[go: up one dir, main page]

JPH045899A - Manufacture of electromagnetic-shield printed wiring board - Google Patents

Manufacture of electromagnetic-shield printed wiring board

Info

Publication number
JPH045899A
JPH045899A JP10537390A JP10537390A JPH045899A JP H045899 A JPH045899 A JP H045899A JP 10537390 A JP10537390 A JP 10537390A JP 10537390 A JP10537390 A JP 10537390A JP H045899 A JPH045899 A JP H045899A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
semi
cured resin
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10537390A
Other languages
Japanese (ja)
Inventor
Takeo Kaneoka
金岡 威雄
Norio Sayama
憲郎 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10537390A priority Critical patent/JPH045899A/en
Priority to US07/689,428 priority patent/US5173150A/en
Priority to DE4113231A priority patent/DE4113231A1/en
Publication of JPH045899A publication Critical patent/JPH045899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PURPOSE:To improve insulating properties and chemical resistance by forming a printed wiring network to a semirigid resin copper-clad laminated board and using a printed wiring board, in which a conductor surface and a substrate surface are formed on approximately the same plane through press molding. CONSTITUTION:Printed wiring patterns 4 are formed onto a semirigid resin copper-clad laminated board through an etching method, and press-molded at specified temperature and surface pressure, thus obtaining a smooth printed board 1. The required section of the printed board 1 is coated with an insulating layer 2 through a screen printing method, the insulating layer 2 is heated and semi-hardened, and conductive paints are printed and cured similarly, thus shaping an electromagnetic shield layer 3. Accordingly, the insulating layer of an electromagnetic-shield printed wiring board is formed uniformly, thus improving insulating properties and chemical resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、信頼性に優れた電気絶縁層上に電磁波シール
ド層を形成することを可能とした新規な電磁波シールド
プリント配線板の製造法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a novel method for manufacturing an electromagnetic shielding printed wiring board that makes it possible to form an electromagnetic shielding layer on an electrically insulating layer with excellent reliability. be.

〔従来の技術およびその課題〕[Conventional technology and its problems]

従来、プリント配線板の電磁波シールド対策の1つの方
法として、通常のプリント配線パターン形成技術により
プリント配線パターンを形成した後、その必要部分に絶
縁層を形成し、さらにその上に導電層を形成する簡易電
磁波シールド対策プリント配線板の製造法が提案されて
いる。
Conventionally, one method for electromagnetic shielding of printed wiring boards is to form a printed wiring pattern using normal printed wiring pattern formation technology, then form an insulating layer on the necessary parts, and then form a conductive layer on top of it. A method for manufacturing a simple electromagnetic shielding printed wiring board has been proposed.

この方法は、絶縁塗料の塗布、印刷などした後硬化させ
ることにより電気絶縁縁層を形成するものであるが、こ
の絶縁層を形成する際、銅箔の回路が絶縁樹脂基板表面
から盛り上がったものであるために、銅箔パターンの端
部において、絶縁層の極端に薄い部分が生じやすい。
This method forms an electrically insulating edge layer by applying insulating paint, printing, etc. and then curing it. When forming this insulating layer, the copper foil circuit is raised from the surface of the insulating resin substrate. Therefore, extremely thin portions of the insulating layer tend to occur at the ends of the copper foil pattern.

このような絶縁層の薄い部分の上に、アースとなる導電
層を形成すると、プリント配線の信号線とアースとの距
離が近くなり、高周波がアース線に洩れやすくなり、最
悪の場合、実質的にプリント信号線とアースとが短絡し
たと同じ状態となるものであった。
If a conductive layer that serves as a ground is formed on top of such a thin insulating layer, the distance between the signal line of the printed wiring and the ground will become closer, making it easier for high frequencies to leak into the ground line, and in the worst case, there will be a substantial The situation was the same as if the printed signal line and ground were short-circuited.

