[go: up one dir, main page]

JPH0464254B2 - - Google Patents

Info

Publication number
JPH0464254B2
JPH0464254B2 JP62088374A JP8837487A JPH0464254B2 JP H0464254 B2 JPH0464254 B2 JP H0464254B2 JP 62088374 A JP62088374 A JP 62088374A JP 8837487 A JP8837487 A JP 8837487A JP H0464254 B2 JPH0464254 B2 JP H0464254B2
Authority
JP
Japan
Prior art keywords
thickness
conductive material
food
laminate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62088374A
Other languages
Japanese (ja)
Other versions
JPS63252734A (en
Inventor
Tsunehisa Namiki
Masao Sugyama
Tadahiko Kuzura
Tamio Fujiwara
Masao Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP62088374A priority Critical patent/JPS63252734A/en
Publication of JPS63252734A publication Critical patent/JPS63252734A/en
Publication of JPH0464254B2 publication Critical patent/JPH0464254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • B65D81/3453Rigid containers, e.g. trays, bottles, boxes, cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3439Means for affecting the heating or cooking properties
    • B65D2581/3455Packages having means for improving the internal circulation of air
    • B65D2581/3456Means for holding the contents at a distance from the base of the package, e.g. raised islands or protrusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Package Specialized In Special Use (AREA)
  • Wrappers (AREA)
  • Baking, Grill, Roasting (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はマイクロ波加熱により食品を調理する
ときに使用される食品容器に関し、特に食品を均
一に加熱し、または外面を特に強く加熱するため
の食品容器に関する。 〔従来の技術〕 マイクロ波による食品の加熱は内部より加熱す
るものであつて、食品の外面は周囲の空気や容器
により冷やされて加熱されにくい。しがたつて食
品の外面が充分に調理されないことがあり、また
調理が既に行われているものであつても外面が冷
たい食品は食するときに快よいものでない。また
従来の調理法では火が使われていたため食品の外
面はこがされており人々はこのような食品を好む
ようになつている。更に、食品の外面を強く加熱
すると好ましい香りを発する。そのため従来マイ
クロ波で食品を調理するとき容器により食品を加
熱する方法が行われていた。 このような容器としてマイクロ波を吸収する磁
器の容器が知られている。しかしながらこのよう
な容器は高価でありまた重いため使い捨て用のレ
トルト食品容器には適さないとき、容器が加熱さ
れて冷えにくいため調理後電子レンジから取出す
のに不便である等の欠点があつた。またプラスチ
ツクシートと導電性物質とからなる積層体でこの
ような容器を作る技術も示されている(特公昭60
−15548)。このような導電性物質の層はプラスチ
ツクシート上にアルミ等の金属を蒸着して形成さ
れるが、金属は電気抵抗が小さいためそれによつ
て形成される層の表面抵抗率は小さくなり、充分
な加熱が行われにくい。金属層の厚みを薄くすれ
ば表面抵抗率が大きくなり加熱速度も増大するが
そのためには金属層の厚みは例えば40Å程度にし
なければならず、これを真空蒸着法により安定し
て製造することは困難(プラスチツクシートの全
面に均一厚さで形成することが困難)であるとい
う問題があつた。 〔発明が解決しようとする問題点〕 本発明は前記従来技術による電子レンジ調理用
容器の問題点を解決するためになされたもので、
レトルト食品等の使捨て容器に適し、また製造コ
ストも安く安定して製造することが可能であり、
しかもも食品外面を充分に加熱することが可能な
電子レンジ調理用容器を提供することを目的とす
る。 〔問題点を解決するための手段〕 紙やプラスシート等の絶縁体の比較的厚い母材
又は薄いプラスチツクシート等の絶縁体の保護シ
ートに、金属元素等の導電性物質を厚み分布が微
細縞模様をを形成するように積層し、このように
して形成されている積層体を容器形状に成形して
電子レンジ用食品容器を作る。上記導電性物質の
の微細縞模様の第1の具体例は第2図、第3図に
示すように格子縞として形成される。 例えば、このような格子縞模様は絶縁体のシー
トに金属製網でマスキングをして導電性物質を蒸
着し正方形が多数整列した形状の厚層部が形成さ
れ、次にマスキングを外し全体に導電性物質を蒸
着することにより格子状の薄層部が形成されて厚
み分布が微細縞模様を形成する導電性物質の層が
作られる。本発明の目的を達成するためには上記
薄層部の厚みは20Å以上80Å未満であり上記厚層
部の正方形の一辺は5mm以下であることが必要で
ある。 前記導電性物質の微細縞模様の第2の具体例は
表面粗さがRZ=2〜40μである絶縁体シートの面
に導電性物質を蒸着することにより得られる。凹
凸のある面に物質を蒸着すると、第4図に示すよ
うに蒸着物質の層は厚い部分と薄い部分が交互に
現れる縞模様となる。本発明の目的を達成するた
めには導電性物質の蒸着層の表面抵抗率は12Ω平
方乃至1500Ω/平方であり、導電性物質の平均厚
みより計算される見掛けの抵抗率が導電性物質の
真の抵抗率の23倍乃至500倍であることが必要で
ある。 〔作用〕 導電性物質がマイクロ波に曝されると電流が流
れジユール熱により発熱する。導電性物質が絶縁
体の表面に均一の厚みで積層されている場合の表
面単位面積当りの発熱量は導電性物質の抵抗率と
積層厚みとの関数であり、アルミのような抵抗率
の小さい物質の場合は積層厚みを40Å程度にきわ
めて薄くしなければ大きい発熱量が得られない。
ところが積層の厚み分布を厚薄交互に現われる微
細縞模様に形成すると薄い部分の厚さを20Å〜80
Åの範囲で蒸着することが可能であり、しかも積
層の平均厚みを大きくしても表面単位面積当りに
非常に大きい発熱量が得られることが見出され
た。2次元的に厚みが変化している導電性物質層
の発熱量を数学的に算出することは困難であるが
以下に述べる実施例において実験により得られた
結果を明らかにする。 〔実施例および比較例〕 以下本発明の実施例および比較例を図面を参照
しながら説明する。第1図に示すように、プラス
チツクまたは紙の母材シート2の表面に金属アル
ミニウムが厚み分布において微細縞模様を形成す
るように蒸着された導電性物質3がが積層され、
その上にプラスチツク製の保護シート4が接着さ
れて積層体5が形成される。積層体5は成形され
て容器1が作られる。この容器1内に調理用の食
品を入れて電子レンジ内で加熱すると、導電性物
質層3は発熱して食品の容器接触部分が強く加熱
される。従つて食品の容器接触部分にはこげめが
生じまた香を発するようになる。 導電性物質層はその形状によつては火花放電を
発生したり、その発熱量も形状により異なるので
以下に種々の導電性物質の形状についての実験の
結果を示す。なお実施例として示したものは本発
明の実施態様の条件に適合するものであり、比較
例として示したものはその条件に適合しないもの
である。 実験 1 第2図および第3図に示すように、厚み50μの
2軸延伸ポリエチレンテレフタレートフイルム
(PET)2上をメツシ80(アメリカメツシユ)
線径0.10mmの網でマスキングして金属アルミニウ
ム3を約700Åの厚みに真空蒸着した。次に網を
除いて金属アルミニウムを全面にtの厚みだけ追
加して蒸着し図に示す積層体を作成した。 従つて図における正方形状の厚い積層部の厚み
Tは700Å+tとなつている。なおアルミニウム
の蒸着厚みは次のようにして測定した。 平滑なガラス板の一部をマスキングしこれを上
記の蒸着を行うときに試料と蒸着条件が同一とな
る場所に置き蒸着終了後マスキングを外し蒸着端
部の段差を繰り返し反射干渉法により測定しその
値を蒸着されたアルミニウム層を厚みとした。以
後蒸着の厚みは同様の方法で測られた。 図の積層体に厚み12μの2軸延伸ポリエチレン
テレフタレートフイルム(PET)を接着剤によ
り接着し、PET/接着剤/アルミニウム/PET
の順に積層体を作りこれを実験用の発熱体とし
た。 市販電子レンジ〔松下電気産業(株)製、ナシヨナ
ル電子レンジNE−M200、使用周波数2450MHz、
出力500W)内に高さ3cmのテフロン台を置きそ
の上に上記発熱体(種々のtすなわち導電物質の
薄い部分の厚さのものについて)および市販の冷
凍ギヨーザをのせ70秒間のマイクロ波照射による
発熱体の変化およびぎようざのこげおよび硬化状
態(クリスピー性)を観察した。この結果を表1
に示す。
