JPH0461806B2 - - Google Patents
Info
- Publication number
- JPH0461806B2 JPH0461806B2 JP61085998A JP8599886A JPH0461806B2 JP H0461806 B2 JPH0461806 B2 JP H0461806B2 JP 61085998 A JP61085998 A JP 61085998A JP 8599886 A JP8599886 A JP 8599886A JP H0461806 B2 JPH0461806 B2 JP H0461806B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- aqueous solution
- apatite
- solution
- calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 40
- 239000000243 solution Substances 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 21
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 17
- 239000003456 ion exchange resin Substances 0.000 claims description 14
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 14
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229910001424 calcium ion Inorganic materials 0.000 claims description 6
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 6
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 6
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 229940043430 calcium compound Drugs 0.000 claims description 4
- 150000001674 calcium compounds Chemical class 0.000 claims description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 23
- 229910052586 apatite Inorganic materials 0.000 description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000012535 impurity Substances 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
〔産業上の利用分野〕
本発明は、バイオセラミツクス或いはクロマト
充填材料の原料として用いうる高純度ヒドロキシ
アパタイトの製造方法に関するものである。
〔従来の技術及びその問題点〕
ヒドロキシアパタイト(以下、単にアパタイト
という)の製造方法としては、乾式法或いは湿式
法などが知られているが、乾式法は多量の熱を必
要とするばかりでなく、原料中に含まれる
CaCO3やその他の不純物が製品内に残留しアパ
タイトの純度を低下させるため、残留する
CaCO3やその他の不純物の除去がやつかいな問
題となつている。
また、湿式法では、反応の過程で反応液中に存
在している炭酸物質がCaイオンと反応したり、
原料中に混在しているCaCO3やその他の不純物
が製品中に混入してアパタイトの純度を下げるな
どの問題点があつた。
〔発明の目的〕
本発明は不純物特にCaCO3の含有量が極めて
少ないアパタイトの製造方法を提供することを目
的とするものである。
〔発明の構成〕
本発明は、リン酸イオンを含有する水溶液中の
リン酸イオンを、PH6以上でカルシウム化合物の
水溶液と反応させてアパタイトを製造する方法に
おいて、リン酸イオンを含有する水溶液中のリン
酸イオンと塩化カルシウム水溶液を強基性イオン
交換樹脂層を通過せしめたカルシウムイオン含有
水溶液中のカルシウムイオンとを反応液中の全炭
酸濃度が20mg/以下の条件下で反応させること
を特徴とする高純度アパタイトの製造方法であ
る。
本発明者らは、CaCO3やその他の不純物含有
量の少ない高純度アパタイトの製法について鋭意
研究した結果、反応液中の全炭酸濃度を20mg/
以下の条件下でリン酸イオンを含有する液中のリ
ン酸イオンとカルシウム化合物とを反応させるこ
とにより高純度のアパタイトを製造しうることを
見いだした。
反応液中の全炭酸濃度を20mg/以下とするに
は、Ca化合物の水溶液を強塩基性イオン交換樹
脂層に通したCaCl2の水溶液を使用することによ
り確実に達成しうる。
即ち、Ca(OH)2の水溶液を用いる場合、大気
中のCO2を吸収し、そのままではCaCO3が大量に
生成し、不純物が増大するが、CaCl2は中性塩で
あり、これを水に溶解しても、その水溶液は大気
中のCO3を吸収することはなく、CaCO3等の不純
物を増加することもない。
一方CaCOl2水溶液を強塩基性イオン交換樹脂
で処理すると、次の反応が起こる。
CaCl2+2R−OH→Ca(OH)2+2R−Cl
この反応を密閉容器中で行えばCO2の吸収もな
く、アパタイトの製造に必要なCaイオンとOHイ
オンを同時に供給でき、しかも不純物であるClイ
オンはイオン交換樹脂に固定され、かつ、SiO2
等の不純物もイオン交換樹脂で除去しうると同時
に反応液中の全炭酸濃度を容易に20mg/以下と
することができる。
全炭酸濃度は、溶液中に溶存しているCO2、
CO3 2-或いはHCO3 -等をCO2に換算した値であ
る。
次に図面に基いて本発明の実施例を説明する。
第1図において、純水又は蒸留水にリン酸塩を溶