一方、現在、積層板の生産性などの目的で連続法による
積層板の製造法が注目されている。この方法の場合、短
時間プレスの使用が生産性の点から要求されるものであ
ったが、従来の多段プレス法に用いているプリプレグ、
或いはそれに触媒などを多く加えたものを使用し、加熱
温度などを変更して、短時間のプレス成形で完全に硬化
した積層板とした場合、従来の多段プレスに比較して耐
薬品性などの物性が劣ったものとなる欠点があつた。
On the other hand, currently, a method for manufacturing laminates using a continuous method is attracting attention for the purpose of improving the productivity of laminates. In the case of this method, the use of a press for a short time was required from the viewpoint of productivity, but the prepreg used in the conventional multi-stage press method,
Alternatively, if you add a large amount of catalyst, etc., and change the heating temperature to create a laminate that is completely cured in a short time press molding, it will have better chemical resistance than conventional multi-stage presses. The drawback was that the physical properties were inferior.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、電磁波シールドプリント配線板の製造法
について、上記した課題を解決する方法について鋭意検
討した結果、連続法による積層板の製造法を半硬化樹脂
積層板の製造法として活かす方法と組み合わせることに
より、上記の課題が容易に解決可能であることを見出し
、本発明を完成するに至った。
The inventors of the present invention have intensively studied methods for solving the above-mentioned problems regarding the manufacturing method of electromagnetic shielding printed wiring boards, and have found a method of utilizing the continuous method for manufacturing laminates as a method for manufacturing semi-cured resin laminates. The inventors have found that the above problems can be easily solved by combining the above methods, and have completed the present invention.

すなわち、本発明は、プリント配線板の所望部分に電気
絶縁層、さらにその上に電気導電層を形成する電磁波シ
ールドプリント配線板の製造法において、該プリント配
線板として半硬化樹脂銅張積層板にプリント配線網を形
成した後、プレス成形して導体表面と基板表面とが略同
一平面上とされたプリント配線板(以下、平滑プリント
板と記す)を用いることを特徴とする電磁波シールドプ
リント配線板の製造法であり、該半硬化樹脂銅張積層板
が、銅箔の剥離強度が0.2kg/cm以上で完全硬化
時の90%以下の範囲となるように加熱加圧してなるも
のであること、該半硬化樹脂銅張積層板が、銅箔と基材
との間に少なくとも厚み20P以上の半硬化樹脂層を有
するものであること、該半硬化樹脂銅張積層板が、ダブ
ルベルトプレス法による連続プレスで製造されたもの或
いは一対の熱盤間で1枚の積層板をプレス成形する回分
速続プレス成形法により製造したものであることを特徴
とする電磁波シールドプリント配線板の製造法である。
That is, the present invention provides a method for manufacturing an electromagnetic shielding printed wiring board in which an electrically insulating layer is formed on a desired portion of the printed wiring board and an electrically conductive layer is formed thereon. An electromagnetic shielding printed wiring board characterized by using a printed wiring board (hereinafter referred to as a smooth printed wiring board) in which a printed wiring network is formed and then press-molded so that the conductor surface and the substrate surface are substantially on the same plane. This is a manufacturing method in which the semi-cured resin copper-clad laminate is heated and pressurized so that the peel strength of the copper foil is 0.2 kg/cm or more and 90% or less of fully cured. In particular, the semi-cured resin copper-clad laminate has a semi-cured resin layer with a thickness of at least 20 P between the copper foil and the base material, and the semi-cured resin copper-clad laminate has a double belt press. A method for manufacturing an electromagnetic shielding printed wiring board, characterized in that the board is manufactured by continuous pressing by a method or by a batch rapid press molding method in which a single laminate is press-formed between a pair of hot platens. It is.

まず、本発明の平滑プリント板の製造に用いる半硬化樹
脂銅張積層板は、銅箔の剥離強度が0.2kg/印以上
、好ましくは0.3kg/cm以上で完全硬化後の剥離
強度の90%以下の範囲のものである。
First, the semi-cured resin copper-clad laminate used for manufacturing the smooth printed board of the present invention has a peel strength of copper foil of 0.2 kg/mark or more, preferably 0.3 kg/cm or more, and has a peel strength after complete curing. It is in the range of 90% or less.