[Industrial Application Field] The present invention relates to a food container used when cooking food by microwave heating, and more particularly to a food container for uniformly heating the food or heating the outer surface particularly strongly. [Prior Art] When heating food using microwaves, the food is heated from the inside, and the outside surface of the food is cooled by the surrounding air and the container, making it difficult to heat the food. Over time, the outer surface of the food may not be fully cooked, and even if the food has already been cooked, the outer surface of the food may not be as pleasant to eat. Also, since traditional cooking methods used fire, the outside of the food was burnt, and people have come to prefer this type of food. Additionally, intense heating of the outer surface of the food produces a pleasant aroma. For this reason, conventionally, when cooking food using microwaves, a method was used in which the food was heated in a container. A porcelain container that absorbs microwaves is known as such a container. However, such containers are expensive and heavy, so they are not suitable for disposable retort food containers, and they have drawbacks such as the container being heated and difficult to cool, making it inconvenient to remove it from the microwave oven after cooking. A technique for making such a container using a laminate made of plastic sheets and conductive materials has also been demonstrated (Special Publication Publication in 1983).
−15548). A layer of such a conductive material is formed by vapor depositing a metal such as aluminum on a plastic sheet, but since metal has a low electrical resistance, the surface resistivity of the layer formed by it is low, and it is necessary to Heating is difficult. Reducing the thickness of the metal layer increases the surface resistivity and increases the heating rate, but in order to do so, the thickness of the metal layer must be, for example, approximately 40 Å, and it is difficult to stably manufacture this by vacuum evaporation. There was a problem in that it was difficult to form a uniform thickness over the entire surface of the plastic sheet. [Problems to be Solved by the Invention] The present invention has been made to solve the problems of the microwave cooking container according to the prior art.
It is suitable for disposable containers such as retort food, and can be manufactured stably at low manufacturing costs.
Moreover, it is an object of the present invention to provide a microwave cooking container capable of sufficiently heating the outer surface of food. [Means for solving the problem] A conductive material such as a metal element is coated with fine stripes in the thickness distribution on a relatively thick base material of an insulator such as paper or plastic sheet, or on a protective sheet of an insulator such as a thin plastic sheet. The laminates are laminated to form a pattern, and the laminate thus formed is formed into a container shape to produce a microwave food container. A first specific example of the fine striped pattern of the conductive material is formed as a checkered pattern as shown in FIGS. 2 and 3. For example, such a checkered pattern is created by masking an insulating sheet with a metal mesh and depositing a conductive material to form a thick layer with a large number of squares arranged in a row.Then, the masking is removed and the entire surface is made conductive. By vapor depositing the material, a lattice-like thin layer is formed to create a layer of conductive material whose thickness distribution forms a fine striped pattern. In order to achieve the object of the present invention, the thickness of the thin layer portion must be 20 Å or more and less than 80 Å, and each side of the square of the thick layer portion must be 5 mm or less. A second example of the fine striped pattern of the conductive material is obtained by depositing the conductive material on the surface of an insulating sheet having a surface roughness of R Z =2 to 40 μm. When a material is deposited on an uneven surface, the layer of the deposited material takes on a striped pattern with alternating thick and thin parts, as shown in FIG. In order to achieve the purpose of the present invention, the surface resistivity of the vapor-deposited layer of the conductive material is 12Ω squared to 1500Ω/square, and the apparent resistivity calculated from the average thickness of the conductive material is the true value of the conductive material. It is necessary that the resistivity is 23 to 500 times that of . [Operation] When a conductive substance is exposed to microwaves, a current flows and generates heat due to Joule heat. When a conductive material is laminated with a uniform thickness on the surface of an insulator, the amount of heat generated per unit area of the surface is a function of the resistivity of the conductive material and the laminated thickness. In the case of materials, a large amount of heat generation cannot be obtained unless the laminated layer thickness is extremely thin, around 40 Å.
