JPH0465525B2 - - Google Patents
Info
- Publication number
- JPH0465525B2 JPH0465525B2 JP58106173A JP10617383A JPH0465525B2 JP H0465525 B2 JPH0465525 B2 JP H0465525B2 JP 58106173 A JP58106173 A JP 58106173A JP 10617383 A JP10617383 A JP 10617383A JP H0465525 B2 JPH0465525 B2 JP H0465525B2
- Authority
- JP
- Japan
- Prior art keywords
- resist
- temperature
- cooling
- substrate
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 122
- 239000000758 substrate Substances 0.000 claims description 108
- 238000000034 method Methods 0.000 claims description 53
- 230000008569 process Effects 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000000110 cooling liquid Substances 0.000 claims description 12
- 238000011161 development Methods 0.000 claims description 11
- 238000009835 boiling Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000010583 slow cooling Methods 0.000 claims 2
- 230000035945 sensitivity Effects 0.000 description 33
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 21
- 239000003507 refrigerant Substances 0.000 description 17
- 239000002826 coolant Substances 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 5
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- -1 poly(2,2,2-trifluoroethyl-α-chloroacrylate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Electron Beam Exposure (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、レジストの感度を制御して高精度の
レジストパターンを形成する方法及びそれを実現
するためのレジスト処理装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of forming a highly accurate resist pattern by controlling the sensitivity of a resist, and a resist processing apparatus for realizing the method.
超LSIをはじめとして、半導体素子の集積密度
が高まるにつれて、微細にして且つ高精度のパタ
ーン形成技術が要求されている。このため、最先
端分野では、6インチ□マスク或いは5インチ径
ウエハの場合、パターンの基板面内平均寸法値に
対する寸法誤差として例えば3б<0.1〔μm〕が
要求されている。また、量産ラインでは、パター
ン形成プロセスの迅速性も必須であり、レジスト
の感度としては高いものが望まれている。しか
し、従来高感度のレジストは解像性が劣るために
所定のパターン寸法精度を得ることが困難であ
り、逆に高解像性を有するレジストは低感度であ
るために量産ラインおいてパターン形成の高スル
ープツト化が図れない等の問題があつた。
As the integration density of semiconductor devices, including VLSIs, increases, finer and more precise pattern formation techniques are required. Therefore, in the most advanced field, in the case of a 6-inch square mask or a 5-inch diameter wafer, a dimensional error of, for example, 3б<0.1 [μm] with respect to the average dimension value of the pattern within the substrate surface is required. Furthermore, in a mass production line, speed of the pattern formation process is essential, and high sensitivity of the resist is desired. However, conventionally high-sensitivity resists have poor resolution, making it difficult to obtain the desired pattern dimensional accuracy.On the other hand, high-resolution resists have low sensitivity, making it difficult to form patterns on mass production lines. There were problems such as the inability to achieve high throughput.
第1図は従来技術よるレジストパターン形成プ
ロセスを示すフローチヤートである。まず、被処
理基板上に周知の回転塗布法により所定の膜厚に
レジストを塗布する。次に、塗布溶媒の除去並び
にレジストと基板との密着性を向上させるため、
オーブン等を用いレジストに応じた所定の温度
Tbでレジストのベーク(プリベーク)を行なう。
この後、オーブンから取り出されたレジスト膜付
被処理基板を大気中(〜1気圧)で支持台にて自
然放冷することにより、室温まで20〜30分かけて
冷却する。冷却を完了したレジスト膜に対して、
レジストの種類に応じた所定の照射量(露光量)
で所定波長域の電磁波、例えば紫外光あるいは所
定のエネルギーの粒子線、例えば電子線などを選
択的に照射する。その後、現像・リンス処理工程
を経て所望のレジストパターンが形成されること
になる。 FIG. 1 is a flowchart showing a resist pattern forming process according to the prior art. First, a resist is applied to a predetermined thickness on a substrate to be processed by a well-known spin coating method. Next, in order to remove the coating solvent and improve the adhesion between the resist and the substrate,
Using an oven, etc., set the temperature according to the resist.
Bake (prebake) the resist with Tb.
Thereafter, the resist film-coated substrate taken out of the oven is allowed to cool naturally on a support stand in the atmosphere (~1 atm), thereby cooling to room temperature over 20 to 30 minutes. For the resist film that has completed cooling,
Predetermined irradiation amount (exposure amount) depending on the type of resist
Then, electromagnetic waves in a predetermined wavelength range, such as ultraviolet light, or particle beams with a predetermined energy, such as electron beams, are selectively irradiated. Thereafter, a desired resist pattern is formed through a development and rinsing process.
ところで、上述した自然放冷中の被処理基板上
のレジスト膜について、ある時点における膜面全
体の温度分布を赤外線放射温度計によつて本発明
者等が調べたところ、第2図に示すような結果が
得られた。なお、この場合の自然冷却に先立つベ
ーク時の温度Tbは〜160〔℃〕であつた。第2図
において、レジスト膜付被処理基板21の中央部
上方(A点)では温度が高く(冷却のされ方が遅
く)、中心領域(B点)を経て下方(C点)に進
むにつれて温度が低く(冷却のされ方が速く)な
つている。なお、図中の各曲線は等温線である。
第3図は第2図のA,B,C各点における時間に
対する温度変化を示したもので、曲線31,3
2,33は夫々A,B,C点に対応する冷却特性
である。A点とB点の最大温度差は15〔℃〕程度、
A点とC点の最大温度差は30〔℃〕程度であつた。
これらの温度測定はレジスト膜上の被測定部分に
熱電対を接触させて行なつた。このような温度分
布(冷却速度むら)が応じる原因としては、自然
放冷中被処理基板が支持台等の上に立てられてい
るために、熱放散による雰囲気の自然対流が基板
面に沿つて上向きに起こり易いこと及び基板下方
部が支持台により熱を奪われ易いこと等が考えら
れる。また、本発明者等は上記レジスト膜付被処
理基板の冷却時の温度分布と照射・現像処理後の
レジストパターンの寸法精度との関係について着
目し、第2図の温度測定点A,B,C領域におけ
る形成パターンの寸法を測定したところ、本来例
えば2〔μm〕の同一寸法であるべきパターンにB
点において0.1〔μm〕、C点において0.2〔μm〕程度
の誤差が生じており、レジスト膜付基板の冷却時
の温度分布と形成されるレジストパターンの寸法
分布とが、レジストの感度分布を通して完全に対
応していることを確認した。したがつて、パター
ン寸法むらのない高精度のレジストパターンを得
るには、レジストベーク後基板面内で温度分布を
生じせしめない様な均一な冷却が不可欠であるこ
とが判つた。 By the way, when the present inventors investigated the temperature distribution of the entire film surface at a certain point in time using an infrared radiation thermometer for the resist film on the substrate to be processed during the natural cooling described above, the results were as shown in Fig. 2. The results were obtained. In this case, the temperature Tb during baking prior to natural cooling was ~160 [°C]. In FIG. 2, the temperature is high (cooling is slow) at the upper central part (point A) of the substrate 21 to be processed with a resist film, and as it progresses downward (point C) through the central region (point B), the temperature increases. is becoming lower (cooling speed is faster). Note that each curve in the figure is an isothermal line.
Figure 3 shows the temperature changes over time at points A, B, and C in Figure 2, with curves 31 and 3
2 and 33 are cooling characteristics corresponding to points A, B, and C, respectively. The maximum temperature difference between point A and point B is about 15 [℃],
The maximum temperature difference between point A and point C was about 30 [°C].
These temperature measurements were performed by bringing a thermocouple into contact with the portion to be measured on the resist film. The reason for this temperature distribution (uneven cooling rate) is that during natural cooling, the substrate to be processed is placed on a support stand, etc., so natural convection in the atmosphere due to heat dissipation occurs along the substrate surface. Possible reasons include that it tends to occur upwards and that heat is easily removed from the lower part of the substrate by the support. In addition, the present inventors focused on the relationship between the temperature distribution during cooling of the substrate to be processed with a resist film and the dimensional accuracy of the resist pattern after irradiation and development processing. When we measured the dimensions of the pattern formed in area C, we found that the pattern B
There is an error of about 0.1 [μm] at point C, and an error of about 0.2 [μm] at point C, so that the temperature distribution during cooling of the resist film-coated substrate and the size distribution of the resist pattern to be formed are completely different through the sensitivity distribution of the resist. I confirmed that it is compatible. Therefore, in order to obtain a highly accurate resist pattern with uniform pattern dimensions, it has been found that uniform cooling that does not cause temperature distribution within the substrate surface after resist baking is essential.