この銅箔剥離強度の目安はマトリックス樹脂として熱硬
化性樹脂主体の組成物を使用した場合には、そのガラス
転位温度からも把握出来るものであって、マトリックス
樹脂のガラス転位温度(TgSoC)/完全硬化後のマ
トリックス樹脂のガラス転位温度Tgf′C)−0,5
5〜0.90の範囲に相当する。特に、有機溶剤型のレ
ジスト剥離液を用いるプリント配線パターンを形成法で
は、Tg’/Tg”=0.65〜0.85程度の範囲が
好ましい。また、銅箔と基材との間に樹脂層が20−以
上存在するように例えば接着剤付き銅箔や樹脂層形成プ
リプレグを使用すること、銅箔接着部に不織布プリプレ
グを用いること等によって硬化度の高い場合にも、パタ
ーンの埋め込み性を改善したものが望ましい。ここに、
銅箔剥離強度が0.2kg/cm未満では、プリント配
線網を形成することが困難であり好ましくなく、完全硬
化後の剥離強度の90%を超えると硬化が進み過ぎて、
製造したプリント配線網を加熱加圧により絶縁樹脂層中
に埋め込むことが困難となるので好ましくない。なお、
従来の多段プレス用エポキシプリプレグを使用した場合
、200°Cでは、1〜3分間の加熱で銅箔の剥離強度
が0.3〜1.5kg/cm(完全硬化後の銅箔剥離強
度2.0kg/c+n以上)、Tg3/Tg’ =0.
70〜0.85程度となり、又、180°Cでは2〜4
分間の加熱で、剥離強度が0.4〜1.0kg/cm、
、Tg’/Tg’ = 0.6〜0.75程度となるも
のである。なお、使用する樹脂としては従来のものでよ
く、ポリエステル系、エポキシ系、ポリイミド系、シア
ン酸エステル系など特に限定されない。
When a thermosetting resin-based composition is used as the matrix resin, the standard for copper foil peel strength can be determined from the glass transition temperature of the matrix resin (glass transition temperature (TgSoC)/complete Glass transition temperature of matrix resin after curing Tgf'C) -0,5
This corresponds to a range of 5 to 0.90. In particular, in the method of forming a printed wiring pattern using an organic solvent type resist stripper, Tg'/Tg'' is preferably in the range of about 0.65 to 0.85. For example, by using adhesive-coated copper foil or resin layer prepreg so that the number of layers is 20 or more, or by using nonwoven fabric prepreg for the copper foil bonding part, the embeddability of the pattern can be improved even when the degree of curing is high. An improved version is desirable.Here,
If the copper foil peel strength is less than 0.2 kg/cm, it is difficult to form a printed wiring network, which is not preferable, and if it exceeds 90% of the peel strength after complete curing, curing will progress too much.
This is not preferred because it becomes difficult to embed the manufactured printed wiring network in the insulating resin layer by heating and pressurizing. In addition,
When using conventional epoxy prepreg for multi-stage presses, at 200°C, the peel strength of the copper foil is 0.3 to 1.5 kg/cm after heating for 1 to 3 minutes (the peel strength of the copper foil after complete curing is 2.5 kg/cm). 0kg/c+n or more), Tg3/Tg' = 0.
It becomes about 70 to 0.85, and at 180°C it becomes about 2 to 4.
Peel strength is 0.4-1.0 kg/cm after heating for 1 minute.
, Tg'/Tg' = about 0.6 to 0.75. Note that the resin used may be any conventional resin, and is not particularly limited, such as polyester, epoxy, polyimide, cyanate ester, etc.

本発明のプリント配線網の形成は、従来の半硬化樹脂銅
張積層板を使用してプリント配線網を形成する方法でよ
い。しかしながら、本発明の好適な製造法で製造された
半硬化樹脂銅張積層板を使用する場合、その硬化度のバ
ラツキが従来に比較して大幅に小さいものであることか
ら、従来に比較してより厳しい条件が使用可能である。
The printed wiring network of the present invention may be formed by a conventional method of forming a printed wiring network using a semi-cured resin copper clad laminate. However, when using a semi-cured resin copper-clad laminate manufactured by the preferred manufacturing method of the present invention, the variation in the degree of curing is significantly smaller than that of the conventional method. More stringent conditions are available.

