[go: up one dir, main page]

JPH0462609A - Stabilized power source circuit - Google Patents

Stabilized power source circuit

Info

Publication number
JPH0462609A
JPH0462609A JP17427090A JP17427090A JPH0462609A JP H0462609 A JPH0462609 A JP H0462609A JP 17427090 A JP17427090 A JP 17427090A JP 17427090 A JP17427090 A JP 17427090A JP H0462609 A JPH0462609 A JP H0462609A
Authority
JP
Japan
Prior art keywords
current
circuit
transistor
voltage
vref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17427090A
Other languages
Japanese (ja)
Other versions
JP2693853B2 (en
Inventor
Kenji Suzuki
賢司 鈴木
Hironobu Izumi
出水 啓修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2174270A priority Critical patent/JP2693853B2/en
Publication of JPH0462609A publication Critical patent/JPH0462609A/en
Application granted granted Critical
Publication of JP2693853B2 publication Critical patent/JP2693853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To reduce the fluctuation of a limiting current caused by the change of the working temperature by connecting a temperature compensating circuit provided for an overcurrent protecting circuit to this circuit through the reference voltage. CONSTITUTION:A limiting current ID1 is secured. The potential VP is defined at a point P as VP=Vref-VBE1+VBE13, where VBE1 shows the base-emitter voltage of a transistor Tr1 and VBE1=VBE13 is satisfied. Therefore VP=Vref. Then ID1XRO1=Vref is satisfied in an ON state of a Tr13. Thus the current ID1 is shown by an equation I. In this equation I, the temperature coefficient of the reference voltage Vref is equal to about +20PPM/ deg.C with the temperature coefficient of an emitter diffused resistance R13 set at about -200PPM/ deg.C respectively. Therefore the temperature coefficient of the current ID1 is equal to about -200PPM/ deg.C as long as the temperature coefficient of the Vref is neglected. Thus the temperature coefficient is reduced by 1/2.5. As a result the fluctuation of the current ID1 is reduced even in a wide range of working temperatures and furthermore the safety is assured to the thermal runaway owing to the negative temperature characteristic secured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、過電流保護回路を備えた安定化電源回路に関
し、特にモノリシック集積回路等による安定化電源回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a stabilized power supply circuit equipped with an overcurrent protection circuit, and particularly to a stabilized power supply circuit using a monolithic integrated circuit or the like.

〈従来の技術〉 従来の安定化電源回路の一例を第2図を参照して説明す
る。
<Prior Art> An example of a conventional stabilized power supply circuit will be described with reference to FIG.

第2図は従来例による安定化電源回路の回路図である。FIG. 2 is a circuit diagram of a conventional stabilized power supply circuit.

この安定化電源回路は、電圧制御トランジスタとしてP
NP型のトランジスタTr11を備え、このトランジス
タTr11のエミッターコレクタを介して入出力間を接
続した定電圧回路であり、以下に説明するように、トラ
ンジスタTrllのベース電流を制御回路10によって
制御することにより図示しない負荷に一定の電圧を供給
するようになっている。
This stabilized power supply circuit uses P as a voltage control transistor.
This is a constant voltage circuit that includes an NP type transistor Tr11 and connects input and output via the emitter collector of this transistor Tr11.As explained below, the base current of the transistor Trll is controlled by the control circuit 10. A constant voltage is supplied to a load (not shown).

トランジスタTr11は、エミッタが入力端子Aに接続
すれ、ペースがトランジスタTr12のコレクタに接続
されており、さらにコレクタが出力端子Bに接続される
とともに抵抗R11’ R12からなる分圧回路11を
介して接地されている。この分圧回路l!における抵抗
R11と抵抗RI2との接続点は、差動アンプ12の反
転入力端子に接続されている。差動アンプ12は、非反
転入力端子が基準電圧vref に接続され、出力端子
が定電流回路13を介して入力端子Aに接続されるとと
もに、トランジスタTr12のペースに接続されている
The transistor Tr11 has an emitter connected to the input terminal A, a base connected to the collector of the transistor Tr12, and a collector connected to the output terminal B and grounded via a voltage dividing circuit 11 consisting of resistors R11' and R12. has been done. This voltage divider circuit! The connection point between the resistor R11 and the resistor RI2 is connected to the inverting input terminal of the differential amplifier 12. The differential amplifier 12 has a non-inverting input terminal connected to the reference voltage vref, an output terminal connected to the input terminal A via the constant current circuit 13, and connected to the pace of the transistor Tr12.

トランジスタTr12は、エミッタが過電流保護回路1
4のエミッタ拡散抵抗R18を介して接地されるトトモ
ニ、トランジスタTrlBのペースに接続されており、
トランジスタTr13は、エミッタが接地されていると
ともに、コレクタがトランジスタTr12のペースに接
続されている。
The emitter of the transistor Tr12 is connected to the overcurrent protection circuit 1.
It is connected to the grounded transistor TrlB through the emitter diffused resistor R18 of 4.
The emitter of the transistor Tr13 is grounded, and the collector is connected to the base of the transistor Tr12.

このように構成された安定化電源回路では、出力電圧V
Qが分圧回路I+における抵抗R11”R12により分
圧され、差動アンプ12の反転入力端子に帰還電圧VF
として入力される。差動アンプ12は、基準電圧vre
f と帰還電圧VFとを比較し、定電流回路13から出
力される電流を加減する。
In the stabilized power supply circuit configured in this way, the output voltage V
Q is divided by the resistors R11''R12 in the voltage dividing circuit I+, and the feedback voltage VF is applied to the inverting input terminal of the differential amplifier 12.
is entered as . The differential amplifier 12 has a reference voltage vre.
The current output from the constant current circuit 13 is adjusted by comparing f with the feedback voltage VF.

これにより、トランジスタTr12のペース電流が調整
される。従って、トランジスタTr11fd、ベース電
流の変化に応じて出力電圧voを制御することになる。
Thereby, the pace current of the transistor Tr12 is adjusted. Therefore, the output voltage vo is controlled according to the change in the base current of the transistor Tr11fd.

このような制御は、差動アンプ12に入力される基準電
圧Vref と帰還電圧VF との差がなくなるように
行われるため、出力電圧VQは、結果として基準電圧v
ref  に応じた一定電圧に安定化される。すなわち
、出力電圧v□は、トランジスタTr11%分圧回路I
+、差動アンプ12およびトランジスタT r12から
なるフィードバックルーズにより、一定に保持されるよ
うに負帰還制御されているのである。
Such control is performed so that there is no difference between the reference voltage Vref input to the differential amplifier 12 and the feedback voltage VF, so that the output voltage VQ is, as a result, equal to the reference voltage V
It is stabilized to a constant voltage according to ref. In other words, the output voltage v□ is determined by the voltage dividing circuit I
+, differential amplifier 12, and transistor Tr12, which are configured by feedback loops, perform negative feedback control to maintain a constant value.

また、上記の安定化電源回路では、出力電流IQが増大
すると、トランジスタTr11のベース電流がトランジ
スタTr12を介してエミッタ拡散抵抗R13に流れる
。そして、この抵抗R18の両端に発生する電圧がトラ
ンジスタTrlBのペース・エミッタ間電圧VBE18
に・達すると、トランジスタTrlBがオンし、トラン
ジスタTr12のペースに流を減少させる。これによっ
て、トランジスタjr11のベース電流が減少し、トラ
ンジスタT、r11のコレクターエミッタ間を流れる、
出力電流IQが制御される。
Furthermore, in the above-described stabilized power supply circuit, when the output current IQ increases, the base current of the transistor Tr11 flows to the emitter diffusion resistor R13 via the transistor Tr12. The voltage generated across this resistor R18 is the pace-emitter voltage VBE18 of the transistor TrlB.
When TrlB is reached, transistor TrlB turns on and reduces the current to the pace of transistor Tr12. As a result, the base current of the transistor jr11 decreases and flows between the collector-emitter of the transistors T and r11.
Output current IQ is controlled.

ここで、トランジスタTr12の出力電流(エミッタ電
流)をIlとすると、前述の電流制限が行なわれるのは
エミッタ拡散抵抗R13の電圧降下がトランジスタTr
1Bのペース・エミッタ間W圧VBE13に等しくなり
トランジスタTr13がONする時、即ち、I I X
R18”” VBE18の時に行なわれる。
Here, if the output current (emitter current) of the transistor Tr12 is Il, the above-mentioned current limitation is performed because the voltage drop across the emitter diffusion resistor R13
When the W pressure between the pace and the emitter of 1B becomes equal to VBE13 and the transistor Tr13 turns on, that is, I
R18"" Performed at VBE18.

故に、エミッタ電流■1はI 1= VBE18/ R
lsである。この時のエミッタ電流11 を制限電流I
D1とすると、 IDI = VBE18 / R+a        
・・・式(1)また、出力電流IQは以下の式で示され
る。
Therefore, the emitter current ■1 is I1=VBE18/R
It is ls. At this time, the emitter current 11 is limited to the current I
Assuming D1, IDI = VBE18 / R+a
...Equation (1) Further, the output current IQ is expressed by the following equation.

10 ”hFEll XII         ”’式
(2)但し、h FEI 1はトランジスタT rll
のhFEである。
10 "hFEll XII"' Formula (2) However, h FEI 1 is a transistor T rll
hFE.

従ってトランジスタTr12のエミッタ電流11が制限
電流IDIの値となった時の出力電流■0は以下の式で
示される。
Therefore, when the emitter current 11 of the transistor Tr12 reaches the value of the limit current IDI, the output current 0 is expressed by the following equation.

rQ = hFEll X IDI        ”
’式(3)〈発明が解決しようとする課題〉 ところで、通常、トランジスタTr13のペース・エミ
ッタ間の電圧VBE18の温度係数は、約−3000P
PM/℃であり、エミッタ拡散抵抗R18の温度係数は
、+ 2000 PPM/℃である。ゆえに式(1)よ
り制限電流IDIの温度係数は、合計で約−5000P
PM/℃となり、大きな値となる。そのために広範囲な
動作温度のもとでは、制限電流IDIの変動が大きく、
前述の式(3)で示される出力電流IQを安定に得るこ
とができないという問題があった。
rQ = hFEll X IDI”
Equation (3) (Problem to be Solved by the Invention) By the way, normally, the temperature coefficient of the voltage VBE18 between the pace and emitter of the transistor Tr13 is about -3000P.
PM/°C, and the temperature coefficient of emitter diffused resistor R18 is +2000 PPM/°C. Therefore, from equation (1), the temperature coefficient of the limiting current IDI is approximately -5000P in total.
PM/°C, which is a large value. Therefore, under a wide range of operating temperatures, the limit current IDI fluctuates greatly,
There is a problem in that the output current IQ shown by the above-mentioned equation (3) cannot be stably obtained.

以下に、前記問題点を詳細に説明する。The above problems will be explained in detail below.

第3図は制限電流IDIの動作温度特性を示した図であ
る。図中、a及びbが従来回路の特性である。
FIG. 3 is a diagram showing the operating temperature characteristics of the limited current IDI. In the figure, a and b are the characteristics of the conventional circuit.

特性aが得られた回路設定条件は以下の通りである。The circuit setting conditions under which characteristic a was obtained are as follows.

V、e(= 1.26V、R11=2.8に、Q、R1
2=400IQ。
V, e (= 1.26V, R11=2.8, Q, R1
2=400IQ.

R13= 250.トランジスタT rll (’)h
FE= 80゜また、特性すが得られた回路設定条件を
以下に記す。
R13=250. Transistor T rll (')h
FE=80° Also, the circuit setting conditions under which the characteristics were obtained are described below.

Vref=1.26V、R11=2.8にΩ、 R12
=400Ω。
Vref=1.26V, R11=2.8Ω, R12
=400Ω.

R13= + 50.トランジスタTr11のbFE=
80゜第4図は、過電流保護特性を示した図であり、出
力電流IQの電流範囲を示している。
R13=+50. bFE of transistor Tr11=
80° FIG. 4 is a diagram showing the overcurrent protection characteristics, and shows the current range of the output current IQ.

図中、a′及びb′の範囲はそれぞれ第3図に示した従
来例の特性a及び特性すに対応し、寸だ、回路設定条件
もそれぞれ特性a及び特性すと同一である。但し、a′
及びb′のいずれも、TJが25℃乃至125℃の範囲
における出力電流IQの範囲のみを示している。
In the figure, the ranges a' and b' correspond to the characteristic a and characteristic a of the conventional example shown in FIG. However, a'
Both of and b' show only the range of output current IQ in the range of TJ from 25°C to 125°C.

aQ及びboは、T j= 125℃ の時の出力?W
流IQを、壕だal及びl) 1はTj=25℃ の時
の出力電流IQを示している。
Are aQ and bo the outputs when T j = 125°C? W
1 indicates the output current IQ when Tj=25°C.

第4図に示すように、第2図の従来回路によればa′の
回路設定条件においては、Tj=125℃の時1て、出
力電流IQは安定化電源回路として定格のIAを満たす
ことができない。また、b’の回路設定条件においては
、Tj=25℃の時に出力電流IQが2.6Aも流れ、
過電流保護回路14が保護機能をな1〜でいない。
As shown in Fig. 4, according to the conventional circuit shown in Fig. 2, under the circuit setting condition a', when Tj = 125°C, the output current IQ satisfies the rated IA as a stabilized power supply circuit. I can't. Furthermore, under the circuit setting conditions b', when Tj = 25°C, the output current IQ flows as much as 2.6A,
The overcurrent protection circuit 14 has no protective function.

このように、従来回路においては制限電流ID+の温度
係数が−5000PPM/℃と非常に大きいため、広範
囲な動作温度の下では、制限電流II)1の変動が大き
く、この結果安定した出力電流IQが得られないという
問題があった。
In this way, in the conventional circuit, the temperature coefficient of the limiting current ID+ is as large as -5000 PPM/℃, so the limiting current II)1 fluctuates greatly under a wide range of operating temperatures, and as a result, the stable output current IQ The problem was that it was not possible to obtain

そこで本発明の目的は、広範囲な動作温度のもとにおい
ても制限電流の変動を小さくし、安定した出力電流を得
られるような、安定化電源回路を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a stabilized power supply circuit that can reduce fluctuations in limited current and obtain stable output current even under a wide range of operating temperatures.

く課題を解決するだめの手段〉 01■記目的を達成するために本発明は、出力電圧を制
御する電圧制御トランジスタと、負帰還させた出力電圧
の一部を一定の基準電圧と等しくなるように、前記電圧
制御トランジスタのベース電流全制御する制御回路とを
備え、前記制御回路は出力電流を制御する過電流保護回
路を含んでなる安定化電源回路において、ni前記過電
流保護回路に対する温度補償回路を0j■記基準電圧か
ら前記過電流保護回路に対l〜て接続すると吉を特徴と
する。
Means for Solving the Problems> 01 In order to achieve the object, the present invention provides a voltage control transistor that controls an output voltage, and a voltage control transistor that controls a part of the negative feedback output voltage so that it becomes equal to a constant reference voltage. and a control circuit that controls the entire base current of the voltage control transistor, the control circuit including an overcurrent protection circuit that controls the output current, wherein temperature compensation for the overcurrent protection circuit is provided. It is characterized in that the circuit is connected from the reference voltage 0j■ to the overcurrent protection circuit from l~.

〈作 用〉 過電流保護回路に対する温度補償回路を基準電圧から過
電流保護回路に接続するこ占により、過電流保護回路の
トランジスタのオン時に該トランジスタのベース電位が
基準電圧と同一になるようにし、ているので、前記トラ
ンジスタのベースに流れ込む制限電流の温度係数は、従
来に比べ、01J記トランジスタのベース・エミッタ間
電圧の温度係数が相殺される分小さくなり、動作温度の
変化による制限電流の変動を小さくでき、その結果、広
い動作温度範囲において安定した出力電流が得られる。
<Function> By connecting the temperature compensation circuit for the overcurrent protection circuit from the reference voltage to the overcurrent protection circuit, the base potential of the transistor in the overcurrent protection circuit is made to be the same as the reference voltage when the transistor is turned on. , so the temperature coefficient of the limiting current flowing into the base of the transistor is smaller than the conventional one by the amount that the temperature coefficient of the base-emitter voltage of the 01J transistor is canceled out, and the temperature coefficient of the limiting current flowing into the base of the transistor becomes smaller due to changes in the operating temperature. Fluctuations can be reduced, resulting in stable output current over a wide operating temperature range.

〈実施例〉 本発明の一実施例について、第1図、第3図及び第4図
を参照して説明する。
<Example> An example of the present invention will be described with reference to FIGS. 1, 3, and 4.

第1図は本実施例による安定化電源回路図である。以F
、第2図に示す従来例と異なる点のみを説明する。なお
、第2図の従来例と同一機能部品については同一記号を
符している。
FIG. 1 is a stabilized power supply circuit diagram according to this embodiment. From F
, only the points that are different from the conventional example shown in FIG. 2 will be explained. Components with the same functions as those in the conventional example shown in FIG. 2 are designated by the same symbols.

第1図において、過電流保護回路14に対する温度補償
回路I5とし7て、まずトランジスタTr 13のエミ
ッターGND間に抵抗R1が接続され、トランジスタT
r13のエミッタと抵抗R1との接続点に、トランジス
タT rxa ト同一のベース・エミッタ間?[圧を有
するトランジスタTr] のエミッタが接続されでいる
。また、トランジスタTrlのベース及びコレクタは基
準電圧■ref Iて接続されている。
In FIG. 1, as a temperature compensation circuit I5 for the overcurrent protection circuit 14, a resistor R1 is connected between the emitter GND of the transistor Tr 13, and a transistor T
At the connection point between the emitter of r13 and resistor R1, is the transistor T rxa connected between the same base and emitter? The emitters of [transistor Tr with voltage] are connected. Further, the base and collector of the transistor Trl are connected to a reference voltage ref I.

以上のような回路において、出力電流IQが増大し7た
時に行なわれる7E流制限は、従来例と同じくエミッタ
拡散抵抗RI3の電圧降下が、トランジスタTr13の
ベース・Jミッタ間電圧VBEI8 K等しくなり、ト
ランジスタTr43がオンする時である。以F、制限電
流In+に求める。
In the circuit as described above, the 7E current restriction that is performed when the output current IQ increases to 7 is that the voltage drop across the emitter diffusion resistor RI3 becomes equal to the base-to-J-mitter voltage VBEI8 K of the transistor Tr13, as in the conventional example. This is when the transistor Tr43 is turned on. Hereinafter, the limit current In+ is determined.

1ず、P点の電位Vpは以下の様になる。First, the potential Vp at point P is as follows.

VP −” ”re(VBEI ” ”BEI3   
  ”’式(4)ff11〜、VBEIはトランジスタ
T’ r 1のベース・エミッタ間電圧である。
VP-” “re(VBEI” “BEI3
In Equation (4) ff11~, VBEI is the base-emitter voltage of the transistor T'r1.

ここでV BEI ”” V BEI3  であるので
、 Vp″Vrefとなる。
Here, since V BEI "" V BEI3, it becomes Vp"Vref.

従って、トランジスタTr13のオン時にけI pHX
 ROI”” vref         ”’式(5
)故!’i:、  iI月= Vrer/ Ro 1=
−式(6)式(6)において、基準電圧vrefの温度
係数は約+20 PPM/℃であり、エミッタ拡散抵抗
R13の温度係数は約−2000PPM/℃である。よ
ってIDIの温度係数は、vrefの温度係数を無視す
れば、約−2000PPM/℃となり、従来例にくらべ
て’ /2 、5となる。それゆえ、広範囲の動作温度
においても制限電流IDIの変動が少なく、しかも負の
温特をとどめているため、熱暴走に対する安全性につい
ても従来同様保証されている。
Therefore, when the transistor Tr13 is turned on, I pHX
ROI””vref”’Formula (5
)late! 'i:, iI month= Vrer/ Ro 1=
- Equation (6) In Equation (6), the temperature coefficient of the reference voltage vref is about +20 PPM/°C, and the temperature coefficient of the emitter diffusion resistor R13 is about -2000 PPM/°C. Therefore, if the temperature coefficient of vref is ignored, the temperature coefficient of IDI is about -2000 PPM/°C, which is '/2.5 compared to the conventional example. Therefore, even in a wide range of operating temperatures, there is little variation in the limiting current IDI, and the temperature characteristic remains negative, so safety against thermal runaway is guaranteed as before.

以下、本実施例による効果を具体的に示す。The effects of this example will be specifically shown below.

第3図は制限電流IDIの動作温度特性を示した図であ
る。図中、Cが本実施例による特性である。
FIG. 3 is a diagram showing the operating temperature characteristics of the limited current IDI. In the figure, C is the characteristic according to this embodiment.

特性Cの回路設定条件は例えば以下の通りである。For example, the circuit setting conditions for characteristic C are as follows.

V ref” 1.26 V 、 R11: 2,8 
KΩ、R12=400Ω。
V ref” 1.26 V, R11: 2,8
KΩ, R12=400Ω.

R13=50Ω、R1=5にΩ、トランジスタT rl
lのhFE=80゜ 第3図中、従来例による特性a及びbと比較すると、特
性Cは制限電流IDIの傾きの勾配が小さく、広範囲の
動作温度に対しても変動が少ないことがわかる。
R13=50Ω, R1=5Ω, transistor T rl
hFE of 1=80° In FIG. 3, when compared with the characteristics a and b of the conventional example, it can be seen that characteristic C has a small slope of the limiting current IDI and has little variation over a wide range of operating temperatures.

第4図は過電流保護特性を示した図である。図中、+d
 /が本実施例による出力電流IQの電流範囲を示し、
co及びC1はそれぞれTj=125℃及びTj=25
℃の時の出力電流IQの値を示している。
FIG. 4 is a diagram showing overcurrent protection characteristics. In the figure, +d
/ indicates the current range of the output current IQ according to this embodiment,
co and C1 are Tj=125°C and Tj=25, respectively.
It shows the value of output current IQ at ℃.

図中、従来例による出力電流rOの範囲a′及びb′に
比較すると、電流範囲ビ′は狭く、出力電流IOの変動
が少なく安定している。従って、電流範囲a′のように
出力電流■oがIAを割ることもなく、また、電流範囲
b′のように出力電流IQが2.6Aにまで達すること
もない。
In the figure, compared to the ranges a' and b' of the output current rO according to the conventional example, the current range B' is narrower, and the output current IO has less fluctuation and is stable. Therefore, the output current ■o does not exceed IA as in the current range a', and the output current IQ does not reach 2.6 A as in the current range b'.

〈発明の効果〉 以上説明したように本発明によれば、広範囲の動作温度
においても制限電流の変動が少なく、従って安定した出
力電流が得られる安定化電源回路を実現できる。
<Effects of the Invention> As described above, according to the present invention, it is possible to realize a stabilized power supply circuit in which fluctuations in the limited current are small even in a wide range of operating temperatures, and therefore a stable output current can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による安定化電源回路の回路
図、第2図は従来例による安定化電源回路の回路図、第
3図は制限電流の動作温度特性図、第4図は過電流保護
特性図である。 10・・・制御回路、+4・・・過電流保護回路、15
・・・温度補償回路、”11・・・電圧5制御トランジ
スタ、vref・・・基準電圧。 代理人 弁理士 梅 1) 勝(他2名)第 1m 第2図
Figure 1 is a circuit diagram of a stabilized power supply circuit according to an embodiment of the present invention, Figure 2 is a circuit diagram of a stabilized power supply circuit according to a conventional example, Figure 3 is a diagram of operating temperature characteristics of limited current, and Figure 4 is It is an overcurrent protection characteristic diagram. 10... Control circuit, +4... Overcurrent protection circuit, 15
...Temperature compensation circuit, "11...Voltage 5 control transistor, vref...Reference voltage. Agent: Patent attorney Ume 1) Katsu (and 2 others) No. 1m Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1、出力電圧を制御する電圧制御トランジスタと、負帰
還させた出力電圧の一部を一定の基準電圧と等しくなる
ように、前記電圧制御トランジスタのベース電流を制御
する制御回路とを備え、前記制御回路は出力電流を制御
する過電流保護回路を含んでなる安定化電源回路におい
て、前記過電流保護回路に対する温度補償回路を前記基
準電圧から前記過電流保護回路に対して接続することを
特徴とする安定化電源回路。
1. A voltage control transistor that controls an output voltage, and a control circuit that controls a base current of the voltage control transistor so that a part of the negative feedback output voltage becomes equal to a constant reference voltage, The circuit is a stabilized power supply circuit including an overcurrent protection circuit that controls an output current, and is characterized in that a temperature compensation circuit for the overcurrent protection circuit is connected from the reference voltage to the overcurrent protection circuit. Stabilized power supply circuit.
JP2174270A 1990-06-29 1990-06-29 Stabilized power supply circuit Expired - Fee Related JP2693853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174270A JP2693853B2 (en) 1990-06-29 1990-06-29 Stabilized power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174270A JP2693853B2 (en) 1990-06-29 1990-06-29 Stabilized power supply circuit

Publications (2)

Publication Number Publication Date
JPH0462609A true JPH0462609A (en) 1992-02-27
JP2693853B2 JP2693853B2 (en) 1997-12-24

Family

ID=15975720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174270A Expired - Fee Related JP2693853B2 (en) 1990-06-29 1990-06-29 Stabilized power supply circuit

Country Status (1)

Country Link
JP (1) JP2693853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350994A (en) * 2005-05-16 2006-12-28 Sharp Corp Stabilized dc power supply circuit
US7306834B2 (en) 2000-04-26 2007-12-11 Kao Corporation Heat insulating container
US8727206B2 (en) 2008-01-21 2014-05-20 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195519A (en) * 1988-01-29 1989-08-07 Mitsubishi Electric Corp Power supply circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195519A (en) * 1988-01-29 1989-08-07 Mitsubishi Electric Corp Power supply circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306834B2 (en) 2000-04-26 2007-12-11 Kao Corporation Heat insulating container
JP2006350994A (en) * 2005-05-16 2006-12-28 Sharp Corp Stabilized dc power supply circuit
JP4689473B2 (en) * 2005-05-16 2011-05-25 シャープ株式会社 DC stabilized power supply circuit
US8727206B2 (en) 2008-01-21 2014-05-20 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material
US9238524B2 (en) 2008-01-21 2016-01-19 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material
US9260220B2 (en) 2008-01-21 2016-02-16 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material

Also Published As

Publication number Publication date
JP2693853B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
US4350904A (en) Current source with modified temperature coefficient
US4951003A (en) Differential transconductance circuit
JPH0656571B2 (en) Voltage reference circuit with temperature compensation
JPS5866130A (en) semiconductor integrated circuit
US5181420A (en) Hot wire air flow meter
CA1105995A (en) Temperature compensated low voltage reference
US5430367A (en) Self-regulating band-gap voltage regulator
JPH0462609A (en) Stabilized power source circuit
US4774452A (en) Zener referenced voltage circuit
US4667145A (en) Voltage regulator circuit
US4851759A (en) Unity-gain current-limiting circuit
JP3060608B2 (en) Hot wire flow meter
JP3120478B2 (en) Hot wire flow meter
JP3060607B2 (en) Hot wire flow meter
JP3042040B2 (en) Hot wire flow meter
JP3330004B2 (en) DC stabilized power supply
JP3243472B2 (en) Variable attenuator
JPS5930637Y2 (en) Motor speed control circuit with temperature compensation
JP2593523Y2 (en) Feedback constant current source circuit
US6570431B2 (en) Temperature-insensitive output current limiter network for analog integrated circuit
JP2834337B2 (en) Constant voltage circuit and power supply circuit
JPH021608Y2 (en)
JPH0546096Y2 (en)
JPS6149682B2 (en)
US5336987A (en) Voltage stabilizing circuit of switching power supply circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees