[go: up one dir, main page]

JPH0463147B2 - - Google Patents

Info

Publication number
JPH0463147B2
JPH0463147B2 JP60124161A JP12416185A JPH0463147B2 JP H0463147 B2 JPH0463147 B2 JP H0463147B2 JP 60124161 A JP60124161 A JP 60124161A JP 12416185 A JP12416185 A JP 12416185A JP H0463147 B2 JPH0463147 B2 JP H0463147B2
Authority
JP
Japan
Prior art keywords
alloy
amorphous
atomic
magnetic permeability
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60124161A
Other languages
Japanese (ja)
Other versions
JPS61284546A (en
Inventor
Teruhiro Makino
Mikio Nakajima
Tadashi Sasaki
Koichi Mukasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP60124161A priority Critical patent/JPS61284546A/en
Priority to KR1019850007622A priority patent/KR900007666B1/en
Priority to GB08527730A priority patent/GB2167087B/en
Priority to US06/797,238 priority patent/US4743313A/en
Publication of JPS61284546A publication Critical patent/JPS61284546A/en
Publication of JPH0463147B2 publication Critical patent/JPH0463147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は磁気ヘツド用磁性合金に関し、Coを
主成分とする磁気ヘツド用非晶質合金に関するも
のである。 現用磁気ヘツド材料では、パーマロイ、センダ
ストなどの結晶質金属材料及びMu−Znフエライ
ト、Ni−Znフエライトなどの酸化物材料が主と
して使用されている。結晶質金属材料は、酸化物
材料であるフエライトと比較して飽和磁束密度が
高いという利点を有するが、比抵抗が100μΩ・cm
以下と低いため、ビデオテープレコーダ等で使用
される周波数帯域(MHz程度)では透磁率が著し
く低下してしまう。 一方、フエライトは比抵抗が大きく高周波帯域
においても優れた電磁変換特性を示し、さらに高
い耐摩耗性を示すためMu−Zn系がビデオ用映像
ヘツドを中心に使用されている。しかしフエライ
トは飽和磁化が小さいため、記録歪を生じ、雑音
が多い。 一般に高密度記録は、高い周波数を使用帯域と
する。従つて高密度磁気ヘツド用のコア材は、渦
電流損失による透磁率の劣化を防止するため、薄
板化にするか、または比抵抗ρを大きくする必要
がある。センダストは、飽和磁化が大きく比抵抗
もパーマロイと比較して高いが脆弱であるため、
薄板化できない。 近年、結晶構造をもたない非晶質合金におい
て、優れた磁気的性質及び機械的性質が見い出さ
れた。すなわち、非晶質合金は結晶構造をもたな
いことに起因して、比抵抗ρが結晶質の金属合金
に比較して約数倍高く、結晶磁気異方性が無いた
め保磁力が小さく、透磁率も高い。さらにヴイツ
カース硬度も1000程度であり結晶質の金属より高
い。 また磁気歪を零にする組成も基本的にはほぼ解
明され磁気ヘツド用コア材として検討が進められ
ている。 しかし、より高密度記録用の磁気ヘツドコアと
して非晶質合金を用いるには低い周波数域ばかり
でなく、1MHz以上の高周波数帯域で高い透磁率
をもつことが必要である。そのためには 高い比抵抗をもつこと、 高い初透磁率をもつこと、 高い耐摩耗性をもつこと、 高い熱的安定性をもつこと、 高い耐食性をもつこと、 を満足する必要がある。 のいずれも満足する非晶質合金は非
常に狭い組成領域でのみでしか得られないことを
我々は見い出した。 (発明の目的) 本発明は、Co,Fe,Si,Bの4元素の非晶質
合金において上記〜のいずれも満足する組成
領域を開示し、更に、耐食性を付加するために
Cr、また、より耐摩耗性を向上するためにRuを
添加し、そして、この合金中に第2相粒子を分散
したものである。すなわち、本発明は初透磁率が
高く、また比抵抗が高いため1MHz以上の帯域に
おいてもフエライト以上の透磁率を示すととも
に、優れた耐摩耗性及び高い熱的安定性を示す非
晶質合金を提出するものである。 (発明の実施例) 本発明は、組成式(Fe1-a,Coa100-b(Sic
Bdbから成る合金中のc,d,bを限定し、そ
の合金100原子%に対してCrを1.0〜2.0原子%、
及びRuを1.0〜4.0原子%添加した合金中に第2相
粒子を3次元的に均一に分散したものである。な
お式中c+d=1,aは通常磁歪を零にするた
め、0.93〜0.95であることが知られている。 前記合金組成の限定理由は以下の如きである。
まずbの値は半金属(Si,B)の濃度を示すが、
bが27原子%を超えると飽和磁束密度が低下し、
磁気ヘツド用コア材として好ましくない。一方、
半金属濃度が20原子%以下では、透磁率が低下
し、均一な非晶質合金の形成が困難となる。ま
た、40μm以上の厚さの非晶質薄板帯を安定して
得るには、半金属濃度が23原子%以上であること
が必要である。 まずCo−Fe−Si−B系合金の特性について説
明する。 表に示す組成の非晶質合金薄板帯は片ロール液
体急冷法に従い作成された。即ち1つの回転して
いる鋼製ロール上におかれた石英ノズルより溶融
金属をアルゴンガスの圧力により噴出させる。 ロール回転数は500〜2000rpm、噴出ガス圧は
0.1〜1Kg/cm2であつた。作成された薄板は巾約
25mm、厚さ32〜49μm、長さ約20〜30mであつた。
作成されたすべての薄板はX線回折により、非晶
質相であることが確認され、磁歪10-6オーダーで
ほぼ零であつた。結晶化温度はDSC(示差走査型
熱量計)にて決定した。厚さはマイクロメーター
により測定した。透磁率は薄帯より打抜きにして
作成された外径10mm、内径6mmのリングを10枚バ
ラ積みしたものに巻線(1次、2次側それぞれ20
ターン)を処し、インダクタンス法により測定し
た。なお、透磁率は液体急冷された薄帯より得ら
れたリングの状態、及び一部のサンプルを除い
て、そのリングを焼鈍(100℃〜500℃で10分保持
後水焼入れ、保持温度は10℃間隔)した状態につ