解したのち、N2ガスで脱気した水溶液を管1を
通して密閉反応容器2に導入し、一方、CaCl2水
溶液を管5から強塩基性イオン交換樹脂層6に通
した後密閉容器2中に導入し、撹拌機3で撹拌し
て反応させる。
CaCl2水溶液を強塩基性イオン交換樹脂層に通
すことにより、該溶液中に含有されている
CO3 2-、HCO3 -、SiO2などが除去されると共に反
応に必要なアルカリ(OH-)も供給される。
さらに必要に応じて管4を通じてNaOH溶液
等のアルカリ溶液を供給し、反応液をPH6以上、
好ましくはPH8〜9に調整する。
生成したアパタイトは、管8を通して容器底部
から排出し、乾燥して製品が得られる。反応排液
は、管7から排出される。
PHが6以下の場合にはアパタイトが生成しない
か、或いはCaHPO4が生成し易いので好ましくな
い。
密閉反応容器2の上部に空間部を設ける場合に
は窒素ガスを注入するのが好ましい。
第2図は流動反応容器を用いた例を示すもの
で、この場合、管1中でリン酸塩溶液と管5から
強塩基性イオン交換樹脂層を通して供給される
CaCl2水溶液を混合して反応器2′中に供給され
反応器2′の底部で反応が十分に進行するので、
撹拌器を用いる必要はない。また生成したアパタ
イトは分級層を形成するので、所定の高さの製品
排出管8より生成したアパタイトを排出すること
により粒径の揃つた製品を得ることができる。
リン酸塩水溶液とCaCl2水溶液は夫々別個に反
応容器2の底部に導入してもよい。
本発明において、リン酸イオン源としては
H3PO4、Na3PO4、K2HPO4、NH4H2PO4等を使
用でき、液の緩衝性を高めるためにNH4H2PO4
を用いるのが好ましい。
Ca2+及びリン酸イオンの添加率は、反応液中
のCa/P(モル比)が1.5〜1.7であることがよく、
好ましくは1.67とするのがよい。
反応に使用する水としては純水又は蒸留水を使
用しうるが、雑菌や微粒子の存在しない高品位の
アパタイトの製造する場合には超純水を使用する
のが好ましい。これらの水にリン酸イオン源を溶
解後、N2ガス等で脱気することにより、水中の
炭酸濃度を低下させるとよい。
アルカリ源としてはHaOH又はKOHの水溶液
が使用できる。
イオン交換樹脂としては、市販のゲル型の
Dowex SBR、Dowex SAR、マクロポーラス型
のMSA−1−2などの強塩基性イオン交換樹脂
を使用できる。
また、本発明におけるアパタイトはセラミツク
ス原料を対象としているので微細なものが要求さ
れることが多いが、若し粗大な結晶や造粒物が要
求される場合には、本発明で製造された高純度の
アパタイトを種晶して高温下に循環使用して結晶
の成長を図つてもよい。
実施例 1
純水にリン酸アンモニウムをリンとして1000
mg/になるように溶解し、N2ガスで脱気し水
中の炭酸濃度を5mg/以下としたのち、通水量
1m2/日の割合で4の密閉反応容器に供給し
た。一方強塩基性イオン交換樹脂(Dowex
SBR、20〜45メツシユ)40を充填した塔に7
%CaCl2溶液(溶媒・純水)を100c.c./水、SV=
1.0/時で流過せしめ、該流出液も前記密閉反応
容器に供給した。そして、密閉反応容器内の反応
液のPHが8.5となるように1%NaOH水溶液を注
入しつゝ80mmφ×40mmの羽根で15r.p.m.で撹拌し
て反応させてアパタイトを製造した。この時の反
応液中の全炭酸濃度は5mg/以下であつた。
実施例 2
密閉反応容器を使用することなく、開放反応容
器を使用した以外は実施例1と同様にアパタイト
を製造した。この時の反応液中の全炭酸濃度は18
mg/であつた。
比較例 1
純水の代りに水道水を使用した以外は実施例1
と同様にアパタイトを製造した。この時の反応液
中の全炭酸濃度は30mg/であつた。
比較例 2
CaCl2溶液を強塩基性イオン交換樹脂塔に通す
ことなくそのまゝ使用し、かつ純水の代りに水道
水を用い、開放反応容器を使用した以外は実施例
1と同様にアパタイトを製造した。この時の反応
液中の全炭酸濃度は40mg/であつた。
実施例1及び2並びに比較例1及び2で製造し
た反応生成物を抜き出しN2ガスの存在下に100℃
で2時間乾燥した後その組成を分析した。分析結
果を表−1に示す。
[Industrial Application Field] The present invention relates to a method for producing high-purity hydroxyapatite that can be used as a raw material for bioceramics or chromatograph packing materials. [Prior art and its problems] Dry methods and wet methods are known as methods for producing hydroxyapatite (hereinafter simply referred to as apatite), but the dry method not only requires a large amount of heat but also , contained in raw materials
Remaining because CaCO3 and other impurities remain in the product and reduce the purity of apatite
Removal of CaCO 3 and other impurities has become a difficult problem. In addition, in the wet method, carbonate substances present in the reaction solution react with Ca ions during the reaction process.