However, when the thickness distribution of the laminated layer is formed into a fine striped pattern that appears alternately between thick and thin layers, the thickness of the thin part becomes 20 Å to 80 Å.
It has been found that it is possible to perform vapor deposition in the range of .ANG., and that even if the average thickness of the laminated layer is increased, a very large amount of heat generation can be obtained per unit area of the surface. Although it is difficult to mathematically calculate the amount of heat generated by a conductive material layer whose thickness changes two-dimensionally, the results obtained through experiments will be clarified in the following examples. [Examples and Comparative Examples] Examples and comparative examples of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a conductive material 3 is laminated on the surface of a base material sheet 2 of plastic or paper, in which metallic aluminum is vapor-deposited so as to form a fine striped pattern in the thickness distribution.
A plastic protective sheet 4 is adhered thereon to form a laminate 5. The laminate 5 is molded to make the container 1. When food to be cooked is placed in the container 1 and heated in a microwave oven, the conductive material layer 3 generates heat and the portion of the food that comes into contact with the container is strongly heated. Therefore, the part of the food that comes into contact with the container becomes burnt and emits an odor. The conductive material layer may generate spark discharge depending on its shape, and the amount of heat generated varies depending on the shape, so the results of experiments on various shapes of the conductive material are shown below. It should be noted that the examples shown are those that meet the conditions of the embodiment of the present invention, and those shown as comparative examples are those that do not meet the conditions. Experiment 1 As shown in Figures 2 and 3, a 50μ thick biaxially stretched polyethylene terephthalate film (PET) 2 was covered with mesh 80 (American mesh).
Metal aluminum 3 was vacuum-deposited to a thickness of about 700 Å by masking with a wire mesh having a diameter of 0.10 mm. Next, metal aluminum was deposited on the entire surface, excluding the mesh, by an additional thickness of t, to produce the laminate shown in the figure. Therefore, the thickness T of the square-shaped thick laminated portion in the figure is 700 Å+t. The thickness of aluminum vapor deposition was measured as follows. A part of the smooth glass plate was masked and placed in a place where the deposition conditions were the same as the sample during the above deposition, and after the deposition was completed, the masking was removed and the step at the end of the deposition was repeatedly measured using reflection interferometry. The value was taken as the thickness of the deposited aluminum layer. Subsequent deposition thicknesses were measured in the same manner. A biaxially stretched polyethylene terephthalate film (PET) with a thickness of 12μ is adhered to the laminate shown in the figure using an adhesive.
A laminate was made in this order and used as a heating element for experiments. Commercially available microwave oven [Manufactured by Matsushita Electric Industrial Co., Ltd., National Microwave Oven NE-M200, operating frequency 2450MHz,
A Teflon table with a height of 3 cm was placed in a chamber (with an output of 500 W), and the heating elements described above (of various thicknesses, i.e., those with the thickness of the thin part of the conductive material) and a commercially available freezing gyoza were placed on top of the table and heated by microwave irradiation for 70 seconds. Changes in the heating element and burnt and hardened state (crispyness) of the pickled vegetables were observed. The results are shown in Table 1.
Shown below.