上記により製造した導体層が基板樹脂面より盛り上がっ
たプリント配線板をプレス成形して、プリント配線導体
層を絶縁層中に埋め込みする。
The printed wiring board in which the conductor layer manufactured as described above is raised above the resin surface of the substrate is press-molded, and the printed wiring conductor layer is embedded in the insulating layer.

埋め込みに使用する条件としては、従来の平滑プリント
板(・フラッシュサーキット)の製法と同様でよいが、
本発明の好適な製造法による半硬化樹脂積層板の場合、
基本的には1回1枚プレスであることから、樹脂の半硬
化度のバラツキ範囲が小さいものであり、従来よりも低
い圧力の使用が可能である。また、埋め込みは、従来の
フラシュサーキットに比較して不十分であっても特に問
題なく本発明においては使用可能であり、例えば、基板
の絶縁樹脂表面とのギャップが10μm1程度以下であ
れば、絶縁塗料層の厚みが薄くなる問題は実質的にない
ものである。
The conditions used for embedding may be the same as those for manufacturing conventional smooth printed boards (flash circuits), but
In the case of a semi-cured resin laminate manufactured by the preferred manufacturing method of the present invention,
Since basically one sheet is pressed at a time, the range of variation in the degree of semi-curing of the resin is small, and it is possible to use a lower pressure than in the past. Furthermore, even if the embedding is insufficient compared to conventional flash circuits, it can be used in the present invention without any particular problem. For example, if the gap between the substrate and the insulating resin surface is about 10 μm or less, the insulating There is virtually no problem of thinning of the paint layer.

以上の二つの条件から、本発明に用いるフラシュサーキ
ットは極めて生産性よく製造可能であることが理解され
るものである。
From the above two conditions, it is understood that the flash circuit used in the present invention can be manufactured with extremely high productivity.

次に、この平滑プリント板の所要部分に絶縁層を形成し
、さらにその上に電磁波シールド用の導電層を形成する
Next, an insulating layer is formed on required portions of this smooth printed board, and a conductive layer for shielding electromagnetic waves is further formed thereon.

絶縁層の形成法は、熱硬化性の絶縁塗料、例えばソルダ
ーレジスト用の塗料などをスクリーン印刷法などにより
所要部分に選択的に形成し、硬化する方法:光硬化可能
な絶縁性樹脂を用い、デイプ、刷毛塗り、ロールコート
、スクリーン印刷などで全面に塗布層を形成し、露光・
現像などして所要部分を残し、硬化させる方法などによ
り形成する。ここに、絶縁層の厚さは、高周波信号など
が漏れ出さない厚さとすればよく、パターン導体が埋め
込まれていることからパターン角部分が薄くなることな
どを考慮する必要がなく、信頼性の高い厚み一定の層を
形成できるものである。
The method for forming the insulating layer is to selectively form a thermosetting insulating paint, such as a paint for solder resist, on the required areas using a screen printing method, etc., and then harden it: using a photocurable insulating resin, A coating layer is formed on the entire surface by dipping, brushing, roll coating, screen printing, etc., and then exposed to light.
It is formed by a method such as developing, leaving a required portion and curing it. Here, the thickness of the insulating layer only needs to be a thickness that does not allow high-frequency signals to leak out, and since the pattern conductor is embedded, there is no need to consider thinning of the pattern corners, which improves reliability. It is possible to form a layer with a high constant thickness.

電磁波シールド用の導電層は、従来のカーボン系、銅系
、銀系などの導電性塗料を用いてスクリーン印刷などに
より行うのが一般的であるが、所望に応じて、その他の
方法、例えば気相メツキ法、無電解メツキ法などを用い
ることもできる。
The conductive layer for electromagnetic shielding is generally formed by screen printing using conventional carbon-based, copper-based, silver-based, etc. conductive paint, but if desired, other methods such as air conditioning can be applied. A phase plating method, an electroless plating method, etc. can also be used.

〔実施例] 以上、本発明の詳細な説明したが、添付の図面を使用し
て、実施例を説明する。
[Example] The present invention has been described in detail above, and an example will be described using the accompanying drawings.