There were problems such as CaCO 3 and other impurities mixed in the raw materials entering the product and reducing the purity of the apatite. [Object of the Invention] An object of the present invention is to provide a method for producing apatite having an extremely low content of impurities, particularly CaCO 3 . [Structure of the Invention] The present invention provides a method for producing apatite by reacting phosphate ions in an aqueous solution containing phosphate ions with an aqueous solution of a calcium compound at a pH of 6 or higher. It is characterized by reacting phosphate ions and calcium ions in a calcium ion-containing aqueous solution obtained by passing a calcium chloride aqueous solution through a strongly basic ion exchange resin layer under conditions where the total carbonate concentration in the reaction solution is 20 mg/or less. This is a method for producing high-purity apatite. As a result of intensive research into the production method of high-purity apatite with low content of CaCO 3 and other impurities, the present inventors determined that the total carbon dioxide concentration in the reaction solution was 20mg/
We have discovered that highly pure apatite can be produced by reacting phosphate ions in a solution containing phosphate ions with calcium compounds under the following conditions. The total carbon dioxide concentration in the reaction solution can be reliably achieved by using an aqueous solution of CaCl 2 obtained by passing an aqueous solution of a Ca compound through a layer of a strongly basic ion exchange resin. In other words, when using an aqueous solution of Ca(OH) 2 , CO 2 in the atmosphere is absorbed, and if left as is, a large amount of CaCO 3 is produced, increasing the amount of impurities. However, CaCl 2 is a neutral salt, and when dissolved in water Even when dissolved in water, the aqueous solution does not absorb CO 3 from the atmosphere and does not increase impurities such as CaCO 3 . On the other hand, when an aqueous solution of CaCOl 2 is treated with a strongly basic ion exchange resin, the following reaction occurs. CaCl 2 +2R−OH → Ca(OH) 2 +2R−Cl If this reaction is carried out in a closed container, there will be no absorption of CO 2 , and the Ca ions and OH ions necessary for the production of apatite can be supplied at the same time, and they are free from impurities. Cl ions are fixed on the ion exchange resin and SiO 2
These impurities can be removed using an ion exchange resin, and at the same time, the total carbonic acid concentration in the reaction solution can be easily reduced to 20 mg/or less. The total carbon dioxide concentration is the CO 2 dissolved in the solution,
This is the value obtained by converting CO 3 2- or HCO 3 - etc. to CO 2 . Next, embodiments of the present invention will be described based on the drawings.