【表】 実施例1,2,3では良好な結果が得られた。
比較例1ではぎようざの外面は加熱されず比較例
2では発熱体で火花放電が発生した。 実施 2 金属アルミニウムの厚い部分の厚みを750Å、
薄い部分の厚みを50Åとし、厚い部分の正方形の
一辺の長さ(格子間距離l)を種々に変化させ他
の条件は実験1と同様にして加熱試験を行つた。
結果を表2に示す。
[Table] Good results were obtained in Examples 1, 2, and 3.
In Comparative Example 1, the outer surface of the pickpocket was not heated, and in Comparative Example 2, spark discharge occurred at the heating element. Implementation 2 The thickness of the thick part of metal aluminum is 750Å,
A heating test was conducted under the same conditions as in Experiment 1, with the thickness of the thin part being 50 Å, and the length of one side of the square of the thick part (interstitial distance l) being varied.
The results are shown in Table 2.

【表】 比較例3,4では発熱体で火花放電が発生しそ
の近傍のぎようざが炭化した。他の部分は良好な
加熱が行われなかつた。一方実施例4〜8では火
花放電は発生せず、加熱状態も良好であつた。 実験 3 2種類の表面粗さ(RZ=5.4μおよびRZ=0.1μ以
下)の絶縁体シート上に金属アルミニウムを種々
の厚みに真空蒸着して形成された積層体について
表面抵抗率および見掛の抵抗率(ρ′Ω・m)とパ
ルクの抵抗率(ρΩ・m)との比を測定し、実験
1,2で用いられた電子レンジを用いて加熱試験
を行つた。この実験において絶縁体シートの表面
粗さRZはJISBO601の10点平均粗さ測定法により
測定された。 また、表面抵抗率ρ0(Ω/口)はJISC2316の金
属膜抵抗試験法に準じて測定した。 蒸着膜の見掛の抵抗率ρ′(Ω・m)は式ρ′=ρ0
×
tで算出された。ここにtは蒸着膜の平均蒸着厚
みである。なお金属アルミニウムの抵抗率(バル
ク)は2.75×10-8Ω・mである。加熱試験は第5
図に示す装置により行われた。図において11は
電子レンジ、8はテフロン台、5は上記積層体で
あり、6はぎようざの皮である。ぎようざの皮6
と積層体5の界面温度が測温体7(LUXTRON
社製、Fluoroptic Thermometer Temperature
Probe(LSA)〕および温度計9と記録計10によ
り測定された。このようにしてぎようざの皮の外
面が室温から200℃迄に昇温するために必要なマ
イクロ波照射時間が測られ積層体の加熱性能が判
断された。結果を表3および表4に示す。
[Table] In Comparative Examples 3 and 4, spark discharge occurred in the heating element, and the charcoal in the vicinity of the spark discharge was carbonized. Other parts were not heated well. On the other hand, in Examples 4 to 8, no spark discharge occurred and the heating conditions were good. Experiment 3 Surface resistivity and evaluation were performed on laminates formed by vacuum-depositing metallic aluminum to various thicknesses on insulating sheets with two types of surface roughness (R Z = 5.4 μ and R Z = 0.1 μ or less). The ratio of the resistivity of the bulk (ρ'Ω·m) to the resistivity of the bulk (ρΩ·m) was measured, and a heating test was conducted using the microwave oven used in Experiments 1 and 2. In this experiment, the surface roughness R Z of the insulating sheet was measured by the 10-point average roughness measurement method of JISBO601. Further, the surface resistivity ρ 0 (Ω/hole) was measured according to the metal film resistance testing method of JISC2316. The apparent resistivity ρ′ (Ω・m) of the deposited film is expressed by the formula ρ′=ρ 0
×
Calculated at t. Here, t is the average deposition thickness of the deposited film. Note that the resistivity (bulk) of metal aluminum is 2.75×10 −8 Ω·m. The heating test is the fifth
The experiment was carried out using the apparatus shown in the figure. In the figure, 11 is a microwave oven, 8 is a Teflon stand, 5 is the above-mentioned laminate, and 6 is a piece of leather. Giyoza skin 6
The interface temperature between the temperature sensing element 7 (LUXTRON
Fluoroptic Thermometer Temperature
Probe (LSA)], a thermometer 9, and a recorder 10. In this way, the microwave irradiation time required to raise the temperature of the outer surface of the Giyoza skin from room temperature to 200°C was measured, and the heating performance of the laminate was determined. The results are shown in Tables 3 and 4.