第F図は本発明の平滑プリント板を用いた電磁波シール
ドプリント配線板の断面図の一例であり、第2図は従来
の導体箔が基板表面に突出したプリント配線板を使用し
た場合の電磁波シールドプリント配線板の断面図の例で
ある。
Figure F is an example of a cross-sectional view of an electromagnetic shielding printed wiring board using the smooth printed board of the present invention, and Figure 2 is an example of electromagnetic shielding when using a conventional printed wiring board with conductive foil protruding from the board surface. It is an example of a cross-sectional view of a printed wiring board.

第1図において、ガラス不織布(100g/n()を用
いて得たガラス不織布エポキシ樹脂プリプレグを3枚、
その両面にガラス織布エポキシ樹脂プリプレグ1枚づつ
重ね、さらにその両側の最外層にそれぞれ厚み35−の
銅箔を重ね、ダブルベルトプレスに連続的に送り込んで
温度200°C1圧力50kg/ciで1分間加熱加圧
成形を行い、銅箔の接着力が0.85kg/cm、ガラ
ス転移温度 92°C(完全硬化後=136°C)の半
硬化樹脂銅張積層板を用いた。
In Fig. 1, three sheets of glass nonwoven fabric epoxy resin prepreg obtained using glass nonwoven fabric (100 g/n ()),
One layer of glass woven epoxy resin prepreg was layered on both sides, and copper foil with a thickness of 35 mm was layered on the outermost layer on both sides, and the layers were continuously fed into a double belt press at a temperature of 200°C and a pressure of 50kg/ci. A semi-cured resin copper-clad laminate with a copper foil adhesive strength of 0.85 kg/cm and a glass transition temperature of 92°C (after complete curing = 136°C) was heated and pressure-molded for a minute.

この半硬化樹脂銅張積層板にエツチング法によりプリン
ト配線パターン〔4〕を形成した後、温度ITO’C1
面圧75kg/c−にてプレス成形し平滑プリント板〔
1〕を得た。なお、エツチング時、パターンの接着不良
に基づく剥離等のトラブルはなく、又、埋め込みによる
ギャップも5(nn以下であった。
After forming a printed wiring pattern [4] on this semi-cured resin copper-clad laminate by an etching method, it was heated to a temperature of ITO'C1.
Press-formed with a surface pressure of 75 kg/c- to create a smooth printed board [
1] was obtained. During etching, there were no problems such as peeling due to poor adhesion of the pattern, and the gap due to embedding was less than 5 (nn).

ついで、この平滑プリント板の所要部分にスクリーン印
刷法にて、絶縁層〔2〕を厚さ60岬で塗布し、加熱し
半硬化させた後、導電塗料を同様に厚さ30ItWlで
印刷し、硬化させて電磁波シールド層〔3〕を形成した
Next, an insulating layer [2] was applied to the required portions of this smooth printed board using a screen printing method to a thickness of 60 cape, and after heating and semi-curing, a conductive paint was similarly printed to a thickness of 30 ItWl. It was cured to form an electromagnetic shielding layer [3].

得られた電磁波シールドプリント配線板の絶縁層は、均
一に形成され、さらに、導電層も極めて均一に形成され
たものであった。
The insulating layer of the obtained electromagnetic shield printed wiring board was formed uniformly, and the conductive layer was also formed extremely uniformly.