一方、発明者等がベーク後のレジスト膜の冷却
過程とレジストの感度との関係に着目し、種々実
験・研究を重ねた結果、レジストのガラス転移温
度Tg以上の所定の温度Tbで所定時間レジスト膜
をベークした後、該レジスト膜の温度をまずTb
から任意の中間冷却温度Tmまで下げ、次いで
Tmから例えば室温以下の任意の最終冷却温度
Tcまで急速冷却させる(Tb≧Tm>Tc)ことに
よつて、レジストの感度を完全に且つ再現性良く
制御できることを見い出した。さらに、これら冷
却過程を制御して形成したレジストパターンの解
像性は何れも、レジスト本来のパターン解像性に
比べて、いささかも劣下していないことも判つ
た。加えて、上記Tb→Tm→Tcのレジスト膜冷
却を基板面上全体に亘つて均一に行なうことによ
り寸法精度の極めて高いレジストパターンを形成
できることも判明した。 On the other hand, the inventors focused on the relationship between the cooling process of the resist film after baking and the sensitivity of the resist, and as a result of various experiments and research, they found that After baking the film, the temperature of the resist film is first set to Tb.
to an arbitrary intermediate cooling temperature Tm, then
Tm to any final cooling temperature below e.g. room temperature
It has been found that the sensitivity of the resist can be completely controlled with good reproducibility by rapidly cooling it to Tc (Tb≧Tm>Tc). Furthermore, it was found that the resolution of resist patterns formed by controlling these cooling processes was not at all inferior to the pattern resolution of the resist itself. In addition, it has been found that a resist pattern with extremely high dimensional accuracy can be formed by uniformly performing the resist film cooling of Tb→Tm→Tc over the entire substrate surface.
上記Tm→Tc→のレジスト膜均一急速冷却法
として、任意温度Tmにあるレジスト膜付基板の
全体を温度Tc(Tm>Tc)にある水等の液体冷媒
中へ急速に浸漬させる方法があり、既に本発明者
等によつて提案されている。しかし、この方法を
大気圧(〜1気圧)下で種々試みたところ、レジ
スト感度は均一性、再現性良く制御できるもの
の、急速冷却前の該基板温度Tmが冷却用液体冷
媒の大気圧(〜1気圧)下の沸点よりも高い場合
には、ベーク基板を冷却液体中へ浸漬した際に、
液体沸騰に伴なう気泡が多数発生して該レジスト
膜表面を粗面化させ、その結果レジストパターン
が悪化する場合があることが判つた。また、従来
のレジストベークは大気圧(〜1気圧)中にて行
なつていたので、ベークの主目的であるレジスト
溶媒の蒸発に長時間を要していた。 As a method for uniform rapid cooling of the resist film from Tm→Tc→, there is a method in which the entire resist film-coated substrate at an arbitrary temperature Tm is rapidly immersed in a liquid coolant such as water at a temperature Tc (Tm>Tc). This method has already been proposed by the present inventors. However, various trials of this method under atmospheric pressure (~1 atm) revealed that although the resist sensitivity could be controlled with good uniformity and reproducibility, the temperature Tm of the substrate before rapid cooling was lower than the atmospheric pressure (~1 atm) of the liquid coolant for cooling. If the temperature is higher than the boiling point (1 atm), when the baked substrate is immersed in the cooling liquid,
It has been found that a large number of bubbles are generated due to boiling of the liquid, which roughens the surface of the resist film, and as a result, the resist pattern may deteriorate. Furthermore, since conventional resist baking was performed at atmospheric pressure (~1 atm), it took a long time to evaporate the resist solvent, which is the main purpose of baking.
本発明の目的は、解像性を劣下させることな
く、レジストの電磁波若しくは粒子線照射に対す
る感度を任意に制御し、高精度のレジストパター
ンを効率良く且つ迅速に形成し得るレジストパタ
ーン形成方法及びそれを実現するためのレジスト
処理装置を提供することにある。
An object of the present invention is to provide a resist pattern forming method that can arbitrarily control the sensitivity of a resist to electromagnetic waves or particle beam irradiation without deteriorating resolution, and efficiently and quickly form a highly accurate resist pattern. The object of the present invention is to provide a resist processing apparatus for realizing this.
本発明の骨子は、ベークされたレジストを一旦
所望の温度Tmまで徐冷したのち、例えば冷却用
液体にて急速冷却すると共に、好ましくは冷却用
液体が収容される空間を該液体の沸点が上記温度
Tmより高くなるような圧力下に保持することに
ある。本発明によるレジストパターン形成プロセ
スの概要を第4図に示す。まず、被処理基板上に
レジスト膜を塗布形成する。次いで、このレジス
ト膜付基板を1気圧以下の所定圧力の容器中に収
納し、所定の温度Tbにて所定の時間レジストベ
ークを行なう。次いで、該基板の温度をベーク温
度Tbから任意の中間冷却温度Tm(Tb≧Tm)へ
下げる第1の冷却を行なう。次いで、該基板温度
をTmに保持した状態で、該容器内に備えた最終
冷却温度Tcにある冷却用液体冷媒の沸点がTm
以上になるように該容器内の圧力を高めた後、該
基板の全体を該冷却用液体冷媒中へ急速浸漬させ
ることによつて、中間冷却温度Tmから最終冷却
温度Tc(Tm>Tc)への急速且つ均一な第2の冷
却を連続して行なう。この場合、上記第2の冷却
時の急速冷却温度差Tm−Tcを任意に変化させ
ることによつて、或いは最終冷却温度下cが固定
されている場合には中間冷却温度、即ち急速冷却
開始温度Tmを任意の値に設定することによつ
て、最終的に得られるレジスト感度を任意の値に
制御することができる。その後、前記レジストに
対して所定波長域の電磁波或いは所定エネルギー
の粒子線を選択的に照射し、これを現像・リンス
処理することにより、所定のレジストパターンを
形成する。
The gist of the present invention is to slowly cool the baked resist to a desired temperature Tm, and then rapidly cool it with a cooling liquid, and preferably to create a space in which the cooling liquid is stored so that the boiling point of the liquid is above the temperature Tm. temperature
The purpose is to hold it under a pressure that is higher than Tm. FIG. 4 shows an outline of the resist pattern forming process according to the present invention. First, a resist film is applied and formed on a substrate to be processed. Next, this resist film coated substrate is placed in a container with a predetermined pressure of 1 atmosphere or less, and resist baking is performed at a predetermined temperature Tb for a predetermined time. Next, first cooling is performed to lower the temperature of the substrate from the baking temperature Tb to an arbitrary intermediate cooling temperature Tm (Tb≧Tm). Next, while the substrate temperature is maintained at Tm, the boiling point of the cooling liquid refrigerant at the final cooling temperature Tc provided in the container reaches Tm.
After increasing the pressure in the container as above, the entire substrate is rapidly immersed in the cooling liquid refrigerant to bring the temperature from the intermediate cooling temperature Tm to the final cooling temperature Tc (Tm>Tc). A rapid and uniform second cooling of the temperature is performed continuously. In this case, by arbitrarily changing the rapid cooling temperature difference Tm - Tc during the second cooling, or if the final cooling temperature c is fixed, the intermediate cooling temperature, that is, the rapid cooling start temperature By setting Tm to an arbitrary value, the resist sensitivity finally obtained can be controlled to an arbitrary value. Thereafter, the resist is selectively irradiated with electromagnetic waves in a predetermined wavelength range or particle beams with a predetermined energy, and is developed and rinsed to form a predetermined resist pattern.
すなわち本発明は、被処理基板上にレジストを
塗布し、ベークしたのち冷却し、さら所定波長の
電磁波或いは所定エネルギーの粒子線を上記レジ
ストに選択的に照射し、現像処理を施すことによ
りレジストパターンを形成する方法において、前
記レジストのベークを該レジストのガラス転移温
度Tg以上の所定温度Tbにて行い、次いで前記基
板を上記温度Tbから任意の中間温度Tmまで徐
冷し、しかるのち前記電磁波或いは粒子線の照射
の前に、常圧よりも高く且つ沸点がTm以上とな
る圧力下にある所定温度Tcの冷却用液体に前記
レジスト付基板を浸漬して、上記レジストを急速
均一冷却するようにした方法である。 That is, in the present invention, a resist pattern is formed by applying a resist onto a substrate to be processed, baking it, cooling it, selectively irradiating the resist with an electromagnetic wave of a predetermined wavelength or a particle beam of a predetermined energy, and performing a development process. In the method for forming a resist, the resist is baked at a predetermined temperature Tb higher than the glass transition temperature Tg of the resist, the substrate is then slowly cooled from the temperature Tb to an arbitrary intermediate temperature Tm, and then the electromagnetic wave or Before irradiation with the particle beam, the resist-attached substrate is immersed in a cooling liquid at a predetermined temperature Tc under a pressure higher than normal pressure and whose boiling point is Tm or higher to rapidly and uniformly cool the resist. This is the method.