いて室温にて測定された。 初透磁率としては3mOe、1KHzにおけるその実
効透磁率を採用した。飽和磁化(σs)はVSMに
て10KOeの磁界で測定した。比抵抗は四端子法
により測定した。
(Technical Field of the Invention) The present invention relates to a magnetic alloy for magnetic heads, and more particularly to an amorphous alloy for magnetic heads containing Co as a main component. Current magnetic head materials mainly include crystalline metal materials such as permalloy and sendust, and oxide materials such as Mu--Zn ferrite and Ni--Zn ferrite. Crystalline metal materials have the advantage of having a higher saturation magnetic flux density than ferrite, which is an oxide material, but have a specific resistance of 100μΩ・cm.
Since the magnetic permeability is as low as below, the magnetic permeability significantly decreases in the frequency band (approximately MHz) used in video tape recorders and the like. On the other hand, ferrite has a large resistivity and exhibits excellent electromagnetic conversion characteristics even in a high frequency band, and also exhibits high wear resistance, so Mu-Zn type materials are mainly used in video heads. However, since ferrite has a low saturation magnetization, recording distortion occurs and there is a lot of noise. Generally, high-density recording uses a high frequency band. Therefore, in order to prevent deterioration of magnetic permeability due to eddy current loss, the core material for a high-density magnetic head needs to be made thinner or have a larger specific resistance ρ. Sendust has a large saturation magnetization and a high resistivity compared to permalloy, but it is also brittle.
Cannot be made thinner. In recent years, excellent magnetic and mechanical properties have been discovered in amorphous alloys that do not have a crystalline structure. That is, because amorphous alloys do not have a crystalline structure, their resistivity ρ is several times higher than that of crystalline metal alloys, and their coercive force is small because they do not have magnetocrystalline anisotropy. It also has high magnetic permeability. Furthermore, its Witzkaas hardness is around 1000, which is higher than that of crystalline metals. In addition, the composition that makes magnetostriction zero has basically been elucidated and is being studied as a core material for magnetic heads. However, in order to use an amorphous alloy as a magnetic head core for higher density recording, it is necessary to have high magnetic permeability not only in the low frequency range but also in the high frequency range of 1 MHz or higher. To achieve this, it is necessary to satisfy the following requirements: high specific resistance, high initial permeability, high wear resistance, high thermal stability, and high corrosion resistance. We have found that an amorphous alloy that satisfies both of these can only be obtained in a very narrow composition range. (Objective of the invention) The present invention discloses a composition range that satisfies all of the above in an amorphous alloy of four elements Co, Fe, Si, and B, and furthermore, in order to add corrosion resistance.
Cr and Ru are added to further improve wear resistance, and second phase particles are dispersed in this alloy. In other words, the present invention uses an amorphous alloy that has a high initial magnetic permeability and a high specific resistance, so it exhibits a magnetic permeability higher than that of ferrite even in a band of 1 MHz or more, and also exhibits excellent wear resistance and high thermal stability. This is to be submitted. (Embodiments of the invention) The present invention has a compositional formula (Fe 1-a , Co a ) 100-b (Si c ,
B d ) Limit c, d, and b in the alloy consisting of b , and add 1.0 to 2.0 atom% of Cr to 100 atom% of the alloy,
The second phase particles are uniformly dispersed three-dimensionally in an alloy to which Ru is added in an amount of 1.0 to 4.0 atomic percent. In the formula, c+d=1, and a is known to be 0.93 to 0.95 in order to normally make the magnetostriction zero. The reasons for limiting the alloy composition are as follows.
First, the value of b indicates the concentration of metalloids (Si, B),
When b exceeds 27 at%, the saturation magnetic flux density decreases,
Not preferred as a core material for magnetic heads. on the other hand,
If the semimetal concentration is less than 20 atomic percent, the magnetic permeability decreases and it becomes difficult to form a uniform amorphous alloy. In addition, in order to stably obtain an amorphous thin plate band with a thickness of 40 μm or more, the semimetal concentration must be 23 atomic % or more. First, the characteristics of the Co-Fe-Si-B alloy will be explained. Amorphous alloy thin plate strips having the compositions shown in the table were prepared according to the single roll liquid quenching method. That is, molten metal is jetted out from a quartz nozzle placed on one rotating steel roll under the pressure of argon gas. The roll rotation speed is 500 to 2000 rpm, and the blowing gas pressure is
It was 0.1-1Kg/ cm2 . The width of the created thin plate is approximately
It was 25 mm, 32-49 μm thick, and about 20-30 m long.
It was confirmed by X-ray diffraction that all the produced thin plates were in an amorphous phase, and the magnetostriction was on the order of 10 -6 and almost zero. The crystallization temperature was determined by DSC (differential scanning calorimeter). Thickness was measured using a micrometer. Magnetic permeability is determined by winding (20 rings each on the primary and secondary sides) a stack of 10 rings with an outer diameter of 10 mm and an inner diameter of 6 mm, punched from thin ribbon.