In FIG. 1, after dissolving phosphate in pure or distilled water, the aqueous solution degassed with N 2 gas is introduced into a sealed reaction vessel 2 through tube 1, while the CaCl 2 aqueous solution is introduced into a strong base through tube 5. After passing through a ion exchange resin layer 6, the mixture is introduced into a closed container 2, and stirred with a stirrer 3 to react. By passing an aqueous solution of CaCl 2 through a layer of strongly basic ion exchange resin,
CO 3 2− , HCO 3 − , SiO 2 , etc. are removed, and alkali (OH − ) necessary for the reaction is also supplied. Furthermore, if necessary, an alkaline solution such as NaOH solution is supplied through tube 4 to adjust the reaction solution to a pH of 6 or higher.
Preferably the pH is adjusted to 8-9. The generated apatite is discharged from the bottom of the container through the tube 8 and dried to obtain a product. The reaction waste liquid is discharged from pipe 7. If the pH is 6 or less, apatite is not generated or CaHPO 4 is easily generated, which is not preferable. When providing a space above the closed reaction vessel 2, it is preferable to inject nitrogen gas. Figure 2 shows an example using a flow reactor, in which the phosphate solution is fed in tube 1 and the phosphate solution is fed from tube 5 through a bed of strongly basic ion exchange resin.
The CaCl 2 aqueous solution is mixed and fed into the reactor 2', and the reaction proceeds sufficiently at the bottom of the reactor 2'.
There is no need to use a stirrer. Further, since the generated apatite forms a classification layer, a product with uniform particle size can be obtained by discharging the generated apatite from the product discharge pipe 8 at a predetermined height. The phosphate aqueous solution and the CaCl 2 aqueous solution may be introduced separately into the bottom of the reaction vessel 2. In the present invention, the phosphate ion source is
H 3 PO 4 , Na 3 PO 4 , K 2 HPO 4 , NH 4 H 2 PO 4 etc. can be used, and NH 4 H 2 PO 4 can be used to increase the buffering properties of the solution.
It is preferable to use The addition rate of Ca 2+ and phosphate ions is preferably such that Ca/P (molar ratio) in the reaction solution is 1.5 to 1.7.
Preferably it is 1.67. Although pure water or distilled water can be used as water for the reaction, it is preferable to use ultrapure water when producing high-grade apatite free of germs and fine particles. After dissolving the phosphate ion source in these waters, it is preferable to reduce the carbon dioxide concentration in the water by degassing with N 2 gas or the like. As an alkali source, an aqueous solution of HaOH or KOH can be used. As an ion exchange resin, commercially available gel type
Strongly basic ion exchange resins such as Dowex SBR, Dowex SAR, and macroporous type MSA-1-2 can be used. Furthermore, since the apatite used in the present invention is intended as a ceramic raw material, it is often required to be fine, but if coarse crystals or granules are required, the apatite produced in the present invention may be Seed crystals of pure apatite may be circulated and used at high temperatures to grow crystals. Example 1 Add ammonium phosphate to pure water as phosphorus to 1000
After dissolving the water in an amount of 1 m 2 /day and degassing with N 2 gas to reduce the carbon dioxide concentration in the water to 5 mg/day or less, the water was supplied to the sealed reaction vessel No. 4 at a rate of 1 m 2 /day. On the other hand, strongly basic ion exchange resin (Dowex
SBR, 20-45 mesh) into a tower filled with 40
%CaCl 2 solution (solvent/pure water) at 100c.c./water, SV=
It was allowed to flow through at a rate of 1.0/hour, and the effluent was also fed to the closed reaction vessel. Then, a 1% NaOH aqueous solution was injected so that the pH of the reaction solution in the sealed reaction container was 8.5, and the reaction was carried out by stirring at 15 rpm with a blade of 80 mmφ x 40 mm to produce apatite. The total carbon dioxide concentration in the reaction solution at this time was 5 mg/or less. Example 2 Apatite was produced in the same manner as in Example 1 except that an open reaction vessel was used instead of a closed reaction vessel. The total carbon dioxide concentration in the reaction solution at this time was 18
mg/. Comparative Example 1 Example 1 except that tap water was used instead of pure water
Apatite was produced in the same manner. The total carbon dioxide concentration in the reaction solution at this time was 30 mg/. Comparative Example 2 Apatite was produced in the same manner as in Example 1, except that the CaCl 2 solution was used as it was without passing it through the strongly basic ion exchange resin tower, tap water was used instead of pure water, and an open reaction vessel was used. was manufactured. The total carbon dioxide concentration in the reaction solution at this time was 40 mg/. The reaction products produced in Examples 1 and 2 and Comparative Examples 1 and 2 were extracted and heated at 100°C in the presence of N2 gas.