また、本発明は、被処理基板上に塗布されたレ
ジストをベークしたのち冷却するレジスト処理装
置において、前記基板を収容し該基板を常圧以下
の圧力下で温度Tbまで加熱すると共に、加熱し
た基板を徐冷し該基板の温度を加熱温度Tbから
中間温度Tmまで下降せしめる加熱室と、この加
熱室にゲートバルブを介して連設され上記加熱徐
冷した基板を浸漬されて該基板を冷却する冷却用
液体が収容され、かつその内部を該液体の沸点が
前記温度Tm以上となる圧力下に保持する冷却室
とを具備し、上記温度Tmからの冷却を急速に行
なうようにしたものである。 The present invention also provides a resist processing apparatus that bakes and then cools a resist coated on a substrate to be processed. A heating chamber that slowly cools the substrate and lowers the temperature of the substrate from the heating temperature Tb to an intermediate temperature Tm, and a heating chamber that is connected to this heating chamber via a gate valve, and the heated and slowly cooled substrate is immersed to cool the substrate. A cooling chamber containing a cooling liquid and maintaining the inside thereof under pressure such that the boiling point of the liquid is equal to or higher than the temperature Tm, and is designed to rapidly cool from the temperature Tm. be.
本発明によれば、レジストの電磁波若しくは粒
子線照射に対する感度を、その解像性を劣下させ
ることなく、任意に設定することができる。した
がつて、低感度ののレジストでも本発明の方法に
よつて解像性を劣下させることなく高感度化さ
れ、電磁波若しくは粒子線による照射処理時間を
短縮することができる。しかも、本発明によれ
ば、ベーク後のレジスト膜が膜全体にわたつて均
一に冷却されるほか、レジスト膜面が粗面下する
こともないので、被処理基板上全体にわたつて寸
法ばらつきの少ない極めて高精度のレジストパタ
ーンを形成することができる。
According to the present invention, the sensitivity of the resist to electromagnetic waves or particle beam irradiation can be arbitrarily set without deteriorating its resolution. Therefore, even a low-sensitivity resist can be made highly sensitive by the method of the present invention without deteriorating its resolution, and the time required for irradiation treatment with electromagnetic waves or particle beams can be shortened. Moreover, according to the present invention, the resist film after baking is cooled uniformly over the entire film, and the resist film surface does not become rough, so that dimensional variations can be reduced over the entire substrate to be processed. It is possible to form a resist pattern with a small number of extremely high precision.
また、レジストベークを減圧下で行なうように
すれば、冷却処理時間は勿論のこと、従来レジス
ト塗布膜形成後長時間を要していたレジストのベ
ーク処理を大幅に短縮できる。例えば、従来1時
間当り基板10枚程度の処理量であつたものは、本
発明の方法よつて、1時間当り300枚以上に増え、
作業能率が格段に向上する。 Furthermore, by performing resist baking under reduced pressure, not only the cooling treatment time but also the resist baking treatment, which conventionally required a long time after forming a resist coating film, can be significantly shortened. For example, the processing capacity of about 10 substrates per hour in the past has increased to over 300 substrates per hour using the method of the present invention.
Work efficiency is greatly improved.
<実施例1>
本発明ではポリ(2,2,2−トリフルオロエ
チル−α−クロロアクリレート)よりなるポジ型
電子線感応レジストを用いた場合のレジストパタ
ーン形成方法について述べる。まず、上記レジス
トを周知の回転塗布法により被処理基板上に塗布
する。塗布膜厚は、例えば0.3〜1〔μm〕程度で
よいが、ここでは0.8〔μm〕とした。被処理基板
としては、半導体ウエハやガラス基板等種々ある
が、ここでは金属膜付ガラス基板を用いた。次
に、後述するようなレジスト処理装置を用いて、
レジスト膜のベーク、冷却処理を行なつた。ベー
ク温度Tbは、上記レジストのガラス転移温度Tg
(〜133℃)を越える140〜190〔℃〕程度でよいが、
ここでは180〔℃〕とした。また、ベーク時のレジ
スト膜付被処理基板を取り巻く圧力は約0.1気圧
とし、この状態でのレジストベークを約10分間行
なつた。ベーク時間は更に短縮できるが、本実施
例では取り敢えず10分間とした。次いで、該レジ
スト膜付基板の温度を任意の中間冷却温度Tm
(Tb≧Tm)まで下げたのち、該レジスト膜付基
板温度をTmに保持したまま該基板の周囲の圧力
を高めた。到達圧力が約10気圧になつてから、同
じ圧力下にある所定最終冷却温度Tc(Tm>Tc)
の冷却水の中へ温度Tmの該レジスト膜付被処理
基板の全体を急速(3秒以内)に浸漬させレジス
トの均一急速冷却を行なつた。本実施例では中間
冷却温度(急速冷却開始温度)Tmは該レジスト
のガラス転移温度Tg(〜133℃)を挾んだ、180〜
40〔℃〕の範囲で10〔℃〕ずつ変化させた。また、
最終冷却温度Tcとして室温(25℃)を選んだ。
第5図は中間冷却温度即ち急速冷却開始温度Tm
が、例えば150〔℃〕の場合の上記ケジスト膜付被
処理基板の冷却時の温度変化Tb→Tm→Tcを示
したもので、被処理基板上のレジスト面で第2図
に示したA,B,C領域と略同等の3領域におけ
る温度変化を測定した結果である。上記A,B,
C各領域の温度変化に対応する特性が夫々曲線5
1,52,53で、第3図の従来法の場合の冷却
特性に比べ全体にわたつて(Tb→Tc)均一な冷
却がなされ、特にTm→Tcの冷却領域では均一
且つ急速な冷却が行なわれていることがよく判
る。このような均一(Tb→Tm→Tc)で急速
(Tm→Tc)な冷却は他の任意のTmについても
同様に認められた。なお、被処理基板の冷却水浸
漬後における夫々のTmからTcまでの冷却時間
は、本実施例の場合何れも〜3秒以下であつた。
中間冷却温度即ち急速冷却開始温度Tmの値を
種々変えた場合の上記ベーク、冷却プロセス
(Tb=180℃→Tm→Tc=25℃)を経た夫々のレ
ジスト試料について電子線に対する感度(所定現
像条件下でレジスト膜の膜厚残存率がゼロとなる
場合の電子線照射量)を調べた結果、第6図aに
示すす特性が得られた。第6図(a)の特性は、前記
夫々のベーク、冷却プロセスを経たレジスト膜に
20〔keV〕の電子線を照射後、室温でメチルイソ
ブチルケトン(MIBK):イソプロピルアルコー
ル(IPA)=7:3現像液で10分間の現像処理、
次いでIPA液にて30秒間のリンス処理を施こして
得られたものである。第6図aに見られるよう
に、Tb→Tm→Tcのレジスト冷却過程で、中間
冷却温度即ち急速冷却開始温度Tmが該レジスト
のガラス転移温度Tg(〜133℃)と略等しくなる
温度領域でレジスト感度に幅広い変化があらわれ
る。Tb≧Tm>Tg領域では高いレジスト感度が
得られ、TmがTbに近づくにつれて感度が高く
なり、最大レジスト感度として〜1.2×10〔C/
cm2〕が得られる。Tg>Tm>Tc(=25℃)領域で
は、急速冷却開始温度Tmが下降するにつれてレ
ジスト感度が低くなり、従来の自然放冷の場合の
感度〜8×10-6〔C/cm2〕に近づく。
<Example 1> In the present invention, a method for forming a resist pattern using a positive electron beam sensitive resist made of poly(2,2,2-trifluoroethyl-α-chloroacrylate) will be described. First, the resist described above is applied onto a substrate to be processed by a well-known spin coating method. The coating film thickness may be, for example, about 0.3 to 1 [μm], but here it was set to 0.8 [μm]. Although there are various types of substrates to be processed, such as semiconductor wafers and glass substrates, a glass substrate with a metal film was used here. Next, using a resist processing device as described below,
The resist film was baked and cooled. The bake temperature Tb is the glass transition temperature Tg of the above resist.
(140-190 [℃] exceeding (~133℃) is sufficient, but
Here, the temperature was set to 180 [℃]. Further, the pressure surrounding the resist film-coated substrate to be processed during baking was approximately 0.1 atm, and resist baking was performed in this state for approximately 10 minutes. Although the baking time can be further shortened, it was set to 10 minutes in this example. Next, the temperature of the resist film coated substrate is set to an arbitrary intermediate cooling temperature Tm.
After lowering the temperature to (Tb≧Tm), the pressure around the substrate was increased while maintaining the temperature of the resist film-coated substrate at Tm. After the ultimate pressure reaches approximately 10 atmospheres, the predetermined final cooling temperature Tc under the same pressure (Tm>Tc)
The entire resist film-coated substrate to be processed at a temperature of Tm was immersed rapidly (within 3 seconds) into cooling water to uniformly and rapidly cool the resist. In this example, the intermediate cooling temperature (rapid cooling start temperature) Tm is 180~
The temperature was varied in steps of 10 [°C] within a range of 40 [°C]. Also,
Room temperature (25°C) was chosen as the final cooling temperature Tc.
Figure 5 shows the intermediate cooling temperature, that is, the rapid cooling start temperature Tm.
shows the temperature change Tb → Tm → Tc during cooling of the substrate to be processed with the resist film when the temperature is, for example, 150 [°C], and the resist surface on the substrate to be processed is A, These are the results of measuring temperature changes in three regions substantially equivalent to regions B and C. Above A, B,
C The characteristics corresponding to temperature changes in each region are shown in curve 5.
1, 52, and 53, uniform cooling is achieved over the entire area (Tb→Tc) compared to the cooling characteristics of the conventional method shown in Fig. 3, and especially uniform and rapid cooling is performed in the cooling region of Tm→Tc. It is clearly seen that Such uniform (Tb→Tm→Tc) and rapid (Tm→Tc) cooling was similarly observed for any other Tm. Note that the cooling time from each Tm to Tc after the substrate to be processed was immersed in the cooling water was ~3 seconds or less in all cases of this example.
Sensitivity to electron beams (predetermined development conditions) for each resist sample that has gone through the above baking and cooling process (Tb = 180°C → Tm → Tc = 25°C) when the intermediate cooling temperature, that is, the rapid cooling start temperature Tm, is varied. As a result of investigating the amount of electron beam irradiation when the remaining thickness of the resist film becomes zero (see below), the characteristics shown in FIG. 6a were obtained. The characteristics shown in Figure 6(a) apply to the resist film after each of the above baking and cooling processes.
After irradiation with an electron beam of 20 [keV], development was performed at room temperature for 10 minutes using a developer solution of methyl isobutyl ketone (MIBK): isopropyl alcohol (IPA) = 7:3.
It was then rinsed with IPA solution for 30 seconds. As shown in FIG. 6a, in the resist cooling process from Tb→Tm→Tc, the intermediate cooling temperature, that is, the rapid cooling start temperature Tm, is approximately equal to the glass transition temperature Tg (~133°C) of the resist. A wide range of changes appears in resist sensitivity. High resist sensitivity is obtained in the Tb≧Tm>Tg region, and as Tm approaches Tb, the sensitivity increases, and the maximum resist sensitivity is ~1.2 × 10 [C/
cm 2 ] is obtained. In the Tg>Tm>Tc (=25°C) region, the resist sensitivity decreases as the rapid cooling start temperature Tm decreases, and the sensitivity decreases to ~8×10 -6 [C/cm 2 ] compared to conventional natural cooling. Get closer.
一方、上記したプロセスと同様の減圧ベーク、
昇圧冷却を施こした該レジスト膜付基板(金属膜
付6インチ□ガラス基板)の周辺部分を除く全面
へ、20〔keV〕電子線描画装置を用いて、上記
夫々の感度に対応する照射量で選択的パターン照
射を行ない、室温におけるMIBK/IPA(=7/
3)現像、IPAリンス処理を行なつてレジストパ
ターンを形成した。これらレジストパターンは清
浄であり、パターンの解像性はすべて良好であつ
た。また、例えば線幅0.5〜2.0〔μm〕の範囲のレ
ジストパターンの寸法精度を測定評価した結果、
いずれの場合のレジストパターンもすべて高精度
で、基板面内の寸法変動誤差3б<0.1〔μCm〕を
十分に満足するものであつた。 On the other hand, vacuum baking similar to the process described above,
Using a 20 [keV] electron beam lithography system, the entire surface of the resist film coated substrate (6-inch □ glass substrate with metal film), which has been subjected to pressure boost cooling, except for the peripheral area, is irradiated with a dose corresponding to each of the above sensitivities. MIBK/IPA (=7/
3) Development and IPA rinsing were performed to form a resist pattern. These resist patterns were clean and had good pattern resolution. In addition, as a result of measuring and evaluating the dimensional accuracy of resist patterns with line widths in the range of 0.5 to 2.0 [μm], for example,
All of the resist patterns in each case had high precision and satisfactorily satisfied the in-plane dimensional variation error of 3б<0.1 [μCm].
<実施例2>
本実施例ではレジストとしてポリメチルメタク
リレートを用いた。その他の条件は先に説明した
実施例1と略同じであるが、ベーク温度Tbは本
レジストのガラス転移温度Tg〜110〔℃〕を越え
た170〔℃〕に設定した。レジストベーク時の基板
周囲の圧力は0.3気圧とし、レジストベーク時間
は10分間とした。レレジスト膜冷却時の基板周囲
の圧力は約8気圧で、ベーク温度Tb=170〔℃〕
から種々の中間冷却温度Tmを経て最終冷却温度
Tc=25〔℃〕に至るレジスト冷却を行なつた。中
間冷却温度即ち急速冷却開始温度Tmは170〜40
〔℃〕の範囲で10〔℃〕ずつ変化させた。最終冷却
のための液体冷媒は、実施例1と同様、室温25
〔℃〕にある水である。Tm→Tc(=25℃)の均
一急速冷却は、温度Tmにあるレジスト膜付基板
の全体を、温度Tc(=25℃)にある水の中へ急速
(3秒以内)に浸漬させることによつて行なつた。
上記種々の冷却プロセスを経た夫々のレジスト試
料に2〔keV〕電子線照射後、室温にて13分間の
MIBK現像、30秒間のIPAリンスを行なつて、
夫々の感度特性を調べた。第6図bは中間冷却温
度、即ち急速冷却開始温度Tmに対するレジスト
感度の変化を現わしたものである。本実施例にお
いても、急速冷却開始温度Tmがレジストのガラ
ス転移温度Tg=110〔℃〕に略等しくなる領域で
広い範囲の感度変化が現われる。Tb≧Tm>Tg
領域ではTmを高くする程レジスト感度は高くな
り〜2×10-6〔C/cm2〕もの感度に達する。Tg>
Tm>Tc(=25℃)領域では、Tmを下げる程レ
ジスト感度は低くなり、従来の自然放冷の場合の
感度〜1×10-5〔C/cm2〕に近づく。<Example 2> In this example, polymethyl methacrylate was used as a resist. Other conditions were substantially the same as in Example 1 described above, but the baking temperature Tb was set at 170 [°C], which exceeded the glass transition temperature Tg of the present resist ~110 [°C]. The pressure around the substrate during resist baking was 0.3 atm, and the resist baking time was 10 minutes. The pressure around the substrate during cooling of the resist film is approximately 8 atmospheres, and the baking temperature Tb = 170 [℃]
to the final cooling temperature through various intermediate cooling temperatures Tm
The resist was cooled to Tc=25 [°C]. Intermediate cooling temperature, that is, rapid cooling start temperature Tm is 170 to 40
The temperature was varied in steps of 10 [°C] within the [°C] range. As in Example 1, the liquid refrigerant for final cooling was at room temperature of 25°C.
It is water at [℃]. Uniform rapid cooling from Tm to Tc (=25°C) is achieved by rapidly (within 3 seconds) immersing the entire resist film coated substrate at temperature Tm into water at temperature Tc (=25°C). I turned over and went.
After irradiating each resist sample with a 2 [keV] electron beam after undergoing the various cooling processes described above, it was heated for 13 minutes at room temperature.
After MIBK development and 30 seconds of IPA rinsing,
The sensitivity characteristics of each were investigated. FIG. 6b shows the change in resist sensitivity with respect to the intermediate cooling temperature, that is, the rapid cooling start temperature Tm. In this example as well, a wide range of sensitivity changes appears in the region where the rapid cooling start temperature Tm is approximately equal to the resist glass transition temperature Tg=110 [° C.]. Tb≧Tm>Tg
In this region, the higher the Tm, the higher the resist sensitivity, reaching a sensitivity of ~2×10 −6 [C/cm 2 ]. Tg>
In the Tm>Tc (=25° C.) region, the lower the Tm, the lower the resist sensitivity becomes, approaching the sensitivity of conventional natural cooling of ~1×10 −5 [C/cm 2 ].
一方、上記したプロセスと同様の減圧ベーク、
昇圧冷却を施こしたレジスト膜付基板(金属膜付
6インチ□ガラス基板)の周辺部分を除く全面へ
20〔keV〕電子線描画装置を用いて、上記夫々の
ジスト感度に対応する照射量で選択的パターン照
射を行ない、室温におけるMIBK現像、IPAリン
ス処理を施こしてレジストパターンを形成した。
すべての基板上全体にわたり、レジストパターン
は清浄で、パターン解像性は良好であつた。ま
た、本実施例においても、線幅0.5〜2.0〔μm〕の
範囲のレジストパターンの寸法精度を測定評価し
た結果、何れの場合のレジスストパターンも高精
度で、基板面内の寸法変動誤差はすべて3б<
0.1〔μm〕であつた。 On the other hand, vacuum baking similar to the process described above,
To the entire surface of a substrate with a resist film (6-inch □ glass substrate with metal film) that has been subjected to pressure boost cooling, except for the peripheral area.