【表】【table】

【表】 比較例6〜5では火花放電が発生し安定した温
度測定が不可能であつた。実施例9〜13より蒸着
Al層の厚み290Åで最も加熱性能が高くなること
が分る。蒸着厚み290Åは真空蒸着が容易に安定
して行われる厚みである。 実験 4 種々の絶縁体シートを用い実験3と同様の試験
を行つた。なお金属アルミニウムの蒸着厚みは
290Åである。結果を表5に示す。
[Table] In Comparative Examples 6 and 5, spark discharge occurred and stable temperature measurement was impossible. Vapor deposition from Examples 9 to 13
It can be seen that the heating performance is highest when the Al layer thickness is 290 Å. The evaporation thickness of 290 Å is a thickness at which vacuum evaporation can be easily and stably performed. Experiment 4 A test similar to Experiment 3 was conducted using various insulating sheets. The thickness of metal aluminum vapor deposition is
It is 290Å. The results are shown in Table 5.

【表】 実施例のものは比較例と比べ加熱性能がすぐれ
ていることが分る。 実験 5 種々の表面粗さの紙材に金属アルミニウムを蒸
着しその上に厚み12μの2軸延伸ポリエチレンテ
レフタレートフイルムを接着材を用いて接着した
積層体を作り、この積層体でトレーを作成した。
トレーのサイズは5×10cm、深さ2cmでありトレ
ーの底部のみに金属アルミニウムが蒸着されてい
る。 このトレーの中に市販の冷凍ぎようざを入れ、
実験1で用いた電子レンジにより70秒加熱した。
結果を表6に示す。
[Table] It can be seen that the heating performance of the example is superior to that of the comparative example. Experiment 5 Metallic aluminum was deposited on paper materials with various surface roughnesses, and a biaxially stretched polyethylene terephthalate film with a thickness of 12 μm was adhered thereon using an adhesive to create a laminate, and a tray was made from this laminate.
The size of the tray is 5 x 10 cm and 2 cm deep, and metal aluminum is vapor-deposited only on the bottom of the tray. Place commercially available frozen gyoza in this tray,
It was heated for 70 seconds using the microwave oven used in Experiment 1.
The results are shown in Table 6.

【表】 比較例13では実施例19で用いられた紙の表面に
熱硬化性樹脂を塗布し表面粗0.1μとしたものが用
いられた。 実施例のものは良好な加熱性能が示されてい
る。 実験 6 直径6cm、深さ3cmのフランジ付ポリプロピレ
ン製カツプ(内容積約70g)の底部を除く外面全
体に種々のシート材料に金属アルミニウムを蒸着
した積層体を接着して容器を作成した。積層体は
金属アルミニウム蒸着面が接着剤によりカツプ外
面に接着された。 この容器に30%じやがいもデンプン水溶液にヨ
ード染色液を混合した糊液を60g入れ実験1で用
いた電子レンジで30秒間加熱した。 ヨード染色液は約60℃以上になると退色するこ
とから内容物の温度分布を容易に知ることができ
る。加熱試験の結果を表7に示す。
[Table] In Comparative Example 13, the paper used in Example 19 was coated with a thermosetting resin to give a surface roughness of 0.1μ. The examples show good heating performance. Experiment 6 A container was made by gluing a laminate of various sheet materials with metal aluminum vapor-deposited onto the entire outer surface of a flanged polypropylene cup (inner volume: about 70 g) with a diameter of 6 cm and a depth of 3 cm (approximately 70 g). The metal aluminum evaporated side of the laminate was adhered to the outer surface of the cup with an adhesive. Into this container was placed 60 g of a paste solution made by mixing a 30% aqueous potato starch solution with an iodine dyeing solution and heated for 30 seconds in the microwave oven used in Experiment 1. Since the iodine staining solution fades when the temperature exceeds about 60°C, the temperature distribution of the contents can be easily determined. The results of the heating test are shown in Table 7.

〔発明の効果〕〔Effect of the invention〕

絶縁体の上に導電性物質を厚薄交互に現われる
微細縞模様に積層することによりマイクロ波加熱
性能の良い積層体を得ることができる。 上記積層体により作られる本発明の電子レンジ
調理用食品容器は導電性物質の厚みが比較的厚い
ため製造が容易であり、また加熱性能も高い。ま
たプラスチツク製の使捨て容器にも応用できる。
By laminating a conductive material on an insulator in a fine striped pattern that appears alternately in thick and thin layers, a laminate with good microwave heating performance can be obtained. The food container for microwave cooking of the present invention made from the above-mentioned laminate is easy to manufacture because the conductive material is relatively thick, and also has high heating performance. It can also be applied to plastic disposable containers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である容器の断面図、
第2図は本発明の実施例を構成する積層体の平面
図、第3図は第2図におけるA−A断面図、第4
図は本発明の他の実施例を構成する積層体の断面
図、第5図は本発明の実施例を構成する積層体の
加熱試験を行う装置の概略図である。 1…容器、2…母材シート、3…導電性物質、
4…保護シート、5…積層体、6…ぎようざの
皮、7…測温体、8…テフロン台、9…温度計、
10…記録計、11…電子レンジ。
FIG. 1 is a sectional view of a container which is an embodiment of the present invention;
FIG. 2 is a plan view of a laminate constituting an embodiment of the present invention, FIG. 3 is a sectional view taken along line A-A in FIG. 2, and FIG.
The figure is a sectional view of a laminate constituting another embodiment of the present invention, and FIG. 5 is a schematic diagram of an apparatus for carrying out a heating test on a laminate constituting an embodiment of the present invention. 1... Container, 2... Base material sheet, 3... Conductive substance,
4... Protective sheet, 5... Laminated body, 6... Giyoza skin, 7... Temperature measuring element, 8... Teflon stand, 9... Thermometer,
10...Recorder, 11...Microwave oven.

Claims (1)

【特許請求の範囲】 1 絶縁体の母材又は絶縁体の保護シートに導電
性物質がが積層されている積層体により作られた
食品容器において、該導電性物質の厚み分布が微
細縞模様を形成していることを特徴とする電子レ
ンジ調理用食品容器。 2 導電性物質の微細縞模様が格子縞であり、導
電性物質の薄い部分の厚さが20Å以上80Å未満で
あり、格子縞の格子間距離が5mm以下である特許
請求の範囲第1項記載の電子レンジ調理用食品容
器。 3 絶縁体の母材または絶縁体の保護シートの表
面粗さRZが2μ乃至40μである面に直接に、導電性
物質が平均厚みより計算される見掛けの抵抗率が
バルクの抵抗率の23倍乃至500倍となり、表面抵
抗率が12Ω/平方乃至1500Ω/平方となるように
積層されている特許請求の範囲第1項記載の電子
レンジ調理用食品容器。
[Claims] 1. A food container made of a laminate in which a conductive substance is laminated on an insulator base material or an insulator protective sheet, in which the thickness distribution of the conductive substance has a fine striped pattern. A food container for cooking in a microwave oven, characterized in that: 2. The electronic device according to claim 1, wherein the fine striped pattern of the conductive material is a lattice stripe, the thickness of the thin part of the conductive material is 20 Å or more and less than 80 Å, and the distance between the lattice stripes is 5 mm or less. Food containers for microwave cooking. 3. Directly on the surface of the insulator base material or the insulator protective sheet whose surface roughness R Z is 2μ to 40μ, the apparent resistivity calculated from the average thickness of the conductive material is 23% of the bulk resistivity. 2. The food container for microwave cooking according to claim 1, which is laminated to have a surface resistivity of 12 Ω/square to 1500 Ω/square.
JP62088374A 1987-04-10 1987-04-10 Microwave cooking food containers Granted JPS63252734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088374A JPS63252734A (en) 1987-04-10 1987-04-10 Microwave cooking food containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088374A JPS63252734A (en) 1987-04-10 1987-04-10 Microwave cooking food containers

Publications (2)

Publication Number Publication Date
JPS63252734A JPS63252734A (en) 1988-10-19
JPH0464254B2 true JPH0464254B2 (en) 1992-10-14

Family

ID=13941016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088374A Granted JPS63252734A (en) 1987-04-10 1987-04-10 Microwave cooking food containers

Country Status (1)

Country Link
JP (1) JPS63252734A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1313231C (en) * 1987-11-18 1993-01-26 Richard M. Keefer Microwave heating
ES2965758T3 (en) * 2006-05-15 2024-04-16 Graphic Packaging Int Llc Microwave heating tray

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227307A (en) * 1986-03-28 1987-10-06 大日本印刷株式会社 Food container for microwave cooking

Also Published As

Publication number Publication date
JPS63252734A (en) 1988-10-19

Similar Documents

Publication Publication Date Title
US4825025A (en) Food receptacle for microwave cooking
US4904836A (en) Microwave heater and method of manufacture
US5079397A (en) Susceptors for microwave heating and systems and methods of use
US5343024A (en) Microwave susceptor incorporating a coating material having a silicate binder and an active constituent
JP3964869B2 (en) Patterned microwave susceptor element and microwave container incorporating the same
US4865921A (en) Microwave interactive laminate
EP0287323B1 (en) Fibrous microwave susceptor packaging material
US5041295A (en) Package for crisping the surface of food products in a microwave oven
AU637863B2 (en) Surface heating food wrap with variable microwave transmission
CA2251282C (en) Patterned microwave oven susceptor
JPH06502740A (en) microwave sensitive device
CA1316992C (en) Susceptors for heating in a microwave oven having metallized layer deposited on paper
JP2000142825A (en) Container for heating with microwave oven
EP0442333A2 (en) Reflective temperature compensating microwave susceptors
AU662301B2 (en) Microwave package having a microwave field modifier of discrete electrically conductive elements disposed thereon
WO1988005249A1 (en) Microwave heating
JPH0464254B2 (en)
JPH0512653Y2 (en)
CA2048353A1 (en) Pattern coated microwave field modifier of discrete electrically conductive elements
JPH0998888A (en) Food thawing/heating jig for microwave oven
JPH061810Y2 (en) Laminated material
JPH0381050B2 (en)
JPH01139923A (en) Sheet for scorching foodstuff by microwave heating
JPS63110177A (en) Food vessel for cooking of electronic oven
JPH0546236Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees