実施例を
示す図面の符号を参照して説明すると、半導体基
板の表面に露出する部分を有する第1導電型の高
抵抗ドレイン領域2と、前記半導体基板の裏面に
露出する部分を有し且つ前記高抵抗ドレイン領域
2に隣接配置され且つ前記高抵抗ドレイン領域2
よりも高い不純物濃度を有している第1導電型の
低抵抗ドレイン領域3と、前記高抵抗ドレイン領
域2に隣接するように設けられ且つ前記表面に環
状に露出するチヤネル部分4aを有し且つ前記第
1導電型と反対の第2導電型を有している高抵抗
ベース領域4と、前記高抵抗ドレイン領域2及び
前記高抵抗ベース領域4に隣接配置され且つ前記
表面に露出する部分を有して前記高抵抗ベース領
域4の外側に形成され且つ前記高抵抗ベース領域
4よりも高い不純物濃度を有している第2導電型
の低抵抗ベース領域4bと、前記表面に露出する
部分を有し且つこの露出する部分を除いて前記高
抵抗ベース領域4と前記低抵抗ベース領域4bと
によつて囲まれている第1導電型のソース領域5
と、前記低抵抗ドレイン領域3によつて囲まれる
ように前記裏面に露出し、且つ前記高抵抗ドレイ
ン領域2に隣接し、且つ前記高抵抗ドレイン領域
2に少数キヤリアを注入するように形成された第
2の導電型のキヤリア注入領域11と、少なくと
も前記高抵抗ベース領域4のチヤネル部分4aを
被覆するゲート絶縁膜6と、前記ゲート絶縁膜6
を介して前記チヤネル部分4aに対向するように
設けられたゲート電極7と、前記ソース領域5に
設けられたソース電極8と、前記ソース領域5と
前記低抵抗ベース領域4bとを前記チヤネル部分
4aから離れた位置で接続するためのベース・ソ
ース接続用電極8aと、前記低抵抗ドレイン領域
3及び前記キヤリア注入領域11の前記裏面に露
出する部分に設けられたドレイン電極9とを有
し、前記キヤリア注入領域11は、前記高抵抗ベ
ース領域4によつて囲まれた前記高抵抗ドレイン
領域2の表面露出部分及び前記チヤネル部分4a
に対向するが、前記低抵抗ベース領域4bには対
向しないように配置されていることを特徴とする
縦型絶縁ゲート電界効果トランジスタに係わるも
のである。
Structure of the Invention To achieve the above object, the present invention will be described with reference to the reference numerals in the drawings showing the embodiments. The high-resistance drain region 2 has a portion exposed on the back surface of the semiconductor substrate and is disposed adjacent to the high-resistance drain region 2 .
a first conductivity type low-resistance drain region 3 having an impurity concentration higher than that of the first conductivity type, and a channel portion 4a provided adjacent to the high-resistance drain region 2 and exposed in an annular manner on the surface; A high-resistance base region 4 having a second conductivity type opposite to the first conductivity type, and a portion disposed adjacent to the high-resistance drain region 2 and the high-resistance base region 4 and exposed to the surface. a second conductivity type low resistance base region 4b formed outside the high resistance base region 4 and having a higher impurity concentration than the high resistance base region 4; and a portion exposed to the surface. and a first conductivity type source region 5 surrounded by the high resistance base region 4 and the low resistance base region 4b except for this exposed portion.
and is exposed on the back surface so as to be surrounded by the low-resistance drain region 3, is adjacent to the high-resistance drain region 2, and is formed so as to inject minority carriers into the high-resistance drain region 2. a second conductivity type carrier injection region 11; a gate insulating film 6 covering at least the channel portion 4a of the high-resistance base region 4;
A gate electrode 7 provided so as to face the channel portion 4a, a source electrode 8 provided in the source region 5, and a source region 5 and the low resistance base region 4b connected to the channel portion 4a. a base-source connection electrode 8a for connection at a position away from the base, and a drain electrode 9 provided at a portion exposed to the back surface of the low resistance drain region 3 and the carrier injection region 11; The carrier injection region 11 includes a surface exposed portion of the high resistance drain region 2 surrounded by the high resistance base region 4 and the channel portion 4a.
This relates to a vertical insulated gate field effect transistor characterized in that it is arranged so as to face the low resistance base region 4b but not to face the low resistance base region 4b.

発明の作用効果 上記発明においては、低抵抗ベース領域4bを
設けることによつて、ソース領域5、ベース領域
4,4b、高抵抗ドレイン領域2で構成されるト
ランジスタの電流増幅率α2が小さくなり、キヤリ
ア注入領域11を設けることによつて生じるおそ
れのあるサイリスタ動作を確実に防止することが
できる。なお、第3図のベース領域4全部の不純
物濃度を高めて電流増幅率を下げるとチヤネルを
良好に形成することが不可能になるが、本発明で
はチヤネル部分4aは高抵抗状態に保つので、こ
のような問題が生じない。また、本発明では、キ
ヤリア注入領域11が高抵抗ドレイン領域2の表
面露出部分、チヤネル部分4aには対向するが、
低抵抗ベース領域4bには対向しないように配置
されているので、キヤリア注入領域11と高抵抗
ドレイン領域2とベース領域4,4bとに基づく
トランジスタ作用が生じにくくなる。
Effects of the Invention In the above invention, by providing the low resistance base region 4b, the current amplification factor α 2 of the transistor composed of the source region 5, the base regions 4, 4b, and the high resistance drain region 2 is reduced. , it is possible to reliably prevent thyristor operation that may occur due to the provision of the carrier injection region 11. Note that if the impurity concentration of the entire base region 4 in FIG. 3 is increased to lower the current amplification factor, it becomes impossible to form a good channel, but in the present invention, since the channel portion 4a is kept in a high resistance state, Such a problem does not occur. Further, in the present invention, although the carrier injection region 11 faces the exposed surface portion of the high-resistance drain region 2 and the channel portion 4a,
Since it is arranged so as not to face the low-resistance base region 4b, a transistor effect based on the carrier injection region 11, the high-resistance drain region 2, and the base regions 4, 4b is less likely to occur.

実施例 次に、第4図を参照して本発明の実施例に係わ
る縦型MOSFETを説明する。但し、第4図にお
いて第1図〜第3図と共通する部分には同一の符
号を付してその説明を省略する。この実施例では
平均不純物濃度が1×1016/cm3である高抵抗ベー
ス領域4と平均不純物濃度が1×1018/cm3である
低抵抗ベース領域4bとによつてベース領域が構
成され、低抵抗ベース領域4bにソース接続用電
極8aが設けられている。これ以外の部分は第3
図と同一に構成されている。このように構成すれ
ば、α2が小さくなり、サイリスタ動作が確実に防
止される。また低いゲート電圧でチヤネルを得る
ことが可能になる。
Embodiment Next, a vertical MOSFET according to an embodiment of the present invention will be described with reference to FIG. However, in FIG. 4, parts common to those in FIGS. 1 to 3 are designated by the same reference numerals and their explanations will be omitted. In this embodiment, the base region is composed of a high resistance base region 4 having an average impurity concentration of 1×10 16 /cm 3 and a low resistance base region 4b having an average impurity concentration of 1×10 18 /cm 3 . , a source connection electrode 8a is provided in the low resistance base region 4b. The rest of the parts are in the 3rd part.
It has the same configuration as the figure. With this configuration, α 2 becomes small and thyristor operation is reliably prevented. Furthermore, it becomes possible to obtain a channel with a low gate voltage.

変形例 本発明は上述の実施例に限定されるものでな
く、変形例が可能なものである。
Modifications The present invention is not limited to the embodiments described above, but modifications are possible.

(A) ドレイン領域2に於ける正孔の拡散長Lを大
幅に短かくしたいときには、PtやAu等のライ
フタイムキラーをドレイン領域2内にドープし
てもよい。
(A) When it is desired to significantly shorten the hole diffusion length L in the drain region 2, a lifetime killer such as Pt or Au may be doped into the drain region 2.

(B) キヤリア注入層11を高抵抗ドレイン領域2
の中に突出するように、更に深く形成してもよ
い。また逆に低抵抗ドレイン領域3よりも浅く
形成してもよい。
(B) Carrier injection layer 11 is connected to high resistance drain region 2
It may be formed deeper so that it protrudes into the inside. Conversely, it may be formed shallower than the low resistance drain region 3.

(C) ソース接続用電極8aをソース電極8と一体
に形成しているが、両者を分離した状態に形成
し、外部回路で接続してもよい。
(C) Although the source connection electrode 8a is formed integrally with the source electrode 8, they may be formed separately and connected by an external circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の縦型MOSFETを示す断面図、
第2図は第1図のFETの基板の表面の一部を示
す平面図、第3図は従来の別のMOSFETを示す
断面図、第4図は本発明の実施例のMOSFETを
示す断面図である。 1…半導体基板、2…高抵抗ドレイン領域、3
…低抵抗ドレイン領域、4…ベース領域、4a…
チヤネル領域、5…ソース領域、6…ゲート絶縁
膜、7…ゲート電極、8…ソース電極、8a…ソ
ース接続用電極、9…ドレイン電極、11…キヤ
リア注入領域。
Figure 1 is a cross-sectional view of a conventional vertical MOSFET.
Fig. 2 is a plan view showing a part of the surface of the FET substrate of Fig. 1, Fig. 3 is a sectional view showing another conventional MOSFET, and Fig. 4 is a sectional view showing a MOSFET according to an embodiment of the present invention. It is. 1... Semiconductor substrate, 2... High resistance drain region, 3
...Low resistance drain region, 4...Base region, 4a...
Channel region, 5... Source region, 6... Gate insulating film, 7... Gate electrode, 8... Source electrode, 8a... Source connection electrode, 9... Drain electrode, 11... Carrier injection region.

Claims (1)

【特許請求の範囲】 1 半導体基板の表面に露出する部分を有する第
1導電型の高抵抗ドレイン領域2と、 前記半導体基板の裏面に露出する部分を有し且
つ前記高抵抗ドレイン領域2に隣接配置され且つ
前記高抵抗ドレイン領域2よりも高い不純物濃度
を有している第1導電型の低抵抗ドレイン領域3
と、 前記高抵抗ドレイン領域2に隣接するように設
けられ且つ前記表面に環状に露出するチヤネル部
分4aを有し且つ前記第1導電型と反対の第2導
電型を有している高抵抗ベース領域4と、 前記高抵抗ドレイン領域2及び前記高抵抗ベー
ス領域4に隣接配置され且つ前記表面に露出する
部分を有して前記高抵抗ベース領域4の外側に形
成され且つ前記高抵抗ベース領域4よりも高い不
純物濃度を有している第2導電型の低抵抗ベース
領域4bと、 前記表面に露出する部分を有し且つこの露出す
る部分を除いて前記高抵抗ベース領域4と前記低
抵抗ベース領域4bとによつて囲まれている第1
導電型のソース領域5と、 前記低抵抗ドレイン領域3によつて囲まれるよ
うに前記裏面に露出し、且つ前記高抵抗ドレイン
領域2に隣接し、且つ前記高抵抗ドレイン領域2
に少数キヤリアを注入するように形成された第2
の導電型のキヤリア注入領域11と、 少なくとも前記高抵抗ベース領域4のチヤネル
部分4aを被覆するゲート絶縁膜6と、 前記ゲート絶縁膜6を介して前記チヤネル部分
4aに対向するように設けられたゲート電極7
と、 前記ソース領域5に設けられたソース電極8
と、 前記ソース領域5と前記低抵抗ベース領域4b
とを前記チヤネル部分4aから離れた位置で接続
するためのベース・ソース接続用電極8aと、 前記低抵抗ドレイン領域3及び前記キヤリア注
入領域11の前記裏面に露出する部分に設けられ
たドレイン電極9と、 を有し、前記キヤリア注入領域11は、前記高抵
抗ベース領域4によつて囲まれた前記高抵抗ドレ
イン領域2の表面露出部分及び前記チヤネル部分
4aに対向するが、前記低抵抗ベース領域4bに
は対向しないように配置されていることを特徴と
する縦型絶縁ゲート電界効果トランジスタ。
[Scope of Claims] 1. A high resistance drain region 2 of a first conductivity type having a portion exposed on the front surface of the semiconductor substrate, and having a portion exposed on the back surface of the semiconductor substrate and adjacent to the high resistance drain region 2. a first conductivity type low resistance drain region 3 which is arranged and has a higher impurity concentration than the high resistance drain region 2;
and a high-resistance base that is provided adjacent to the high-resistance drain region 2, has a channel portion 4a exposed in an annular manner on the surface, and has a second conductivity type opposite to the first conductivity type. a region 4 that is disposed adjacent to the high-resistance drain region 2 and the high-resistance base region 4 and that is formed outside the high-resistance base region 4 and has a portion exposed to the surface; a second conductivity type low resistance base region 4b having an impurity concentration higher than that of the high resistance base region 4b, and a second conductivity type low resistance base region 4b having a portion exposed on the surface and excluding the exposed portion, the high resistance base region 4 and the low resistance base The first area surrounded by the area 4b
a conductive type source region 5; and a region exposed on the back surface so as to be surrounded by the low-resistance drain region 3, adjacent to the high-resistance drain region 2, and adjacent to the high-resistance drain region 2;
a second formed to inject minority carriers into
a carrier injection region 11 of a conductivity type; a gate insulating film 6 covering at least the channel portion 4a of the high-resistance base region 4; Gate electrode 7
and a source electrode 8 provided in the source region 5
and the source region 5 and the low resistance base region 4b.
a base-source connection electrode 8a for connecting the two at a position away from the channel portion 4a; and a drain electrode 9 provided on the portions of the low-resistance drain region 3 and the carrier injection region 11 exposed on the back surface. and, the carrier injection region 11 faces the exposed surface portion of the high resistance drain region 2 surrounded by the high resistance base region 4 and the channel portion 4a, but is opposite to the channel portion 4a. A vertical insulated gate field effect transistor, characterized in that it is arranged so as not to face 4b.
JP58113295A 1983-06-23 1983-06-23 Vertical insulated gate field effect transistor Granted JPS605568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113295A JPS605568A (en) 1983-06-23 1983-06-23 Vertical insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113295A JPS605568A (en) 1983-06-23 1983-06-23 Vertical insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS605568A JPS605568A (en) 1985-01-12
JPH0465552B2 true JPH0465552B2 (en) 1992-10-20

Family

ID=14608573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113295A Granted JPS605568A (en) 1983-06-23 1983-06-23 Vertical insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS605568A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3677627D1 (en) * 1985-04-24 1991-04-04 Gen Electric SEMICONDUCTOR ARRANGEMENT WITH INSULATED GATE.
DE3628857A1 (en) * 1985-08-27 1987-03-12 Mitsubishi Electric Corp SEMICONDUCTOR DEVICE
JPS62109365A (en) * 1985-11-07 1987-05-20 Fuji Electric Co Ltd semiconductor equipment
JPS62282465A (en) * 1986-03-05 1987-12-08 イクシス・コーポレーション Monolithic semiconductor device and manufacture of the same
JP2513640B2 (en) * 1986-09-17 1996-07-03 株式会社東芝 Conduction modulation type MOSFET
JP2557367B2 (en) * 1987-02-26 1996-11-27 株式会社東芝 Insulated gate type self turn-off thyristor
JPH0680832B2 (en) * 1987-09-30 1994-10-12 日本電気株式会社 Semiconductor device
JP2679074B2 (en) * 1988-01-27 1997-11-19 富士電機株式会社 Field effect transistor
JP2864629B2 (en) * 1990-03-05 1999-03-03 富士電機株式会社 Conductivity modulation type MOSFET
JP2001077354A (en) 1999-08-31 2001-03-23 Miyazaki Oki Electric Co Ltd Vertical insulated gate semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120369A (en) * 1980-12-02 1982-07-27 Gen Electric Gate enhanced rectifier
JPS594077A (en) * 1982-06-30 1984-01-10 Toshiba Corp Field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120369A (en) * 1980-12-02 1982-07-27 Gen Electric Gate enhanced rectifier
JPS594077A (en) * 1982-06-30 1984-01-10 Toshiba Corp Field-effect transistor

Also Published As

Publication number Publication date
JPS605568A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
JP3321185B2 (en) High voltage semiconductor device
US4717940A (en) MIS controlled gate turn-off thyristor
JPH0612828B2 (en) Semiconductor device
JPH0324791B2 (en)
JPH02275675A (en) MOS type semiconductor device
JPS62115765A (en) semiconductor equipment
JPH0465552B2 (en)
JPH0117268B2 (en)
US6674147B2 (en) Semiconductor device having a bipolar transistor structure
JPH0560263B2 (en)
JP2751926B2 (en) Conductivity modulation type MOSFET
JPH0612823B2 (en) Bidirectional power high speed MOSFET device
JP2601862B2 (en) Anode short type conductive modulation MOSFET
US4825270A (en) Gate turn-off thyristor
JP2557818B2 (en) Reverse conduction gate turn-off thyristor device
JPH08274311A (en) Insulated gate type semiconductor device
US6897546B1 (en) Semiconductor device including a functional element having a PN junction
JPH05190561A (en) Semiconductor device
JPH0638500B2 (en) Conductivity modulation vertical MOSFET
JP2683302B2 (en) Semiconductor device
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
JPS5933988B2 (en) Electrostatic induction thyristor
JP2768842B2 (en) Semiconductor laser
JP3551153B2 (en) Semiconductor device
JPS6327865B2 (en)