After drying for 2 hours, its composition was analyzed. The analysis results are shown in Table-1.
【表】
実施例 4
実施例1において反応容器中に重炭酸ソーダを
添加することにより炭酸濃度を変化させて得られ
た製品の組成を表−2に示す。[Table] Example 4 Table 2 shows the composition of the product obtained by changing the carbonic acid concentration by adding sodium bicarbonate into the reaction vessel in Example 1.
本発明によれば、CaCO3やその他の不純物含
有量の少ない高純度とアパタイトを製造できるの
で、各種生体材料やクロマトの充填材として好適
な材料を提供しうる。
According to the present invention, high-purity apatite with low content of CaCO 3 and other impurities can be produced, making it possible to provide materials suitable for various biological materials and chromatograph fillers.
第1図及び第2図は夫々本発明の反応を実施す
る反応装置の概略図であつて、第1図は密閉式反
応容器を使用した装置の概略図、第2図は流動反
応容器を使用した装置の概略図を示す。
1……リン酸塩溶液供給管、2……密閉反応容
器、2′……流動反応容器、3……撹拌機、4…
…アルカリ溶液供給管、5……カルシウム溶液供
給管、6……強塩基性イオン交換樹脂層、8……
アパタイト排出管。
Figures 1 and 2 are schematic diagrams of a reaction apparatus for carrying out the reaction of the present invention, respectively, in which Figure 1 is a schematic diagram of an apparatus using a closed reaction vessel, and Figure 2 is a schematic diagram of an apparatus using a fluidized reaction vessel. A schematic diagram of the device is shown. 1... Phosphate solution supply pipe, 2... Sealed reaction vessel, 2'... Fluid reaction vessel, 3... Stirrer, 4...
... Alkaline solution supply pipe, 5 ... Calcium solution supply pipe, 6 ... Strong basic ion exchange resin layer, 8 ...
Apatite drainage tube.
Claims (1)
オンを、PH6以上でカルシウム化合物と反応させ
てヒドロキシアパタイトを製造する方法におい
て、リン酸イオンを含有する水溶液中のリン酸イ
オンと、塩化カルシウム水溶液を強塩基性イオン
交換樹脂層を通過せしめたカルシウムイオン含有
水溶液中のカルシウムイオンとを反応液中の全炭
酸濃度が20mg/以下の条件下で反応させること
を特徴とする高純度ヒドロキシアパタイトの製造
方法。 2 反応を密閉容器中で行なう特許請求の範囲第
1項又は第2項記載の高純度ヒドロキシアパタイ
トの製造方法。 3 反応液中の全炭酸濃度10mg/以下の条件下
で反応を行う特許請求の範囲第1項、第2項又は
第3項記載の高純度ヒドロキシアパタイトの製造
方法。[Scope of Claims] 1. A method for producing hydroxyapatite by reacting phosphate ions in an aqueous solution containing phosphate ions with a calcium compound at pH 6 or higher, wherein the phosphate ions in an aqueous solution containing phosphate ions are reacted with a calcium compound at pH 6 or higher. and calcium ions in a calcium ion-containing aqueous solution obtained by passing a calcium chloride aqueous solution through a strongly basic ion exchange resin layer under conditions where the total carbonate concentration in the reaction solution is 20 mg/or less. Method for producing pure hydroxyapatite. 2. The method for producing high-purity hydroxyapatite according to claim 1 or 2, wherein the reaction is carried out in a closed container. 3. The method for producing high-purity hydroxyapatite according to claim 1, 2 or 3, wherein the reaction is carried out under conditions where the total carbonate concentration in the reaction solution is 10 mg/or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8599886A JPS62260707A (en) | 1986-04-16 | 1986-04-16 | Production of high purity hydroxyapatite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8599886A JPS62260707A (en) | 1986-04-16 | 1986-04-16 | Production of high purity hydroxyapatite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62260707A JPS62260707A (en) | 1987-11-13 |
JPH0461806B2 true JPH0461806B2 (en) | 1992-10-02 |
Family
ID=13874319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8599886A Granted JPS62260707A (en) | 1986-04-16 | 1986-04-16 | Production of high purity hydroxyapatite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62260707A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5676976A (en) * | 1995-05-19 | 1997-10-14 | Etex Corporation | Synthesis of reactive amorphous calcium phosphates |
JP2014177399A (en) * | 2014-04-28 | 2014-09-25 | Asahi Kasei Chemicals Corp | Recovery phosphorus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645814A (en) * | 1979-09-25 | 1981-04-25 | Kureha Chem Ind Co Ltd | Hydroxyapatite, its ceramic material and its manufacture |
-
1986
- 1986-04-16 JP JP8599886A patent/JPS62260707A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645814A (en) * | 1979-09-25 | 1981-04-25 | Kureha Chem Ind Co Ltd | Hydroxyapatite, its ceramic material and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS62260707A (en) | 1987-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2519037C2 (en) | Production of calcium carbonate with surface subjected to reactive processing and it application | |
JP5201454B2 (en) | Phosphorus recovery material and phosphorus recovery method | |
US8246836B2 (en) | Process for treating substances contaminated by heavy metals | |
US4355014A (en) | Stable calcium hypochlorite composition and method for manufacture thereof | |
KR20170008261A (en) | Process for producing a calcium phosphate reactant, reactant obtained and use thereof in the purification of liquid effluents | |
JPS6317771B2 (en) | ||
JP2019136703A (en) | Manufacturing method of adsorbent containing fine hydrotalcite | |
JPS62183898A (en) | Method for dephosphorization of sewage containing phosphorus | |
Maree et al. | Neutralizing coal mine effluent with limestone to decrease metals and sulphate concentrations | |
US3701737A (en) | Sodium carbonate-sodium bicarbonate agglomerates | |
JP2009034564A (en) | Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same | |
JPH0461806B2 (en) | ||
EP0692452B1 (en) | Amorphous aluminosilicate and process for producing the same | |
KR20040007383A (en) | Lime and Organic Lime Fertilizer Utilizing Lime Sludge and Organic Wastes and Its Manufacturing Method | |
JP4084751B2 (en) | Method for producing precipitated calcium carbonate from industrial by-products containing high concentrations of calcium carbonate | |
JPS62260708A (en) | Production of high purity hydroxyapatite | |
CA2138259A1 (en) | Process for the removal of phosphorous | |
JPH0649574B2 (en) | Method for producing fine cubic calcium carbonate | |
JPS62250990A (en) | Treatment of waste water containing phosphate ion | |
JPH08206443A (en) | Acidic gas absorbent and production thereof | |
US2643226A (en) | Water fluoridation and impurity coagulation | |
JP3627988B2 (en) | Dephosphorization material and dephosphorization method using the same | |
CA2196124C (en) | Process for preparing colloidal calcium carbonate by particle size | |
Judkins Jr et al. | Crystal‐Seed Conditioning of Lime‐Softening Sludge | |
DE3908054C2 (en) |