[go: up one dir, main page]

JPH0462763A - Manufacture of metal hydride storage battery - Google Patents

Manufacture of metal hydride storage battery

Info

Publication number
JPH0462763A
JPH0462763A JP2173400A JP17340090A JPH0462763A JP H0462763 A JPH0462763 A JP H0462763A JP 2173400 A JP2173400 A JP 2173400A JP 17340090 A JP17340090 A JP 17340090A JP H0462763 A JPH0462763 A JP H0462763A
Authority
JP
Japan
Prior art keywords
battery
charging
negative electrode
activation
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2173400A
Other languages
Japanese (ja)
Inventor
Takanao Matsumoto
松本 孝直
Yoshikazu Ishikura
石倉 良和
Ikuo Kanekawa
金川 育生
Motohiro Miki
三木 基弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2173400A priority Critical patent/JPH0462763A/en
Publication of JPH0462763A publication Critical patent/JPH0462763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase a discharge capacity by promoting activation of a negative electrode by means of low temperature charging. CONSTITUTION:This kind of battery consists of a nickel electrode for a positive electrode and hydrogen absorbing alloy for a negative electrode, but since the surface of the negative electrode is oxidized and extremely inactive immediately after the battery is assembled, any sutticient discharging characteristic cannot be obtained. Accordingly, charging and discharging activation is required. And since the hydrogen absorbing alloy has poor thermal conduction, a hydrogen equilibrium pressure rises with heat generation at the charging time and the charging efficiency falls. Therefore, the charging is carried out at a low temperature, so that the charging efficiency rises and the activation degree of the battery is increased.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素を可逆的に吸蔵及び放出することのでき
る水X吸蔵合金からなる負極を有する金属水素化物蓄電
池の製造方法、特に電池の活性化方法に関するものであ
る。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for manufacturing a metal hydride storage battery having a negative electrode made of a water The present invention relates to an activation method.

(ロ)従来の技術 従来からよく用いられている蓄電池としては、ニジケル
−カドミウム蓄電池の如きアルカリ蓄電池、或いは鉛蓄
電池などがある。近年、これらの電池より軽量且つ高容
量で高エネルギー密度となる可能性のある、水素吸蔵合
金を用いてなる水素吸蔵電極を負極に備えた金属水素化
物蓄電池が注目されている。
(B) Prior Art Storage batteries that have been commonly used include alkaline storage batteries such as Ni-cadmium storage batteries, and lead storage batteries. In recent years, metal hydride storage batteries, which have a negative electrode equipped with a hydrogen storage electrode made of a hydrogen storage alloy, have attracted attention because they are lighter, have a higher capacity, and may have higher energy density than these batteries.

この種電池の負極に用いられる水素吸蔵合金として、例
えば特開昭63−21750号公報、特開昭62−24
6259号公報等に示されるように、希土類系の水素吸
蔵合金が記載されており、この組成を改良することによ
り充放電時の合金耐蝕性の向上及び微粉化の抑制等が計
られている。
Examples of hydrogen storage alloys used in the negative electrode of this type of battery include JP-A-63-21750 and JP-A-62-24.
As shown in Publication No. 6259, etc., rare earth hydrogen storage alloys are described, and by improving the composition, it is possible to improve the corrosion resistance of the alloy during charging and discharging, and to suppress pulverization.

更に、特開昭61−39461号公報及び特開平1−6
04371号公報に見られるように電解液注液前、即ち
水素吸蔵合金に気体状態の水素を吸蔵放出させることに
よる活性化処理等が提案され、水素吸蔵合金が粉末状態
、電極状態、注液前の電池状態において、活性化させる
ことが種々検討されている。
Furthermore, JP-A-61-39461 and JP-A-1-6
As seen in Publication No. 04371, an activation treatment is proposed in which the hydrogen storage alloy is allowed to absorb and release hydrogen in a gaseous state before the electrolyte is injected. Various studies have been made to activate the battery in the battery state.

このようにして構成された金属水素化物蓄電池は、注液
、封口等の過程を経て組立を完了した後、通常数回の電
気化学的な活性化、即ち充放電を行うことにより、主と
して負極の活性度を高め実用に耐える性能を得ている。
After the metal hydride storage battery constructed in this way is assembled through processes such as liquid injection and sealing, it is usually electrochemically activated several times, that is, charged and discharged, and the negative electrode is activated. It has increased activity and has achieved performance that can withstand practical use.

しかしながら、このようにして製造した電池であっても
、高率放電時の放電容量が小さく、作動電圧も低いとい
う問題がある。また、過充電特性も十分ではなく、電池
内圧上昇に伴う重量減少が観察される場合もあった。
However, even batteries manufactured in this manner have problems in that the discharge capacity during high rate discharge is small and the operating voltage is low. In addition, the overcharging characteristics were not sufficient, and weight loss was observed in some cases as the internal pressure of the battery increased.

(ハ)発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、水
素吸蔵合金からなる負極を備えた金属水素化物蓄電池の
高率放電特性及び過充電特性を改良することを目的とし
、この種電池製造時における好ましい活性化条件を提案
するものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above problems, and improves the high rate discharge characteristics and overcharge characteristics of a metal hydride storage battery equipped with a negative electrode made of a hydrogen storage alloy. This paper proposes preferred activation conditions during the production of this type of battery.

(ニ)課題を解決するための手段 本発明の金属水素化物蓄電池の製造方法は、正極と、水
素吸蔵合金からなる負極と、アルカリ電解液とを備えた
電池を、組立、密閉後、低温で充電して活性化させるこ
とを特徴とするものである。
(d) Means for Solving the Problems The method for manufacturing a metal hydride storage battery of the present invention involves assembling and sealing a battery comprising a positive electrode, a negative electrode made of a hydrogen storage alloy, and an alkaline electrolyte, and then heating it at a low temperature. It is characterized by being activated by charging.

また、前記温度範囲としては、−20〜20℃で充電を
行うのが、特に好ましい。
Further, as the temperature range, it is particularly preferable to perform charging at -20 to 20°C.

そして、前記温度範囲の中でも、−10〜10℃の範囲
において、その効果が顕著となる。
Among the above temperature ranges, the effect becomes remarkable in the range of -10 to 10°C.

(ホ)作 用 本発明者が種々検討したところ、活性化処理工程におい
て、充電時の雰囲気温度を低温に設定することにより、
負極の活性化が著しく促進されることを見出し、本発明
を完成するに至ったものである。即ち、水素吸蔵合金は
、水素ガスとの直接反応においても明かにされている如
く、水素化反応時は発熱反応である。また水素吸蔵合金
は熱伝導性が悪いため、充電時発生した熱が局部的に蓄
り、これにより水素平衡圧が上昇するため充電効率が低
下する。そこで充電時の雰囲気温度を低温に設定するこ
とにより、電池が冷却され局部的に滞った熱を除去する
ことが可能となり、充電効率が向上する。またこれによ
り負極の充電深度が深くなり、後述するメカニズムに基
づき負極の活性度、即ち電池の活性度が高くなる。
(e) Effect The present inventor conducted various studies and found that by setting the ambient temperature during charging to a low temperature in the activation treatment step,
It was discovered that the activation of the negative electrode was significantly promoted, and the present invention was completed. That is, as is clear from the direct reaction with hydrogen gas, the hydrogen storage alloy undergoes an exothermic reaction during the hydrogenation reaction. Furthermore, since hydrogen storage alloys have poor thermal conductivity, heat generated during charging accumulates locally, which increases hydrogen equilibrium pressure and reduces charging efficiency. Therefore, by setting the ambient temperature during charging to a low temperature, it becomes possible to cool the battery and remove locally accumulated heat, thereby improving charging efficiency. Furthermore, this increases the depth of charge of the negative electrode, and increases the activity of the negative electrode, that is, the activity of the battery, based on the mechanism described below.

また、この種水素化物蓄電池は、正極には例えばニッケ
ル極、負極には水素吸蔵合金からなる電極を用いている
。そしてこの種電池組立直後の負極を構成する水素吸蔵
合金は、製造工程中に表面が酸化されており、極めて不
活性となっており十分な放電特性が得られない。従って
通常は、電気化学的な充放電による活性化処理を必要と
している。この活性化処理により、水素吸蔵合金が微粉
化し、酸化されていない清浄な金属面が露出する。これ
は極めて活性であるため、電池の活性度が向上し、放電
率特性及び過充電特性が向上する。
Further, this type of hydride storage battery uses, for example, a nickel electrode for the positive electrode and an electrode made of a hydrogen storage alloy for the negative electrode. The surface of the hydrogen storage alloy constituting the negative electrode immediately after assembly of this type of battery is oxidized during the manufacturing process, making it extremely inert and unable to provide sufficient discharge characteristics. Therefore, activation treatment by electrochemical charging and discharging is usually required. Through this activation treatment, the hydrogen storage alloy is pulverized and a clean, unoxidized metal surface is exposed. Since it is extremely active, the activity of the battery is improved, and the discharge rate characteristics and overcharge characteristics are improved.

そこでこの機構を検討したところ、電池の活性度、即ち
負極の活性度は充放電の深度に依存するという知見を得
た。また、−度深い充放電を行った負極は、高い反応性
を維持することを見出した。このような作用効果を得る
ためには、電池組立工程中に水素ガスを用いて水素吸蔵
合金を処理する方法或いは組立前に予め負極をアルカリ
水溶液中で充放電する方法等が知られているが、この処
理後の後工程において大気中の酸素ガスによる酸化が起
こるため、高い活性度を維持することは極めて困難であ
る。
When we investigated this mechanism, we found that the activity of the battery, that is, the activity of the negative electrode, depends on the depth of charging and discharging. Furthermore, it has been found that a negative electrode that has been deeply charged and discharged maintains high reactivity. In order to obtain such effects, there are known methods such as treating the hydrogen storage alloy with hydrogen gas during the battery assembly process, or charging and discharging the negative electrode in an alkaline aqueous solution before assembly. Since oxidation by oxygen gas in the atmosphere occurs in the post-process after this treatment, it is extremely difficult to maintain high activity.

そこで組立後の電池を低温で充電することにより、負極
の充放電深度を高めることができる。即ち、低温にて充
電すると、正極が常温下での充電に比べて高次の酸化物
となるため、酸素ガスの発生が遅れることを利用するも
のである。尚、例えばニッケルーカドミウム電池は、組
立直後より負極の活性度が高く本発明の如く低温で充電
しても、負極の活性度が高まることはない。しかし金属
水素化物蓄電池は前述したように、組立直後は全く不活
性であるために、本発明による活性化の効果が得られる
Therefore, by charging the assembled battery at a low temperature, the depth of charge and discharge of the negative electrode can be increased. That is, when charging at a low temperature, the positive electrode becomes a higher-order oxide than when charging at room temperature, so the generation of oxygen gas is delayed. For example, in a nickel-cadmium battery, the activity of the negative electrode is high immediately after assembly, and even when charged at a low temperature as in the present invention, the activity of the negative electrode does not increase. However, as mentioned above, since the metal hydride storage battery is completely inactive immediately after assembly, the activation effect of the present invention can be obtained.

また活性化の程度が負極の充電深度により決定されるた
めに、少なくとも1回以上負極の充電深度を深くしなけ
ればならない。即ち、負極の充電深度は、正極から発生
する酸素ガスの消費により決まる。この酸素ガス発生が
遅れるとその時間分だけ負極の充電深度が深くなるので
、水素吸蔵合金の微粉化による清浄且つ活性度の高い金
属面が露出し、負極の反応性が高くなることによる。ま
た、本発明は電池系内での反応であるので、高い活性度
を永久的に維持することが可能である。
Furthermore, since the degree of activation is determined by the depth of charge of the negative electrode, the depth of charge of the negative electrode must be deepened at least once. That is, the charging depth of the negative electrode is determined by the consumption of oxygen gas generated from the positive electrode. If this oxygen gas generation is delayed, the depth of charge of the negative electrode becomes deeper by that time, and the clean and highly active metal surface due to the pulverization of the hydrogen storage alloy is exposed, increasing the reactivity of the negative electrode. Furthermore, since the present invention involves a reaction within a battery system, it is possible to maintain high activity permanently.

(へ)実施例 以下に、本発明と比較例との対比に言及し、詳述する。(f) Example Below, the comparison between the present invention and a comparative example will be mentioned and explained in detail.

負極を構成する水素吸蔵合金として、希土類系水素吸蔵
合金であるLaN1tCosを粉砕して微粉化したもの
を95重量部、ここに結着剤としてのポリテトラフルオ
ロエチレン(PTFE)ディスバージョンを5重量部添
加し、均一に混合し、PTFEを繊維化させる。これに
水を加えてペースト状とし、ニッケルメッキを施したパ
ンチングメタル集電体の両面に貼り付け、水素吸蔵合金
電極である負極を得る。
As the hydrogen storage alloy constituting the negative electrode, 95 parts by weight of pulverized LaN1tCos, which is a rare earth hydrogen storage alloy, and 5 parts by weight of polytetrafluoroethylene (PTFE) dispersion as a binder. Add and mix uniformly to fiberize the PTFE. Water is added to this paste to form a paste, which is pasted on both sides of a nickel-plated punched metal current collector to obtain a negative electrode, which is a hydrogen storage alloy electrode.

正極には、ニアケル−カドミウム[7411等に用いら
れる公知の焼結式ニッケル極を使用した。
As the positive electrode, a known sintered nickel electrode used for Niacel-Cadmium [7411, etc.] was used.

これら正極及び負極を、耐アルカリ性を有するセパレー
タと共に捲回し、渦巻1を掻体を得、電池缶にこの電極
体を挿入した後、アルカリ電解液を注入し、封口を行い
密閉して公称容量1200mAHの電池を組み立てた。
These positive and negative electrodes are wound together with an alkali-resistant separator to obtain a spiral 1. After inserting this electrode body into a battery can, an alkaline electrolyte is injected and the cap is sealed to give a nominal capacity of 1200 mAH. Assembled the battery.

このようにして得た電池を、180m、Aで16時間充
電し、240mAで電池電圧が1.OVになる迄放電す
るという条件で、5回充放電を繰り返した。ここで充電
時の雰囲気温度は、−40℃から60℃まで種々変化さ
せ、放電は25℃で行っている。
The battery thus obtained was charged at 180 m and A for 16 hours, and the battery voltage reached 1.5 mA at 240 mA. Charge and discharge were repeated five times under the condition that the battery was discharged until it reached OV. Here, the ambient temperature during charging was variously varied from -40°C to 60°C, and discharging was performed at 25°C.

この条件により活性化を行った電池を用い、それぞれ2
400mAで放電し、放電容量及び作動電圧を比較した
。この結果を、第1表及び第1図に示す。
Using batteries activated under these conditions, each
The batteries were discharged at 400 mA and the discharge capacity and operating voltage were compared. The results are shown in Table 1 and FIG.

以下余白 第  1  表 第1表及び第1図から明かなように、充電を低温で行っ
た本発明電池A−Gは、比較電池H−にと比べて、放電
容量及び作動電圧が高く、高率放電特性に優れており、
負極の活性化が進んでいることがわかる。
As is clear from Table 1 and Figure 1, the batteries A-G of the present invention, which were charged at low temperatures, have a higher discharge capacity and operating voltage than the comparative battery H-. Excellent rate discharge characteristics,
It can be seen that the activation of the negative electrode is progressing.

また本発明電池A−Gの内、特に電池C−G、即ち充電
時の雰囲気温度を一20℃〜20℃とした電池は、優れ
た高率放電特性を示すことが理解される。
Further, it is understood that among the batteries A to G of the present invention, particularly batteries C to G, that is, batteries in which the ambient temperature during charging is -20°C to 20°C, exhibit excellent high rate discharge characteristics.

更に上記電池A−Kを、600mAで3日間過充電した
時の電池内圧、即ち過充電特性を調べた。
Furthermore, the internal pressure of the batteries A-K, that is, the overcharge characteristics when the batteries A-K were overcharged at 600 mA for 3 days was investigated.

この結果を、第3図に示す。第3図より明かなように、
充電を低温で行った本発明電池A−Gは、比較電池H−
にと比べて、過充電時の電池内圧が低く過充電特性に優
れており、負極の活性度が高く、酸素ガスの消費効率が
高くなっていることがわかる。また、本発明電池A−G
の内、特に電池C−G、即ち充電時の雰囲気温度を一2
0℃〜20℃とした電池は、優れた過充電特性を示すこ
とがわかる。
The results are shown in FIG. As is clear from Figure 3,
Batteries A-G of the present invention, which were charged at low temperatures, were compared to comparative batteries H-
It can be seen that the internal pressure of the battery during overcharging is lower and the overcharging characteristics are excellent, the activity of the negative electrode is higher, and the consumption efficiency of oxygen gas is higher. In addition, batteries A-G of the present invention
Among these, especially batteries C-G, that is, the ambient temperature during charging is -2
It can be seen that the battery at 0°C to 20°C exhibits excellent overcharge characteristics.

そして第1図乃至第3図の結果より、充電時の雰囲気温
度を一10〜10℃とした本発明電池は、極めて優れた
放電特性及び過充電特性を有することがわかる。
From the results shown in FIGS. 1 to 3, it can be seen that the battery of the present invention in which the ambient temperature during charging was set at -10 to 10 DEG C. had extremely excellent discharge characteristics and overcharge characteristics.

(ト)発明の効果 以上詳述した如く、本発明の金属水素化物蓄電池の製造
方法によれば、電池を組立、密閉後、低温で充電して活
性化させているので、この程電池の高率放電特性及び過
充電特性を向上させることができ、その工業的価値は極
めて大きい。
(G) Effects of the Invention As detailed above, according to the method for manufacturing a metal hydride storage battery of the present invention, after the battery is assembled and sealed, it is charged and activated at a low temperature. The rate discharge characteristics and overcharge characteristics can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充電温度と電池の放電容量との関係を示す図、
第2図は充電温度と電池の作動電圧との関係を示す図、
第3図は充電温度と電池内圧との関係を示す図である。 A、B、C,D、E、F、G・・・本発明電池、H,L
  J、K・・・比較電池。
Figure 1 is a diagram showing the relationship between charging temperature and battery discharge capacity.
Figure 2 is a diagram showing the relationship between charging temperature and battery operating voltage;
FIG. 3 is a diagram showing the relationship between charging temperature and battery internal pressure. A, B, C, D, E, F, G...Battery of the present invention, H, L
J, K... Comparison batteries.

Claims (1)

【特許請求の範囲】[Claims] (1)正極と、水素吸蔵合金からなる負極と、アルカリ
電解液とからなる電池を、組立、密閉後、低温で充電し
て活性化させることを特徴とする金属水素化物蓄電池の
製造方法。(2)前記温度範囲が、−20℃〜20℃で
あることを特徴とする請求項(1)記載の金属水素化物
蓄電池の製造方法。
(1) A method for producing a metal hydride storage battery, which comprises assembling and sealing a battery consisting of a positive electrode, a negative electrode made of a hydrogen storage alloy, and an alkaline electrolyte, and then charging and activating it at a low temperature. (2) The method for manufacturing a metal hydride storage battery according to claim (1), wherein the temperature range is -20°C to 20°C.
JP2173400A 1990-06-29 1990-06-29 Manufacture of metal hydride storage battery Pending JPH0462763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2173400A JPH0462763A (en) 1990-06-29 1990-06-29 Manufacture of metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2173400A JPH0462763A (en) 1990-06-29 1990-06-29 Manufacture of metal hydride storage battery

Publications (1)

Publication Number Publication Date
JPH0462763A true JPH0462763A (en) 1992-02-27

Family

ID=15959715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2173400A Pending JPH0462763A (en) 1990-06-29 1990-06-29 Manufacture of metal hydride storage battery

Country Status (1)

Country Link
JP (1) JPH0462763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465067A (en) * 1990-07-02 1992-03-02 Matsushita Electric Ind Co Ltd Formation method of nickel-hydrogen battery
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465067A (en) * 1990-07-02 1992-03-02 Matsushita Electric Ind Co Ltd Formation method of nickel-hydrogen battery
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery

Similar Documents

Publication Publication Date Title
JPS62287568A (en) Manufacture of alkaline storage battery
JPH0462763A (en) Manufacture of metal hydride storage battery
JP2594149B2 (en) Manufacturing method of metal-hydrogen alkaline storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP2003151542A (en) Positive electrode for alkaline storage battery, alkaline storage battery and manufacturing method of these
JPH04319256A (en) Metal-hydrogen alkali secondary battery
JP3113345B2 (en) Hydrogen storage alloy electrode
JP2975755B2 (en) Activation method of metal hydride storage battery
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2994731B2 (en) Method for manufacturing metal hydride storage battery
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2925695B2 (en) Method for manufacturing metal hydride storage battery
JP2848467B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000058047A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPH10172552A (en) Hydrogen storage alloy powder and its manufacture
JPH079805B2 (en) Alkaline zinc storage battery
JPH04319257A (en) Metal-hydrogen alkali secondary battery
JPH11260358A (en) Hydrogen storing alloy electrode and manufacture thereof
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH04322055A (en) Metal-hydrogen alkaline storage battery
JPH09231967A (en) Manufacture of hydrogen storage alloy electrode and metal hydride storage battery
JPH04155763A (en) Manufacture of hydrogen storage alloy electrode