Using a 20 [keV] electron beam lithography system, selective pattern irradiation was performed at a dose corresponding to each of the above resist sensitivities, and a resist pattern was formed by performing MIBK development at room temperature and IPA rinsing treatment.
The resist patterns were clean and had good pattern resolution over all substrates. In addition, in this example, as a result of measuring and evaluating the dimensional accuracy of the resist pattern in the line width range of 0.5 to 2.0 [μm], the resist pattern in all cases was highly accurate, and the dimensional fluctuation error within the substrate surface was All 3б<
It was 0.1 [μm].
なお、本発明の主眼は、被処理基板上のレジス
ト膜を減圧ベーク、昇圧急速均一冷却することに
より、レジスト処理の高速化やレジストパターン
の高精度化をはかることもさることながら、特
に、ベーク温度Tbから最終冷却温度Tcヘベーク
後のレジスト膜を冷却する過程で任意の中間冷却
温度Tm(Tb≧Tm>Tc)を設け、Tmを急速冷
却開始温度としてレジスト膜付基板を最終冷却温
度Tcの液体冷媒中へ急速浸漬冷却させることに
より、レジストの感度を任意に制御することにあ
る。したがつて、本発明の方法を用いれば、例え
ば種々のレジスト照射(露光)装置の性能に適合
するように、レジストの感度を任意に且つ均一に
設定することができる。 The main purpose of the present invention is to speed up resist processing and improve the precision of resist patterns by baking the resist film on the substrate to be processed and quickly and uniformly cooling it by increasing the pressure. In the process of cooling the resist film after baking from the temperature Tb to the final cooling temperature Tc, an arbitrary intermediate cooling temperature Tm (Tb≧Tm>Tc) is set, and with Tm as the rapid cooling start temperature, the substrate with the resist film is heated to the final cooling temperature Tc. The purpose is to arbitrarily control the sensitivity of the resist by rapidly immersing and cooling it in a liquid coolant. Therefore, by using the method of the present invention, the sensitivity of the resist can be arbitrarily and uniformly set to match the performance of various resist irradiation (exposure) devices, for example.
上記実施例では2種類のレジストに関してのレ
ジストパターン形成例について述べたが、レジス
トの種類や更にはレジスト膜が被着される基板材
料、レジストの溶媒(上記実施例のレジストの溶
媒としては通常メチルセロソルブアセテートが用
いられている)、現像及びリンス方法、ベーク温
度等についても上述した実施例に限定されるもの
ではなく、公知の種々の材料、レジスト溶媒、現
像、リンス方法、ベーク温度についても本発明の
諸効果が達成されることを確認している。レジス
スト膜、ベーク時の圧力(1気圧以下)は、例え
ばレジストベーク中に溶媒突沸など生ぜしめない
ようにベーク温度Tbや溶媒の蒸気圧等を十分に
考慮して、設定することが必要である。溶媒蒸発
の迅速化の観点からはできるだけ圧力を下げるこ
とが望ましいことは言うまでもない。逆に、ベー
ク時の圧力が定まれば、ベーク時間はレジスト溶
媒の蒸発及びレジストの基板に対する被着性が実
質的に十分達せられる範囲で、任意に短時間に設
定することができる。また、上記実施例ではベー
ク後のレジストの冷却媒体である液体として水を
用いたが、熱容量(比熱)が大きく且つ浸漬中の
レジストに対して実質的に物理・化学的変質もを
たらさない液体冷媒(例えば高級アルコール、グ
リセリンなど)ならば何でもよい。さらに、冷却
処理時の圧力は、少くともレジストベーク温度
Tbにおける液体冷媒の蒸気圧以上であれば、何
れの値に設定してもよい。 In the above embodiments, examples of resist pattern formation using two types of resists have been described. The development and rinsing methods, baking temperature, etc. are not limited to the examples described above, and various known materials, resist solvents, development, rinsing methods, and baking temperatures may be used in this book. It has been confirmed that the various effects of the invention are achieved. It is necessary to set the resist film and the pressure during baking (1 atm or less), taking into account the baking temperature Tb, the vapor pressure of the solvent, etc., so as not to cause, for example, solvent bumping during resist baking. . Needless to say, from the viewpoint of speeding up solvent evaporation, it is desirable to lower the pressure as much as possible. Conversely, once the baking pressure is determined, the baking time can be arbitrarily set to a short time within a range that substantially evaporates the resist solvent and achieves sufficient adhesion of the resist to the substrate. In addition, in the above example, water was used as the liquid that is a cooling medium for the resist after baking, but water has a large heat capacity (specific heat) and does not substantially cause physical or chemical changes to the resist during immersion. Any liquid refrigerant (for example, higher alcohol, glycerin, etc.) may be used. Furthermore, the pressure during the cooling process should be at least as high as the resist bake temperature.
It may be set to any value as long as it is equal to or higher than the vapor pressure of the liquid refrigerant at Tb.
また、上記実施例いても述べたように、本発明
者等の研究結果によると、レジストのベーク温度
Tb及び中間冷却温度(急速冷却開始温度)Tm
が該レジストのガラス転移温度Tgを越える場合
には、Tg以下の温度Tcにある液体冷媒中へレジ
ストを急速浸漬させる(Tb≧Tm>Tg>Tc)こ
とによつて、レジスト感度の大幅な向上化が達成
できることが確認されている。さらに、該冷媒の
温度Tcが、Tg以下の領域で、低ければ低い程レ
ジスト急速冷却後のレジスト感度は増々高まるこ
とも確認されている。したがつて、Tb≧Tm>
Tg>Tcの関係を満たす範囲で、中間冷却温度、
即ち急速冷却開始温度Tmとレジスト冷却用液体
冷媒の温度Tcとを任意の値に選べば、レジスト
の高感度化の範囲を更に拡大することができる。
また、中間冷却温度Tmから最終冷却温度Tcに
ある液体冷媒中へレジスト膜付被処理基板の全体
を浸漬させるに要する時間は、ベーク→冷却の過
程における基板移動の際に発生する該基板の温度
降下むら(レジスト感度むらを誘発)を抑制する
ために、短ければ短い程良く、5〜6秒以下、で
きれば3秒以下にすることが望ましい。また、レ
ジスト照射(露光)方法については、上記した電
子線以外に光線、X線、イオンビーム等の所定波
長域の電磁波や所定エネルギーの粒子線等を用い
ても本発明の効果が得られる。 In addition, as mentioned in the above example, according to the research results of the present inventors, the baking temperature of the resist is
Tb and intermediate cooling temperature (rapid cooling start temperature) Tm
exceeds the glass transition temperature Tg of the resist, the resist sensitivity can be significantly improved by rapidly immersing the resist in a liquid coolant at a temperature Tc below Tg (Tb≧Tm>Tg>Tc). It has been confirmed that this can be achieved. Furthermore, it has been confirmed that the lower the temperature Tc of the coolant is in the region below Tg, the more the resist sensitivity after rapid resist cooling increases. Therefore, Tb≧Tm>
In the range that satisfies the relationship Tg > Tc, the intermediate cooling temperature,
That is, by selecting arbitrary values for the rapid cooling start temperature Tm and the temperature Tc of the liquid coolant for cooling the resist, it is possible to further expand the range of increasing the sensitivity of the resist.
In addition, the time required to immerse the entire resist film-coated substrate into the liquid coolant at the intermediate cooling temperature Tm to the final cooling temperature Tc is the temperature of the substrate that occurs when the substrate is moved from baking to cooling. In order to suppress unevenness in the drop (which induces unevenness in resist sensitivity), the shorter the better, preferably 5 to 6 seconds or less, preferably 3 seconds or less. Furthermore, as for the resist irradiation (exposure) method, the effects of the present invention can be obtained by using, in addition to the above-described electron beam, electromagnetic waves in a predetermined wavelength range such as light beams, X-rays, and ion beams, or particle beams with a predetermined energy.
<実施例3>
次に本発明の寸法を実施するのに適合するレジ
スト処理装置の一例ついて第7図を参照して説明
する。第7図の装置は被処理基板に対するレジス
ト塗布から照射若しくは露光前までの一連の工程
を全自動で処理するものである。まず、レジスト
が塗布されるべき被処理基板71aが、予めカセ
ツト72aに収納されており、所定の搬送シーケ
ンスの下に、ベルトコンベア73aによつてレジ
スト塗布前の所定位置へ搬送される。次いで、回
転・上下動機構を有する真空チヤツク搬送器74
aによつて該被処理基板71aはレジスト塗布用
回転台75上に移される。次に、レジスト滴下ノ
ズル76より溶媒に溶解させたレジストが被処理
基板71b上に滴下され、回転台75により被処
理基板71bは回転し、その結果被処理基板71
b上に所定膜厚のレジスト膜が形成される。レジ
スト回転塗布中、被処理基板71bは回転台75
へ真空チヤツク等の手段で固定されている。次
に、レジスト塗布済被処理基板71bは、回転・
上下・水平移動機構を有する真空チヤツク搬送器
74bよつて、本発明のレジスト処理装置の中枢
であるレジスト減圧ベーク・昇圧冷却器77内の
被処理基板支持具78上に移送され、載置され
る。以上の処理はすべて大気圧(〜1気圧)下で
行なわれる。減圧ベーク・昇圧冷却器77はヒー
ター79が内包されたベーク室(加熱室)80と
冷却用液体冷媒(例えば水)81が収容された冷
却室82とから成つている。ベーク室80と冷却
室82との間には被処理基板71cを載置した基
板支持具78が通過できる程度の開口があり、ゲ
ートバルブ83によつて該開口の開閉を行なうよ
うにしてある。ベーク室80側には被処理基板の
搬入出口となる開口が設けられており、バルブ8
4a,84bによつてそれらの開閉を行なう仕組
にしてある。さらに、ベーク室80側には減圧用
管85a、昇圧用管85b、リーク用管85c等
が設けられており、夫々は開閉バルブ86a,8
6b,86cを有している。また、冷却室82側
は液体冷媒の注入管87aと排出管87bが設け
られており、夫々は開閉バルブ88a,88bを
有している。液体冷媒81の温度Tcは、減圧ベ
ーク・昇圧冷却器77の該に置かれた液温調整器
(図示せず)等を用い、予め所定値に設定してお
く。上記全てのバルブを閉じると、ベーク室80
と冷却室82は夫々完全に密閉された状態にな
る。搬送器74bによつて被処理基板71cが基
板支持具78上に搬送される際には、バルブ84
aのみ開き他のバルブはすべて閉じている。ま
た、この時点ではベーク室80と冷却室82の内
部の圧力は大気圧(〜1気圧)になつている。基
板支持具78上への被処理基板71cの搬送が終
了すると、バルブ84aが閉じて、ベーク室80
は密閉される。次いで、バルブ86aを開け減圧
用管85aを通して、ベーク室80内を所定の圧
力(1気圧以下)状態にする。ベーク室80内が
所定の圧力状態に達したら、基板71c上のレジ
スト面とヒーター79とが所定の間隔で略平行に
面対向するように、基板支持具78を移動させ
る。対向するレジスト面を均一温度にてベークす
る必要があるので、ヒーター79は略平面状の加
熱源が得られる様にその形状を工夫してある。次
いで、ヒーター加熱が始まり、レジストが所定温
度Tbでベークされる。レジストベーク中は、レ
ジスト膜中の溶媒が蒸発することによつてベーク
室80内の圧力が所定値より上昇する虞れがある
ので、バルブ86aを開放したまま減圧用管85
aを通して溶媒蒸気を排気し、ベーク室80内の
圧力を所定値に保つようにする。所定温度Tbで
所定時間のレジストベークを行なつた後は、レジ
スト膜面の温度が任意の中間冷却温度Tmになる
用にヒーター加熱が自動調整され、レジスト膜の
ベーク温度Tbから温度Tm(Tb≧Tm)への第一
の均一冷却がなされる。レジスト膜付基板温度が
所定のTm値に安定すると、該Tm値を変えない
様に加熱及び基板支持具の位置等はそのままの状
態にして、バルブ86aが閉じられる。次いで、
バルブ86bが開き、昇圧用管85bを通して気
体がベーク室80内に導入される。ベーク室80
内の圧力が略大気圧(〜1気圧)に昇圧された時
点でバルブ83が解放され、ベーク室80と冷却
室82とが同一圧力の下に所定圧力値に達するま
で昇圧が継続される。所定圧力に昇圧されるまで
の間、被処理基板はベーク室において所定温度
Tmに保持されている。ベーク室80と冷却室8
2の圧力が所定値に達するとバルブ86bが閉じ
られ、基板支持具78が急速下降してレジスト膜
付被処理基板71cの全体が急速に冷却室82の
所定温度Tcにある液体冷媒81中へ浸漬され第
二の冷却がなされる(Tm>Tc)。この時液体冷
媒の圧力は十分に高く設定してあるので該冷媒の
沸騰は生じない。この時点でベーク室80内のヒ
ーター加熱は停止されるが、ベーク室80の構造
如何によつては、後続レジスト膜付基板のベーク
処理を間断なく行なうためにヒーター加熱は継続
させておくこともできる。次いで、基板支持具7
8が上方向に移動、被処理基板71cは液体冷媒
81中から引き揚げられてベーク室の所定位置ま
で移送される。次いで、リークバルブ86cが開
放され、リーク用管85cを通して、ベーク室8
0及び冷却室82の圧力が大気圧(〜1気圧)に
戻される。ベーク室80及び冷却室82の圧力が
略大気圧(〜1気圧)になつた時点でバルブ83
及びバルブ86cは閉じられ、次いでバルブ84
bが開けられる。この時点以降の工程はすべて大
気圧下でなされる。次に、冷却済レジスト膜付被
処理基板71cは、バルブ84b部分の開口を通
して、回転・上下・水平移動機構を有する真空チ
ヤツク搬送器74cによつて減圧ベーク・昇圧冷
却器77の外へ出され、乾燥用回転台89上へ載
せられる。回転台89により被処理基板71dは
回転し、その結果被処理基板71dに付着してい
た液体冷媒が飛散して強制的な乾燥がなされる。
回転乾燥中、被処理基板71dは回転台89上へ
真空チヤツク等の手段で固定されている。乾燥が
終了した被処理基板71dは、次に回転・上下動
機構を有する真空チヤツク搬送器74dによつて
ベルトコンベア73b上の所定位置へ移される。
そして、レジスト塗布、ベーク、冷却、乾燥をす
べて終えた被処理基板71eは、所定のシーケン
スの下にベルトコンベア73bによつてカセツト
72bに収納される。上述した処理がすべての被
処理基板に対して順次なされた時点で、本発明の
レジスト処理装置による工程は完了する。<Embodiment 3> Next, an example of a resist processing apparatus suitable for implementing the dimensions of the present invention will be described with reference to FIG. 7. The apparatus shown in FIG. 7 fully automatically processes a series of steps from resist coating to a substrate to be processed to before irradiation or exposure. First, a substrate to be processed 71a to be coated with a resist is stored in a cassette 72a in advance, and is conveyed by a belt conveyor 73a to a predetermined position before resist coating according to a predetermined conveyance sequence. Next, a vacuum chuck conveyor 74 having a rotation/vertical movement mechanism is provided.
The substrate to be processed 71a is transferred onto the resist coating rotary table 75 by step a. Next, the resist dissolved in the solvent is dropped onto the substrate to be processed 71b from the resist dropping nozzle 76, and the substrate to be processed 71b is rotated by the rotating table 75. As a result, the substrate to be processed 71b
A resist film of a predetermined thickness is formed on b. During resist rotation coating, the substrate to be processed 71b is placed on the rotating table 75.
It is fixed by means such as a vacuum chuck. Next, the resist-coated substrate 71b is rotated and
A vacuum chuck carrier 74b having a vertical and horizontal movement mechanism is used to transfer and place the substrate to be processed on a substrate support 78 in a resist vacuum bake/boost cooler 77, which is the core of the resist processing apparatus of the present invention. . All of the above treatments are performed under atmospheric pressure (~1 atm). The vacuum bake/boost cooler 77 is comprised of a bake chamber (heating chamber) 80 containing a heater 79 and a cooling chamber 82 containing a cooling liquid refrigerant (for example, water) 81. There is an opening between the baking chamber 80 and the cooling chamber 82, which is large enough to allow the substrate support 78 on which the substrate to be processed 71c is placed to pass, and the opening is opened and closed by a gate valve 83. An opening is provided on the bake chamber 80 side to serve as an entrance/exit for loading and unloading substrates, and a valve 8 is provided.
4a and 84b are used to open and close them. Further, on the bake chamber 80 side, a pressure reducing pipe 85a, a pressure increasing pipe 85b, a leak pipe 85c, etc. are provided, and on/off valves 86a, 8
6b and 86c. Further, on the side of the cooling chamber 82, an injection pipe 87a and a discharge pipe 87b for liquid refrigerant are provided, each having an on-off valve 88a, 88b. The temperature Tc of the liquid refrigerant 81 is set in advance to a predetermined value using a liquid temperature regulator (not shown) placed in the vacuum bake/boost cooler 77. When all the above valves are closed, the bake chamber 80
Both the cooling chamber 82 and the cooling chamber 82 are completely sealed. When the substrate 71c to be processed is transferred onto the substrate support 78 by the transfer device 74b, the valve 84 is
Only valve a is open and all other valves are closed. Further, at this point, the pressure inside the baking chamber 80 and the cooling chamber 82 is atmospheric pressure (~1 atmosphere). When the substrate 71c to be processed is transferred onto the substrate support 78, the valve 84a is closed and the bake chamber 80 is closed.
is sealed. Next, the valve 86a is opened and the pressure reducing pipe 85a is passed through to bring the inside of the bake chamber 80 to a predetermined pressure (1 atmosphere or less). When the inside of the bake chamber 80 reaches a predetermined pressure state, the substrate support 78 is moved so that the resist surface on the substrate 71c and the heater 79 face each other substantially in parallel with a predetermined interval. Since it is necessary to bake the opposing resist surfaces at a uniform temperature, the shape of the heater 79 is devised so that a substantially planar heating source can be obtained. Next, heater heating is started and the resist is baked at a predetermined temperature Tb. During resist baking, there is a risk that the pressure inside the baking chamber 80 will rise above a predetermined value due to evaporation of the solvent in the resist film.
The solvent vapor is exhausted through a to maintain the pressure inside the bake chamber 80 at a predetermined value. After baking the resist at a predetermined temperature Tb for a predetermined time, the heater heating is automatically adjusted so that the temperature of the resist film surface reaches an arbitrary intermediate cooling temperature Tm, and the temperature Tm (Tb ≧Tm). When the temperature of the resist film-coated substrate stabilizes at a predetermined Tm value, the valve 86a is closed while heating and the position of the substrate support remain as they are so as not to change the Tm value. Then,
The valve 86b is opened and gas is introduced into the bake chamber 80 through the pressure increasing pipe 85b. Bake room 80
When the internal pressure is increased to approximately atmospheric pressure (~1 atmosphere), the valve 83 is opened, and the pressure increase continues until the baking chamber 80 and the cooling chamber 82 reach a predetermined pressure value under the same pressure. The substrate to be processed is kept at a predetermined temperature in a bake chamber until the pressure is increased to a predetermined pressure.
Retained by Tm. Bake chamber 80 and cooling chamber 8
When the pressure in step 2 reaches a predetermined value, the valve 86b is closed, the substrate support 78 is rapidly lowered, and the entire resist film-coated substrate 71c is rapidly transferred into the liquid coolant 81 at the predetermined temperature Tc in the cooling chamber 82. It is immersed and subjected to a second cooling (Tm>Tc). At this time, the pressure of the liquid refrigerant is set sufficiently high so that boiling of the refrigerant does not occur. At this point, the heater heating in the bake chamber 80 is stopped, but depending on the structure of the bake chamber 80, the heater heating may be continued in order to perform the baking process of the subsequent resist film coated substrate without interruption. can. Next, the substrate support 7
8 moves upward, and the substrate to be processed 71c is lifted out of the liquid coolant 81 and transferred to a predetermined position in the baking chamber. Next, the leak valve 86c is opened and the bake chamber 8 is passed through the leak pipe 85c.
0 and the pressure in the cooling chamber 82 is returned to atmospheric pressure (~1 atm). When the pressure in the baking chamber 80 and the cooling chamber 82 reaches approximately atmospheric pressure (~1 atm), the valve 83 is closed.
and valve 86c is closed, then valve 84
b can be opened. All steps from this point on are done under atmospheric pressure. Next, the cooled resist film-coated substrate 71c is taken out of the vacuum bake/boost cooler 77 through the opening of the valve 84b by a vacuum chuck carrier 74c having a rotating, vertical, and horizontal movement mechanism. , and placed on the drying rotary table 89. The substrate to be processed 71d is rotated by the rotating table 89, and as a result, the liquid refrigerant adhering to the substrate to be processed 71d is scattered and forced drying is performed.
During rotation drying, the substrate 71d to be processed is fixed onto the rotating table 89 by means such as a vacuum chuck. The dried substrate 71d is then transferred to a predetermined position on the belt conveyor 73b by a vacuum chuck carrier 74d having a rotation/up-and-down mechanism.
The substrate 71e to be processed, which has been subjected to resist coating, baking, cooling, and drying, is stored in a cassette 72b by a belt conveyor 73b in a predetermined sequence. The process performed by the resist processing apparatus of the present invention is completed when the above-described processing is sequentially performed on all the substrates to be processed.
なお、本装置は枚葉式の処理方法を採用してい
るで、状況よつては減圧ベーク、昇圧冷却器の部
分における処理時間が長くなつて、他の部分との
処理時間のバランスを崩し、高スループツト化が
はかれない場合も生じ得る。このような場合は、
該減圧ベーク、昇圧冷却器を例えばサークル状若
しくは並列上に複数個配置し、他の部分の処理時
間及びベーク・冷却処理時間を考慮した適正な遅
延時間を設定して、サークル的若しくは並列的に
ベーク・冷却処理を行なうことにより、装置全体
としての高スループツト化をはかることが可能で
ある。さらには、減圧ベーク・昇圧冷却器を所定
許容範囲内で大型化し、該部分だけをバツチ処理
方式にすることもできる。また上述した減圧ベー
ク、昇圧冷却器おいては、処理するレジストの溶
媒やベーク温度、使用する冷却用冷媒の種類に応
じてベーク室及び冷却室の圧力や温度を加減する
が、該ベーク・冷却器の機械的強度、気密性、耐
熱性は十分高いことが望ましい。また、レジスト
ベーク用ヒーターはベーク室より出し、外部から
赤外線透過材を通してレジストの加熱を行なつて
もよい。この場合、赤外線透過部分は上記ベー
ク・冷却器のベーク室を構成する器材の所定箇所
に設けることになるが、機械的強度、気密性を十
分考慮しておかねばならないことは言うまでもな
い。また、ベーク温度Tbから急速冷却開始温度
Tmへの第一の冷却は、レジストベーク後、ベー
ク・冷却器内の圧力を減圧状態から所定圧力へ昇
圧させてゆく過程と並行して進行させてもよい。
上記第一の冷却を迅速に行なうために、上記ベー
ク、冷却器内に中間冷却温度Tmにある液体冷媒
を更に追加して、ベーク温度TbからTmへの急
速冷却を行なうようにしてもよい。勿論、この場
合の急速冷却も前記液体冷媒の沸点がTmを越え
るように、圧力状態を調整した上で行なうことが
肝要である。被処理基板の搬送形態は、上述の形
態にとらわれる必要はなく、処理装置に最適なも
のを導入すればよい。 Note that this equipment uses a single-wafer processing method, so depending on the situation, the processing time for the vacuum baking and boosting cooler sections may become long, which may upset the balance of processing times with other sections. There may also be cases where high throughput cannot be achieved. In such a case,
The vacuum baking and boosting coolers are arranged, for example, in a circle or in parallel, and an appropriate delay time is set in consideration of the processing time of other parts and the baking/cooling processing time, and the process is carried out in a circle or in parallel. By performing the baking and cooling processes, it is possible to increase the throughput of the entire apparatus. Furthermore, it is also possible to increase the size of the vacuum bake/boost cooler within a predetermined allowable range, and apply a batch processing method to only that part. In addition, in the vacuum baking and pressure boosting coolers mentioned above, the pressure and temperature of the baking chamber and cooling chamber are adjusted depending on the solvent and baking temperature of the resist to be processed and the type of cooling refrigerant used. It is desirable that the mechanical strength, airtightness, and heat resistance of the container be sufficiently high. Alternatively, the heater for resist baking may be taken out of the baking chamber and the resist may be heated from outside through an infrared transmitting material. In this case, the infrared transmitting portion will be provided at a predetermined location on the equipment constituting the baking chamber of the baking/cooling device, but it goes without saying that sufficient consideration must be given to mechanical strength and airtightness. Also, from the baking temperature Tb to the rapid cooling start temperature
The first cooling to Tm may proceed in parallel with the process of increasing the pressure in the bake/cooler from a reduced pressure state to a predetermined pressure after resist baking.
In order to quickly perform the first cooling, a liquid refrigerant at an intermediate cooling temperature Tm may be further added to the bake cooler to perform rapid cooling from the bake temperature Tb to Tm. Of course, it is important to perform rapid cooling in this case after adjusting the pressure state so that the boiling point of the liquid refrigerant exceeds Tm. The transport form of the substrate to be processed does not need to be limited to the above-mentioned form, and the most suitable form for the processing apparatus may be introduced.
要するに本発明のレジストパターン形成方法及
びレジスト処理装置は、その要旨を逸脱しない範
囲で、種々変形応用が可能である。 In short, the resist pattern forming method and resist processing apparatus of the present invention can be modified and applied in various ways without departing from the gist thereof.
第1図は従来のレジストパターン形成工程を概
略的に示す流れ作業図、第2図は従来工程におけ
るレジストベーク後の被処理基板の各点の温度変
化の様子を等温曲線で示す模式図、第3図は前記
温度変化の様子を時間対温度曲線で示す特性図、
第4図は本発明によるレジストパターン形成工程
を概略的に示す流れ作業図、第5図は本発明にお
けるレジスト冷却時の基板温度変化を示す特性
図、第6図(a),(b)は本発明の方法によつて得られ
るレジスト感度に関する特性図、第7図は本発明
の方法実施に適合するレジスト処理装置の一例を
示す概略構成図である。
71a〜71e……被処理基板、72a〜72
b……カセツト、73a,73b……ベルトコン
ベア、74a〜74d……真空チヤツク搬送器、
75……回転台、76……レジスト滴下ノズル、
77……減圧ベーク・昇圧冷却器、78……基板
支持具、79……ヒーター、80……ベーク室、
81……液体冷媒、82……冷却室、83……開
閉バルブ、84a,84b……開閉バルブ、85
a……減圧用管、85b……昇圧用管、85c…
…リーク用管、86a〜86c……開閉バルブ、
87a……冷媒注入管、87b……冷媒排出管、
88a,88b……開閉バルブ、89……回転
台。
Figure 1 is a flowchart schematically showing a conventional resist pattern forming process, Figure 2 is a schematic diagram showing isothermal curves of temperature changes at various points on the substrate after resist baking in the conventional process; Figure 3 is a characteristic diagram showing the state of the temperature change as a time vs. temperature curve;
FIG. 4 is a flowchart schematically showing the resist pattern forming process according to the present invention, FIG. 5 is a characteristic diagram showing substrate temperature changes during resist cooling in the present invention, and FIGS. 6(a) and (b) are FIG. 7 is a characteristic diagram regarding the resist sensitivity obtained by the method of the present invention, and is a schematic configuration diagram showing an example of a resist processing apparatus suitable for carrying out the method of the present invention. 71a to 71e...Substrates to be processed, 72a to 72
b...cassette, 73a, 73b...belt conveyor, 74a to 74d...vacuum chuck conveyor,
75...Rotating table, 76...Resist dripping nozzle,
77... Decompression bake/boost cooler, 78... Substrate support, 79... Heater, 80... Bake chamber,
81... Liquid refrigerant, 82... Cooling chamber, 83... Opening/closing valve, 84a, 84b... Opening/closing valve, 85
a...Pipe for pressure reduction, 85b...Pipe for pressure increase, 85c...
...Leak pipe, 86a-86c...Opening/closing valve,
87a...refrigerant injection pipe, 87b...refrigerant discharge pipe,
88a, 88b...opening/closing valve, 89...rotating table.
Claims (1)
たのち冷却し、さらに所定波長の電磁波或いは所
定エネルギーの粒子線を上記レジストに選択的に
照射し、現像処理を施すことによりレジストパタ
ーンを形成する方法において、前記レジストのベ
ークを該レジストのガラス転移温度Tg以上の所
定温度Tbにて行い、次いで前記基板を上記温度
Tbから任意の中間温度Tmまで徐冷し、しかる
のち前記電磁波或いは粒子線の照射の前に、常圧
よりも高く且つ沸点がTm以上となる圧力下にあ
る所定温度Tcの冷却用液体に前記レジスト付基
板を浸漬して、上記レジストを最終冷却温度Tc
まで急速冷却することを特徴とするレジストパタ
ーン形成方法。 2 前記各温度Tg,Tb,Tm,Tcは、Tb>Tm
>Tg>Tcなる関係を満たすことを特徴とする特
許請求の範囲第1項記載のレジストパターン形成
方法。 3 前記レジストのベークを、常圧以下の圧力下
で行うことを特徴とする特許請求の範囲第1項記
載のレジストパターン形成方法。 4 前記基板の前記冷却用液体中への浸漬を、前
記レジストの徐冷終了時から3秒以内に行うこと
を特徴とする特許請求の範囲第3項記載のレジス
トパターン形成方法。 5 前記レジストのベーク及び徐冷を、同一の加
熱室内で行うことを特徴とする特許請求の範囲第
1項記載のレジストパターン形成方法。 6 被処理基板上に塗布されたレジストをベーク
したのち冷却するレジスト処理装置において、前
記基板を収容し該基板を常圧以下の圧力下でレジ
ストのガラス転移温度Tg以上の温度Tbまで加熱
すると共に、加熱した基板を徐冷し該基板の温度
を加熱温度Tbから中間温度Tmまで下降せしめ
る加熱室と、この加熱室にゲートバルブを介して
連設され上記加熱徐冷した基板を浸漬されて該基
板を冷却する冷却用液体が収容され、且つその内
部を常圧よりも高く該液体の沸点が前記温度Tm
以上となる圧力下に保持する冷却室とを具備して
なることを特徴とするレジスト処理装置。[Scope of Claims] 1. By applying a resist onto a substrate to be processed, baking it, cooling it, and then selectively irradiating the resist with an electromagnetic wave of a predetermined wavelength or a particle beam of a predetermined energy, and performing a development process. In the method of forming a resist pattern, the resist is baked at a predetermined temperature Tb higher than the glass transition temperature Tg of the resist, and then the substrate is heated to the temperature Tg.
The cooling liquid is slowly cooled from Tb to an arbitrary intermediate temperature Tm, and then, before the electromagnetic wave or particle beam irradiation, the cooling liquid is heated to a predetermined temperature Tc under a pressure higher than normal pressure and whose boiling point is higher than Tm. Immerse the resist-coated substrate and cool the resist to the final cooling temperature Tc.
A resist pattern forming method characterized by rapid cooling until the temperature reaches 100. 2 The above temperatures Tg, Tb, Tm, Tc are Tb>Tm
The resist pattern forming method according to claim 1, characterized in that the following relationship is satisfied: >Tg>Tc. 3. The resist pattern forming method according to claim 1, wherein the resist is baked under a pressure that is lower than normal pressure. 4. The resist pattern forming method according to claim 3, wherein the substrate is immersed in the cooling liquid within 3 seconds from the end of slow cooling of the resist. 5. The resist pattern forming method according to claim 1, wherein baking and slow cooling of the resist are performed in the same heating chamber. 6. In a resist processing apparatus that bakes and then cools the resist coated on the substrate to be processed, the substrate is accommodated and heated to a temperature Tb higher than the glass transition temperature Tg of the resist under a pressure lower than normal pressure. , a heating chamber for slowly cooling the heated substrate and lowering the temperature of the substrate from the heating temperature Tb to an intermediate temperature Tm; and a heating chamber connected to this heating chamber via a gate valve, in which the heated and slowly cooled substrate is immersed. A cooling liquid for cooling the substrate is contained, and the boiling point of the liquid is at a temperature higher than normal pressure.
A resist processing apparatus characterized by comprising a cooling chamber that is maintained under the above pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58106173A JPS59231814A (en) | 1983-06-14 | 1983-06-14 | Resist pattern formation and resist processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58106173A JPS59231814A (en) | 1983-06-14 | 1983-06-14 | Resist pattern formation and resist processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59231814A JPS59231814A (en) | 1984-12-26 |
JPH0465525B2 true JPH0465525B2 (en) | 1992-10-20 |
Family
ID=14426856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58106173A Granted JPS59231814A (en) | 1983-06-14 | 1983-06-14 | Resist pattern formation and resist processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59231814A (en) |
-
1983
- 1983-06-14 JP JP58106173A patent/JPS59231814A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59231814A (en) | 1984-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR860002082B1 (en) | Forming method and apparatus of resistor pattern | |
JPH0546091B2 (en) | ||
JPH0480531B2 (en) | ||
US4897337A (en) | Method and apparatus for forming resist pattern | |
JPS60117626A (en) | Forming method of resist pattern and processing device for resist | |
JPH0465525B2 (en) | ||
JPS59132128A (en) | Method and apparatus for forming resist pattern | |
JPS60176236A (en) | Resist processing device | |
JPS59132618A (en) | Method and apparatus for forming resist pattern | |
JPH0465524B2 (en) | ||
JPH0586642B2 (en) | ||
JPS6189632A (en) | Formation of resist pattern | |
JPH0715872B2 (en) | Resist pattern formation method | |
JPS60157224A (en) | Resist pattern forming method and resist treating apparatus | |
JPH0746676B2 (en) | Resist pattern formation method | |
JPS61147528A (en) | Resist treating device | |
JPH0464171B2 (en) | ||
JPS60157223A (en) | Resist pattern forming method and resist treating apparatus | |
JPS61156814A (en) | Method and apparatus for resist baking | |
JPS59195828A (en) | Formation of resist pattern and resist processing apparatus | |
JPS59132619A (en) | Method and apparatus for forming resist pattern | |
JPS61147527A (en) | Formation of resist pattern | |
JPS60157225A (en) | Resist pattern forming method | |
JPS6042829A (en) | Formation of resist pattern | |
JPS60157226A (en) | Resist pattern forming method and resist treating apparatus |