これに対して、第2図においては、従来のプリン1−配
線板〔1〕の所要部分にスクリーン印刷法にて、絶縁層
(2〕を厚さ60/7mで塗布し、加熱し半硬化させた
後、導電塗料を同様に厚さ30−で印刷し、硬化させて
電磁波シールド層〔3〕を形成したものである。この場
合、プリント配線パターン〔4〕と絶縁基板表面との間
に351のギャップ〔5〕が有る。そのため、所要部分
の表面に略均−に塗布された絶縁塗料は、このギャップ
部分で凹んだ絶縁基板表面側に流れ出し、場合によって
はこの部分を極端に薄くするものであることが理解され
る。また、凹凸のため、均一な塗布が困難であることか
ら、場合によってはこの角部分にピンホールなども生じ
やすくなることが容易に理解される。
On the other hand, in Fig. 2, an insulating layer (2) is applied to a thickness of 60/7 m using a screen printing method on the required parts of the conventional printer 1 - wiring board [1], and is heated to semi-cure. After that, a conductive paint was similarly printed to a thickness of 30 mm and cured to form an electromagnetic shielding layer [3].In this case, there was a layer between the printed wiring pattern [4] and the surface of the insulating substrate. There is a gap [5] of 351 mm.Therefore, the insulating paint applied approximately evenly to the surface of the required part flows out to the recessed insulating substrate surface side at this gap part, and in some cases, this part becomes extremely thin. Furthermore, it is easily understood that since uniform application is difficult due to the unevenness, pinholes are likely to occur at these corners in some cases.

〔発明の作用および効果] 以上、発明の詳細な説明などから明らかなように、本発
明の半硬化樹脂銅張板を用いて平滑プリント板(−フラ
シュサーキット)を製造し、電磁波シールド層を形成す
る方法は、電磁波シールド層を形成するために必須の電
気絶縁層が厚み一定で均一に形成可能であることから、
極めて信頼性に優れた電磁波シールドプリント配線板を
製造する方法を提供できるものである。
[Operations and Effects of the Invention] As is clear from the detailed description of the invention, etc., a smooth printed board (-flash circuit) was manufactured using the semi-cured resin copper clad board of the present invention, and an electromagnetic shielding layer was formed. This method allows the electrical insulating layer, which is essential for forming the electromagnetic shielding layer, to be formed uniformly and with a constant thickness.
It is possible to provide a method for manufacturing an electromagnetic shielding printed wiring board with extremely high reliability.

また、本発明において好適に使用される半硬化樹脂銅張
積層板は、ダブルベルトプレス法や1回1枚の積層板を
回分連続的に積層成形する方法によって製造されたもの
であることから、樹脂の硬化度のバラツキが小さく、エ
ツチング、埋め込みなどが極めて容易であるものである
In addition, since the semi-cured resin copper-clad laminate preferably used in the present invention is manufactured by a double belt press method or a method of continuously laminating one laminate at a time, There is little variation in the degree of curing of the resin, and etching, embedding, etc. are extremely easy.