) and measured using the inductance method. The magnetic permeability is determined by the state of the ring obtained from the liquid-quenched ribbon, and by annealing the ring (holding at 100°C to 500°C for 10 minutes, then water quenching, holding temperature at 10°C). ℃ interval) at room temperature. The initial magnetic permeability was 3mOe, and its effective magnetic permeability at 1KHz was adopted. Saturation magnetization (σ s ) was measured using a VSM in a magnetic field of 10 KOe. Specific resistance was measured by the four-terminal method.

【表】 第1図に比抵抗ρとc/c+dとの関係を示
す。b=23〜27原子%の範囲でρはc/c+dが
大きい方が高い。 第2図は結晶化温度に及ぼすb及びc/c+d
の影響を示す。この関係については、すでに種々
の報告がなされているが、我々の実験ではc/c
+dが約0.65付近で結晶温度の急激な変化が見い
出された。すなわちc/c+d>0.65では結晶化
温度が低くなつてしまう。この事実はすでに報告
されているものと異なつている。 第3図には、100hrあたりの摩耗量とc/c+
dの関係が示している。摩耗量の測定は液体急冷
したアモルフアスより通常のオーデイオタイプの
磁気ヘツドを作成し、市販のカセツトタイプのデ
ツキに装着した後、市販のノーマルテープを用い
て行なつた。また摩耗量はc/c+dが0.2〜0.4
でほぼ一定であり、0.4より大きくなるとしだい
に小さくなり、0.55以上でほぼ一定となる。c/
c+dが0.55以上で良好な耐摩耗量を示すことが
わかる。 第4図に液体急冷されたままの種々の組成をも
つアモルフアスの初透磁率μiとc/c+dの関係
を示す。いずれの場合もbが異なるとμiの値も異
なつてくるが、c/c+dが0.4以下では一定値
をとり、0.4〜0.6で急激に増加し、しだいに高い
一定値に近づく。すなわち液体急冷のままでは
c/c+dが大きい方がμiが高い。より好ましく
はc/c+dが0.55以上が望ましい。 一般にアモルフアス磁性合金の透磁率は適当な
条件での焼鈍により改善されることが知られてい
る。そこで、透磁率に及ぼす焼鈍の効果について
調べた。 第5図は、b=24で種々のc/c+dの組成を
もつアモルフアス合金(No.17〜20)を種々の温度
で10分間焼鈍した後、水焼入れを行ない、その状
態で測定された初透磁率と焼鈍温度の関係を示
す。種々の組成をもつアモルフアス合金における
初透磁率に及ぼす焼鈍温度の影響は類似してお
り、c/c+dが0.5,0.63において高いμiが得ら
れ、焼鈍による初透磁率の改善がこれらの組成で
大きいことが認識された。各サンプルにおける
種々の焼鈍後のμiの最大値を比較し、μiの高い順
にc/c+dをならべると、0.63,0.50,0.67,
0.18であつた。 第6図はb=25場合について第5図と同様にμi
に及ぼす熱処理効果を調べた結果である。各サン
プルにおける種々の焼鈍後のμiの最大値を比較
し、μiの高い順にc/c+dをならべると0.64,
0.60,0.50,0.40,0.68,0.20となる。 第7図は、b=27の場合について第5図と同様
に、μiに及ぼす熱処理効果を調べた結果である。
各サンプルにおける種々の焼鈍後のμiの最大値を
比較し、μiの高い順にc/c+dをならべると
0.63,0.50,0.40,0.20,0.76であつた。 第8図は種々の組成について焼鈍後得られたμi
の最大値とc/c+dとの関係を示す。b=24,
25,27のいずれの場合においてもμiはc/c+d
は約0.6付近で最も大きい値となる。 また、実用材料としての観点から特性のばらつ
きを考慮する必要があり、たとえば熱処理の操作
を考えると広い熱処理温度範囲で高い透磁率が得
られることは作業性、量産性あるいは材料の信頼
性を増す。 第9図はμi>104なる値が得られる焼鈍温度の
範囲(ΔT)を示す。μi=104なる値はヘツドコア
材として必要な値と近いと考えられる。現在、ヘ
ツド用コア材として使用されているパーマロイ、
センダストのμiはほぼこの程度の値である。bが
大きいほどΔTも大きくなるが飽和磁束密度が小
さくなる。c+d=24,25,27の場合いずれも曲
線は類似しており、c/c+dが0.5〜0.65付近
でそれぞれのbについてΔTは大きな値をとる。 さらに(1)〜(24)の合金を高湿度の空気中に放置
し、表面状態を観察し、耐食性を調べた。耐食性
はbの大小にかかわらずc/c+dが大きいほど
良好であつた。 以上述べてきたことをまとめると、以下に示す
ようになる。 比抵抗ρ c/c+d→大 結晶化温度 c/c+d<0.65 耐摩耗性 0.55<c/c+d μi(AsQ) 0.55<c/c+d μi(熱処理後) 0.50<c/c+d<0.65 μi(ΔT) 0.5<c/c+d<0.65 耐食性 c/c+d→大 いずれの条件をも満足するには、 0.55<c/c+d<0.65 である必要がある。 次に、前記主合金にCr及びRu元素を添加した。
これらの元素を添加した合金の製法については前
述の主合金と同様に片ロール液体急冷法に従い作
成した。 Crを添加する理由は耐食性を向上するためで、
前記主合金に対して1.0〜2.0原子%添加した。添
加した合金について塩水噴霧試験(40℃,48時
間)を行い、外部観察した結果、充分な耐食性が
得られた。なお、添加量が1.0原子%より少ない
と効果がなく2.0原子%を超えると飽和磁束密度
が低下してしまう。また、Cr添加により熱処理
後において合金が脆くならないという効果も奏し
た。 Ruについては、添加量が多ければ多い程、よ
り耐摩耗性を向上することができるが、4.0原子
%を超えると合金が非晶質状態になりにくく、ま
た、打抜き加工性も悪くなる。 第10図は、前記表に示した主合金組成サンプ
ル(No.19及び23)にそれぞれ予め1.5原子%のCr
を添加し、更に、Ruを1.0原子%、又は3.0原子%
添加したものについての、走行時間(hr)に対す
る摩耗量(μm)をグラフに表わしたものである。
同図において、19aは主合金組成サンプル(No.
19)にCrのみを1.5原子%添加したもの、19b
は同サンプル(No.19)にCrを1.5原子%、Ruを1.0
原子%加えたもの、19cは同サンプル(No.19)
にCrを1.5原子%、Ruを3.0原子%加えたものをそ
れぞれ示している。また、同様に、23aは主合
金組成サンプル(No.23)にCrのみを1.5原子%添
加したもの、23bはCrを1.5原子%、Ruを1.0原
子%、23cはCrを1.5原子%、Ruを3.0原子%加
えたものである。図から明らかなように、19a
〜cと23a〜cとの間で耐摩耗の差はなく、何
れの主合金組成においてもRuの添加量が増大す
るに従つて、摩耗量が大幅に減少している。 なお、比抵抗ρ、μi等の特性向上に関して、前
記主合金のSi,Bの量が0.55<c/c+d<0.65
の条件を満足すれば良いことは、Cr,Ru元素を
添加しても変わらない。 次に、本発明の非晶質合金は、前記主合金に
Cr及びRu元素を添加し、更に、この合金中に第
2相粒子を分散したものである。 合金中に第2相粒子を均一に分散してなる非晶
質合金の製造方法について説明すると、先ず、前
記合金を構成する合金母材を加熱溶融したのち、
その合金母材が凝固する前に、アルゴンガスなど
の不活性ガスからなる噴射媒体と共に前記第2相
粒子を前記合金母材に対して噴射分散せしめ、そ
の後冷却して第2相粒子を含有したインゴツトを
つくり、このインゴツトを第2相粒子が溶解しな
い程度に再溶融したのち、片ロール液体急冷法に
従い超急冷凝固させて、前記合金中に第2相粒子
を3次元的に均一に分散することができる。 本発明の実施例として、合金にA2O3を2体
積%分散した下記(a)組成の非晶質合金を作成し
た。また、その比較例としてA2O3を分散して
いない下記(b)組成の非晶質合金を作成した。 (a) Co69.5Fe4.5Si14.5B9.0Cr1.5Ru1.0+2vol%A2
O3 (b) Co69.5Fe4.5Si14.5B9.0Cr1.5Ru1.0 (a)において、A2O3粒子は非晶質合金中に三
次元的に分散していることは、走査型電子顕微鏡
にて確認した。 第11図は、上記(a),(b)合金の周波数に対する
実効透磁率μeの変化を示したものである。図か
ら明らかなように、A2O3を分散した(a)合金が
分散していない(b)合金に比較して、特に高周波数
帯域における実効透磁率の低下が少ないことが判
かる。 なお、第2相粒子としては、A2O3以外に、
合金と相溶性のないFe2O3,SiO2などの酸化物、
C,WC,TiC,NbCなどの炭素又はその化合
物、Ti,Mo,wなどの金属又は合金、又はこれ
らの複合物あ適用されうる。 また、第2相粒子の添加量については、3.0体
積%より多くは非晶質合金中に分散しにくく、ま
た、0.5体積%より少ないと余り効果が見られな
い。
[Table] Figure 1 shows the relationship between specific resistance ρ and c/c+d. In the range of b=23 to 27 atomic %, ρ is higher as c/c+d is larger. Figure 2 shows the effects of b and c/c+d on the crystallization temperature.
Show the impact of Various reports have already been made regarding this relationship, but in our experiments, c/c
A rapid change in crystal temperature was found when +d was around 0.65. That is, when c/c+d>0.65, the crystallization temperature becomes low. This fact is different from what has already been reported. Figure 3 shows the amount of wear per 100hr and c/c+
The relationship d shows this. The amount of wear was measured by making an ordinary audio type magnetic head from liquid-quenched amorphous amorphous, attaching it to a commercially available cassette type deck, and using a commercially available normal tape. Also, the amount of wear is c/c+d of 0.2 to 0.4
It is almost constant at , gradually decreases when it becomes larger than 0.4, and becomes almost constant at 0.55 or more. c/
It can be seen that when c+d is 0.55 or more, good wear resistance is exhibited. FIG. 4 shows the relationship between the initial magnetic permeability .mu.i and c/c+d of amorphous amorphous materials having various compositions that have been quenched with liquid. In any case, the value of .mu.i will vary as b changes, but when c/c+d is 0.4 or less, it takes a constant value, increases rapidly between 0.4 and 0.6, and gradually approaches a high constant value. That is, when the liquid is rapidly cooled, the larger c/c+d is, the higher μi is. More preferably, c/c+d is 0.55 or more. It is generally known that the magnetic permeability of amorphous magnetic alloys can be improved by annealing under appropriate conditions. Therefore, we investigated the effect of annealing on magnetic permeability. Figure 5 shows the initial values of amorphous amorphous alloys (No. 17 to 20) with b = 24 and various compositions of c/c + d that were annealed at various temperatures for 10 minutes and then water quenched. The relationship between magnetic permeability and annealing temperature is shown. The effect of annealing temperature on the initial magnetic permeability in amorphous alloys with various compositions is similar, and high μi is obtained when c/c+d is 0.5 and 0.63, and the improvement in initial magnetic permeability by annealing is large for these compositions. This was recognized. Comparing the maximum value of μi after various annealing in each sample, and arranging c/c+d in descending order of μi, 0.63, 0.50, 0.67,
It was 0.18. Figure 6 shows μi as in Figure 5 for the case b = 25.
This is the result of investigating the effect of heat treatment on. Comparing the maximum value of μi after various annealing in each sample, and arranging c/c+d in descending order of μi, 0.64,
0.60, 0.50, 0.40, 0.68, 0.20. FIG. 7 shows the results of examining the effect of heat treatment on μi in the case of b=27, similar to FIG. 5.
Comparing the maximum value of μi after various annealing in each sample, and arranging c/c+d in descending order of μi,
They were 0.63, 0.50, 0.40, 0.20, and 0.76. Figure 8 shows the μi obtained after annealing for various compositions.
The relationship between the maximum value of and c/c+d is shown. b=24,
In both cases 25 and 27, μi is c/c+d
has its largest value around 0.6. In addition, it is necessary to consider variations in properties from the viewpoint of practical materials.For example, when considering heat treatment operations, obtaining high magnetic permeability over a wide heat treatment temperature range increases workability, mass production, and material reliability. . FIG. 9 shows the annealing temperature range (ΔT) in which the value μi>10 4 is obtained. The value μi= 104 is considered to be close to the value required for head core material. Permalloy is currently used as core material for heads.
Sendust's μi is approximately this value. The larger b is, the larger ΔT is, but the saturation magnetic flux density is smaller. In the case of c+d=24, 25, and 27, the curves are similar, and ΔT takes a large value for each b when c/c+d is around 0.5 to 0.65. Furthermore, alloys (1) to (24) were left in high humidity air, their surface conditions were observed, and their corrosion resistance was investigated. The corrosion resistance was better as c/c+d was larger, regardless of the size of b. A summary of what has been said above is as follows. Specific resistance ρ c/c+d → large Crystallization temperature c/c+d<0.65 Wear resistance 0.55<c/c+d μi (AsQ) 0.55<c/c+d μi (after heat treatment) 0.50<c/c+d<0.65 μi (ΔT) 0.5 <c/c+d<0.65 Corrosion resistance c/c+d→large To satisfy both conditions, it is necessary that 0.55<c/c+d<0.65. Next, Cr and Ru elements were added to the main alloy.
The alloys to which these elements were added were manufactured using the same single-roll liquid quenching method as in the case of the main alloy described above. The reason for adding Cr is to improve corrosion resistance.
It was added in an amount of 1.0 to 2.0 atomic % based on the main alloy. A salt spray test (40°C, 48 hours) was conducted on the added alloy, and as a result of external observation, sufficient corrosion resistance was obtained. Note that if the amount added is less than 1.0 atomic %, there is no effect, and if it exceeds 2.0 atomic %, the saturation magnetic flux density will decrease. Furthermore, the addition of Cr also had the effect of preventing the alloy from becoming brittle after heat treatment. As for Ru, the greater the amount added, the more the wear resistance can be improved, but if it exceeds 4.0 atomic %, the alloy is difficult to become amorphous and the punching workability is also deteriorated. Figure 10 shows the main alloy composition samples (Nos. 19 and 23) shown in the table above, each containing 1.5 at.
and further add 1.0 atom% or 3.0 atom% of Ru.
This is a graph showing the amount of wear (μm) versus running time (hr) for the additives.
In the same figure, 19a is the main alloy composition sample (No.
19) with 1.5 at% Cr added only, 19b
The same sample (No. 19) contains 1.5 atomic% Cr and 1.0 atomic% Ru.
atomic% added, 19c is the same sample (No.19)
1.5 atomic% of Cr and 3.0 atomic% of Ru are shown in the figure. Similarly, 23a is the main alloy composition sample (No. 23) with only 1.5 at% Cr added, 23b is 1.5 at% Cr and 1.0 at% Ru, and 23c is 1.5 at% Cr and Ru. is added by 3.0 atomic%. As is clear from the figure, 19a
-c and 23a-c, there is no difference in wear resistance, and in any of the main alloy compositions, as the amount of Ru added increases, the amount of wear decreases significantly. Regarding the improvement of characteristics such as resistivity ρ and μi, the amount of Si and B in the main alloy is 0.55<c/c+d<0.65.
The fact that it is sufficient to satisfy the following conditions does not change even if Cr and Ru elements are added. Next, the amorphous alloy of the present invention has the above-mentioned main alloy.
Cr and Ru elements are added, and second phase particles are further dispersed in this alloy. To explain the method for manufacturing an amorphous alloy in which second phase particles are uniformly dispersed in an alloy, first, an alloy base material constituting the alloy is heated and melted, and then,
Before the alloy base material solidifies, the second phase particles are sprayed and dispersed onto the alloy base material together with a jetting medium made of an inert gas such as argon gas, and then cooled to contain the second phase particles. After making an ingot and remelting the ingot to such an extent that the second phase particles do not dissolve, the ingot is ultra-rapidly solidified according to the single-roll liquid quenching method to uniformly disperse the second phase particles three-dimensionally in the alloy. be able to. As an example of the present invention, an amorphous alloy having the following composition (a) was prepared in which 2% by volume of A 2 O 3 was dispersed in the alloy. As a comparative example, an amorphous alloy having the following composition (b) in which A 2 O 3 was not dispersed was prepared. (a) Co 69.5 Fe 4.5 Si 14.5 B 9.0 Cr 1.5 Ru 1.0 +2vol%A 2
O 3 (b) Co 69.5 Fe 4.5 Si 14.5 B 9.0 Cr 1.5 Ru 1.0 In (a), scanning electron microscopy shows that A 2 O 3 particles are three-dimensionally dispersed in the amorphous alloy. I confirmed it. FIG. 11 shows the change in effective magnetic permeability μe with respect to frequency for the alloys (a) and (b). As is clear from the figure, it can be seen that the decrease in effective magnetic permeability, especially in the high frequency band, is smaller in the alloy (a) in which A 2 O 3 is dispersed than in the alloy (b) in which it is not dispersed. In addition, as the second phase particles, in addition to A 2 O 3 ,
Oxides such as Fe 2 O 3 and SiO 2 that are incompatible with the alloy,
Carbon or its compounds such as C, WC, TiC, and NbC, metals or alloys such as Ti, Mo, and W, or composites thereof may be used. Regarding the amount of second phase particles added, if the amount is more than 3.0% by volume, it will be difficult to disperse in the amorphous alloy, and if it is less than 0.5% by volume, no significant effect will be seen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金の比抵抗ρとSi/Si+B
(=c/c+d)との関係を示す図、第2図は結
晶化温度とb(=Si+Bの温度)とc/c+dと
の関係を示す図、第図は100時間当たりの摩耗量
とc/c+dとの関係を示す図、第4図は非晶質
合金の初透磁率μiとc/c+dとの関係を示す
図、第5図ないし第7図は、それぞれのbと初透
磁率と焼鈍温度との関係を示す図、第8図は、μi
とc/c+dとの関係を示す図、第9図はμi>
104なる値が得られる焼鈍温度の範囲とc/c+
dとの関係を示す図、第10図はRuの添加量と
時間当たりの摩耗量との関係を示す図、第11図
はA2O3の添加の有無による非晶質合金の実効
透磁率μeと周波数との関係を示す図である。
Figure 1 shows the resistivity ρ of amorphous alloy and Si/Si+B
(=c/c+d), Figure 2 is a diagram showing the relationship between crystallization temperature and b (=temperature of Si+B) and c/c+d, and Figure 2 is a diagram showing the relationship between crystallization temperature and b (=temperature of Si+B) and c/c+d. /c+d, Figure 4 is a diagram showing the relationship between the initial magnetic permeability μi of an amorphous alloy and c/c+d, and Figures 5 to 7 are the relationship between b and initial permeability, respectively. Figure 8 shows the relationship between μi and annealing temperature.
Figure 9 shows the relationship between c/c+d and μi>
The range of annealing temperature that gives a value of 10 4 and c/c+
Figure 10 is a graph showing the relationship between the amount of Ru added and the amount of wear per hour, and Figure 11 is the effective magnetic permeability of amorphous alloys with and without the addition of A 2 O 3 . FIG. 3 is a diagram showing the relationship between μe and frequency.

Claims (1)

【特許請求の範囲】 1 組成式(Fe1-a,Coa100-b(Sic,Bdbから成
る合金100原子%に対してCrを1.0〜2.0原子%、
及びRuを1.0〜4.0原子%添加した合金中に第2相
粒子を分散したことを特徴とする磁気ヘツド用非
晶質合金。 ただし、 a=0.93〜0.95 c+d=1 b=23〜27原子% c/c+d=0.55〜0.65 2 第2相粒子を0.5〜3.0体積%の範囲で添加し
たことを特徴とする特許請求の範囲第1項記載の
磁気ヘツド用非晶質合金。 3 第2相粒子がA2O3粒子から成ることを特
徴とする特許請求の範囲第1項又は第2項記載の
磁気ヘツド用非晶質合金。
[Claims] 1. 1.0 to 2.0 atomic % of Cr to 100 atomic % of an alloy consisting of the compositional formula (Fe 1-a , Co a ) 100-b (Si c , B d ) b ;
An amorphous alloy for a magnetic head, characterized in that second phase particles are dispersed in an alloy to which Ru is added in an amount of 1.0 to 4.0 atomic percent. However, a = 0.93 to 0.95 c + d = 1 b = 23 to 27 atomic% c/c + d = 0.55 to 0.65 2 The second phase particle is added in a range of 0.5 to 3.0 volume %. The amorphous alloy for magnetic heads according to item 1. 3. The amorphous alloy for a magnetic head according to claim 1 or 2, wherein the second phase particles are composed of A 2 O 3 particles.
JP60124161A 1984-11-12 1985-06-10 Amorphous alloy for magnetic head Granted JPS61284546A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60124161A JPS61284546A (en) 1985-06-10 1985-06-10 Amorphous alloy for magnetic head
KR1019850007622A KR900007666B1 (en) 1984-11-12 1985-10-16 Amorphous Alloy for Magnetic Heads
GB08527730A GB2167087B (en) 1984-11-12 1985-11-11 Amorphous magnetic alloys
US06/797,238 US4743313A (en) 1984-11-12 1985-11-12 Amorphous alloy for use in magnetic heads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60124161A JPS61284546A (en) 1985-06-10 1985-06-10 Amorphous alloy for magnetic head

Publications (2)

Publication Number Publication Date
JPS61284546A JPS61284546A (en) 1986-12-15
JPH0463147B2 true JPH0463147B2 (en) 1992-10-08

Family

ID=14878449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60124161A Granted JPS61284546A (en) 1984-11-12 1985-06-10 Amorphous alloy for magnetic head

Country Status (1)

Country Link
JP (1) JPS61284546A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087877A (en) * 2014-07-29 2014-10-08 上海理工大学 Co-Fe-Si-B-Cr amorphous alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS61284546A (en) 1986-12-15

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
JPH044393B2 (en)
JPS6133900B2 (en)
JP3877893B2 (en) High permeability metal glass alloy for high frequency
JPH05335129A (en) Fe-based soft magnetic alloy powder and method for producing the same
WO1992009714A1 (en) Iron-base soft magnetic alloy
KR900007666B1 (en) Amorphous Alloy for Magnetic Heads
JPS6212296B2 (en)
JPH07116563B2 (en) Fe-based soft magnetic alloy
JPH0463147B2 (en)
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2710453B2 (en) Soft magnetic alloy film
JPH05465B2 (en)
JPS61143546A (en) Amorphous alloy for magnetic head
JP2857257B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JP2774702B2 (en) Soft magnetic thin film and thin film magnetic head using the same
JPH0413420B2 (en)
JPS61243144A (en) Amorphous alloy for magnetic head
JPH06158239A (en) Fe base soft magnetic alloy and its production
JPH0525947B2 (en)
JPH02153052A (en) Manufacturing method of wear-resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JP2878471B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JP3215068B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JP2878472B2 (en) High saturation magnetic flux density Fe soft magnetic alloy