この結果、電磁波シールドプリント配線板を信頼性よく
、高い生産性で提供可能なものであり、その工業的意義
は大きいものである。
As a result, it is possible to provide an electromagnetic shielding printed wiring board with good reliability and high productivity, which has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の平滑プリント板を用いた電磁波シール
ドプリント配線板の断面図の一例であり、第2図は従来
の導体箔が基板表面に突出したプリント配線板を使用し
た場合の電磁波シールドプリント配線板の断面図の例で
ある。 特許出願人  三菱瓦斯化学株式会社
Figure 1 is an example of a cross-sectional view of an electromagnetic shielding printed wiring board using the smooth printed board of the present invention, and Figure 2 is an example of electromagnetic shielding when using a conventional printed wiring board with conductor foil protruding from the board surface. It is an example of a cross-sectional view of a printed wiring board. Patent applicant Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1 プリント配線板の所望部分に電気絶縁層、さらにそ
の上に電気導電層を形成する電磁波シールドプリント配
線板の製造法において、該プリント配線板として半硬化
樹脂銅張積層板にプリント配線網を形成した後、プレス
成形して導体表面と基板表面とが略同一平面上とされた
プリント配線板を用いることを特徴とする電磁波シール
ドプリント配線板の製造法。 2 該半硬化樹脂銅張積層板が、銅箔の剥離強度が0.
2kg/cm以上で完全硬化時の90%以下の範囲とな
るように加熱加圧してなるものである請求項1記載のプ
リント配線板の製造法。 3 該半硬化樹脂銅張積層板が、銅箔と基材との間に少
なくとも厚み20μm以上の半硬化樹脂層を有するもの
である請求項2記載のプリント配線板の製造法。 4 該半硬化樹脂銅張積層板が、ダブルベルトプレス法
による連続プレスで製造されたものである請求項2記載
のプリント配線板の製造法。 5 該半硬化樹脂銅張積層板が、一対の熱盤間で1枚の
積層板をプレス成形する回分連続プレス成形法により製
造したものである請求項2記載のプリント配線板の製造
法。
[Scope of Claims] 1. A method for manufacturing an electromagnetic shielding printed wiring board in which an electrically insulating layer is formed on a desired portion of the printed wiring board and an electrically conductive layer is formed thereon, wherein a semi-cured resin copper-clad laminate is used as the printed wiring board. 1. A method for producing an electromagnetic shielding printed wiring board, which comprises forming a printed wiring network on the board and then press-molding the printed wiring board so that the conductor surface and the substrate surface are substantially on the same plane. 2. The semi-cured resin copper-clad laminate has a copper foil peel strength of 0.
2. The method for manufacturing a printed wiring board according to claim 1, wherein the printed wiring board is heated and pressurized at a pressure of 2 kg/cm or more to achieve a hardening rate of 90% or less. 3. The method for manufacturing a printed wiring board according to claim 2, wherein the semi-cured resin copper-clad laminate has a semi-cured resin layer with a thickness of at least 20 μm between the copper foil and the base material. 4. The method for producing a printed wiring board according to claim 2, wherein the semi-cured resin copper-clad laminate is produced by continuous pressing using a double belt press method. 5. The method for producing a printed wiring board according to claim 2, wherein the semi-cured resin copper-clad laminate is produced by a batch continuous press molding method in which one laminate is press-molded between a pair of hot platens.
JP10537390A 1990-04-23 1990-04-23 Manufacture of electromagnetic-shield printed wiring board Pending JPH045899A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10537390A JPH045899A (en) 1990-04-23 1990-04-23 Manufacture of electromagnetic-shield printed wiring board
US07/689,428 US5173150A (en) 1990-04-23 1991-04-23 Process for producing printed circuit board
DE4113231A DE4113231A1 (en) 1990-04-23 1991-04-23 METHOD FOR PRODUCING A PRINT BOARD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10537390A JPH045899A (en) 1990-04-23 1990-04-23 Manufacture of electromagnetic-shield printed wiring board

Publications (1)

Publication Number Publication Date
JPH045899A true JPH045899A (en) 1992-01-09

Family

ID=14405894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10537390A Pending JPH045899A (en) 1990-04-23 1990-04-23 Manufacture of electromagnetic-shield printed wiring board

Country Status (1)

Country Link
JP (1) JPH045899A (en)

Similar Documents

Publication Publication Date Title
US5173150A (en) Process for producing printed circuit board
TWI241875B (en) Circuit board and method of manufacturing same
CN107624002B (en) Circuit embedded flexible circuit board and film pasting preparation process thereof
JPH0494186A (en) Manufacture of multilayer circuit board
JP2001102696A (en) Wiring board and manufacturing method therefor
JP3744970B2 (en) Manufacturing method of flex rigid wiring board
JPH07106728A (en) Rigid-flexible printed wiring board and manufacture thereof
JPH045899A (en) Manufacture of electromagnetic-shield printed wiring board
JP3359810B2 (en) Method of manufacturing three-dimensional circuit board
JP2947963B2 (en) Manufacturing method of printed wiring board
JPH045887A (en) Manufacture of printed wiring board for mounting printed component
JPH01241893A (en) Manufacture of metal base laminated board
JPH0422039B2 (en)
JP2000244114A (en) Manufacture of build-up multilayer wiring board
JPH0350797A (en) Manufacture of multilayer substrate
JP2864276B2 (en) Manufacturing method of printed wiring board
JPS63285997A (en) Method and device for manufacturing multi-layer substrate
JPH0139234B2 (en)
CN118785618A (en) Circuit pattern manufacturing method and electronic device
JPH045890A (en) Manufacture of multilayer printed wiring board
JPS5818799B2 (en) Tasou print high quality print
JPS63199635A (en) Laminated board
JPH06260767A (en) Manufacture of multilayer printed wiring board
JPH02164094A (en) Manufacture of printed wiring board
JPH0410588A (en) Manufacture of printed circuit board for high frequency