[go: up one dir, main page]

JPH0458204A - Forming method for optical waveguide - Google Patents

Forming method for optical waveguide

Info

Publication number
JPH0458204A
JPH0458204A JP16819090A JP16819090A JPH0458204A JP H0458204 A JPH0458204 A JP H0458204A JP 16819090 A JP16819090 A JP 16819090A JP 16819090 A JP16819090 A JP 16819090A JP H0458204 A JPH0458204 A JP H0458204A
Authority
JP
Japan
Prior art keywords
waveguide
sapphire
refractive index
optical waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16819090A
Other languages
Japanese (ja)
Inventor
Akihiro Murata
明弘 村田
Yasuharu Nakagawa
中川 康晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP16819090A priority Critical patent/JPH0458204A/en
Publication of JPH0458204A publication Critical patent/JPH0458204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To ensure the light shutting-in effect by forming a film made of materials whose refractive index is lower than that of a desired plate material constituting an optical waveguide, namely, a buffer layer on one side of this plate material and joining it to a substrate made of a mechanically hard material and polishing them at an angle to the junction face and forming a optical waveguide material on a part having a proper thickness on the polished surface. CONSTITUTION:A buffer layer 2 having a low refractive index is formed on one face of a Ti-sapphire single crystal plate 1 as a plate-shaped waveguide material by sputtering or the like and is stuck to a substrate 3. Sapphire having the same mechanical characteristic as Ti-sapphire is used as the material of the substrate. After sticking, they are polished at a very shallow angle to form a part corresponding to a desired waveguide thickness on a polished surface in parallel with a boundary line 4 between the waveguide material 1 and the buffer layer 2 having a low refractive index. The area of the waveguide material having this desired thickness is patterned as desired by ion etching to form Ti-sapphire wage-guides 11 and 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光導波路の形成方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for forming an optical waveguide.

(従来の技術) 光IC,光センサの基本素子として使用される光導波路
は、周囲を低屈折率の媒質で取り囲まれた領域の中を、
光(電磁波)がその境界面で全反射を繰返しながら伝搬
するような光伝送路である。
(Prior art) Optical waveguides used as basic elements of optical ICs and optical sensors pass through a region surrounded by a medium with a low refractive index.
It is an optical transmission line in which light (electromagnetic waves) propagates while undergoing repeated total reflection at its boundary surfaces.

このような構造を実現するため、従来は、導波路材料に
応じて種々の形成方法を用いている。
In order to realize such a structure, conventionally, various forming methods have been used depending on the waveguide material.

例えば、LiNbO3導波路の場合、基板表面にチタン
(Ti)を拡散し、その部分の屈折率を上げることで導
波路を形成している。第7図はLib03基板を用いた
分岐干渉型光変調器の一例を示す斜視図である。L i
 NbO3基板30に選択的にT1が拡散されて光導波
路32が形成され、所定位置に電極31が形成されてい
る。
For example, in the case of a LiNbO3 waveguide, the waveguide is formed by diffusing titanium (Ti) on the substrate surface and increasing the refractive index of that portion. FIG. 7 is a perspective view showing an example of a branching interference type optical modulator using a Lib03 substrate. L i
T1 is selectively diffused into the NbO3 substrate 30 to form an optical waveguide 32, and electrodes 31 are formed at predetermined positions.

また、ガラス導波路の場合、第8図〜第12図に示され
るように、シリコン基板上に火炎堆積法と熱処理により
ガラス導波膜を形成し、フォトリソグラフィによりガラ
ス導波膜をパターニングして導波路を形成している。す
なわち、基板40上に、多孔質ガラス膜を火炎堆積法に
より堆積し、加熱して透明化し、屈折率が順に、n2.
nl、n2であるガラス膜を形成する(第8図)。次に
、aStを反応性イオンエツチングを用いてパターニン
グしく第9図)、a−5i44をマスクとして用いて反
応性イオンエツチングによりガラス膜を除去しく第10
図)、多孔質ガラスを火炎堆積法により堆積しく第11
図)、加熱透明化する(第12図)。先導波膜の厚み方
向の屈折率は火炎堆積法での膜形成時、コアとする部分
にT i 02をドープすることで制御する。
In the case of a glass waveguide, as shown in Figures 8 to 12, a glass waveguide film is formed on a silicon substrate by flame deposition and heat treatment, and then patterned by photolithography. It forms a waveguide. That is, a porous glass film is deposited on the substrate 40 by a flame deposition method, heated to make it transparent, and the refractive index becomes n2.
Glass films of nl and n2 are formed (FIG. 8). Next, the aSt was patterned using reactive ion etching (Fig. 9), and the glass film was removed by reactive ion etching using a-5i44 as a mask (Fig. 10).
Fig. 11. Depositing porous glass by flame deposition method.
(Fig. 12) and heat to make it transparent (Fig. 12). The refractive index in the thickness direction of the leading wave film is controlled by doping the core portion with T i 02 during film formation by flame deposition.

(発明が解決しようとする課題) 上述した従来の方法は、Tiを拡散する等して部分的な
屈折率差を設けるため、適用できる材料に制限があり、
部分的な屈折率の変化か困難な材料(例えば、Ti−サ
ファイヤ単結晶)を使用することはできなかった。
(Problems to be Solved by the Invention) The conventional method described above creates a partial refractive index difference by diffusing Ti, etc., so there are restrictions on the materials that can be applied.
It has not been possible to use materials whose refractive index is difficult to change locally (eg, Ti-sapphire single crystal).

本発明は上述した従来技術の問題点に鑑みてなされたも
のであり、その目的は使用可能な導波路材の範囲を拡大
し、多様な導波路の形成を可能にする方法を提供するこ
とにある。
The present invention has been made in view of the problems of the prior art described above, and its purpose is to provide a method that expands the range of usable waveguide materials and makes it possible to form a variety of waveguides. be.

(課題を解決するための手段) 本発明の導波路の代表的なものの概要は下記の通りであ
る。
(Means for Solving the Problems) An overview of typical waveguides of the present invention is as follows.

先導波路にするための所望の板材の片面にその板材より
も低い屈折率の材料の膜(バッファ層)を形成し、この
バッファ層を介して機械的に硬い材料からなる基板と接
合し、接合面に対して傾斜して研磨する。次に、研磨面
上で適当な厚さになった部分の光導波路材を所望パター
ンにバターニングして先導波路を形成する。光導波路材
に対して基板材料の屈折率が低ければバッファ層は不要
となる。
A film (buffer layer) of a material with a refractive index lower than that of the plate material is formed on one side of the desired plate material to be used as a leading waveguide, and it is bonded to a substrate made of a mechanically hard material via this buffer layer. Polish at an angle to the surface. Next, a portion of the optical waveguide material having an appropriate thickness on the polished surface is patterned into a desired pattern to form a leading waveguide. If the refractive index of the substrate material is lower than that of the optical waveguide material, the buffer layer is not necessary.

(作用) 金属の拡散等の化学的な手法を使わず、物理的な加工の
みを用いて所望の導波路を形成する。
(Operation) A desired waveguide is formed using only physical processing without using chemical methods such as metal diffusion.

すなわち、所望の光導波路材に低屈折率層を接合するこ
とにより光閉じ込め効果を有する構造が形成される。次
に、光導波路材を必要な厚さ(例えば、導波路をシング
ルモードファイバーとして使う場合には10μm以下)
に加工する。この場合、全体を、その所望の厚みに一律
に研磨することも考えられるが、加工精度に限界があり
、所望の厚さを実現するのは困難である。そこで、接合
面に対して斜めに研磨する。この場合、所望の厚み範囲
にある領域が必ず形成されるため、バターニングにより
その領域のみを残存させることにより、必要な厚み(許
容範囲内)の導波路が得られる。
That is, a structure having an optical confinement effect is formed by bonding a low refractive index layer to a desired optical waveguide material. Next, apply the optical waveguide material to the required thickness (for example, 10 μm or less when using the waveguide as a single mode fiber).
Process it into In this case, it is conceivable to uniformly polish the entire surface to the desired thickness, but there is a limit to processing accuracy and it is difficult to achieve the desired thickness. Therefore, polishing is performed diagonally to the joint surface. In this case, since a region with a desired thickness is always formed, by leaving only that region by patterning, a waveguide with the required thickness (within an allowable range) can be obtained.

必要なら、その導波路を透明ガラス等で覆ってもよい。If necessary, the waveguide may be covered with transparent glass or the like.

傾斜研磨は高精度の治具があれば実現できる。本方法で
は、導波路材かバルクとして存在すれば、加工により確
実に導波路を形成でき、使用可能な材料の範囲を広げる
ことが可能となる。
Inclined polishing can be achieved with a high-precision jig. In this method, if the waveguide material exists as a bulk, the waveguide can be reliably formed by processing, and the range of usable materials can be expanded.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図〜第4図は本発明の光導波路の形成方法の一実施
例を示す工程断面図であり、第5図は完成した状態を示
す斜視図である。
1 to 4 are process sectional views showing one embodiment of the method for forming an optical waveguide of the present invention, and FIG. 5 is a perspective view showing the completed state.

本実施例では、光導波路材料としてTi−サファイヤ単
結晶を用いている。このTi−サファイヤは通常、可変
波長レーザーのレーザー媒質(バルク結晶)として使用
されるものであるが、単結晶薄膜の作製や部分的な屈折
率変化を実現するのがむづかしく、光導波路に使用する
ことは困難とされていたものである。
In this embodiment, Ti-sapphire single crystal is used as the optical waveguide material. This Ti-sapphire is usually used as a laser medium (bulk crystal) for tunable wavelength lasers, but it is difficult to fabricate a single crystal thin film or realize partial refractive index changes, so it is not suitable for optical waveguides. It was considered difficult to use.

各工程の説明 板形状の導波路材料(Ti−サファイヤ)単結晶板1の
片面に、低屈折率バッファ層(Ti−サファイアの屈折
率は1.76であるため、例えば1.46のSiO2膜
を使用する)2をスパッタリング等を用いて形成し、基
板3と貼り合わせる。基板材料はTi〜ミルサファイヤ
ぼ同じ機械特性を有するサファイヤ基板とする(第1図
)。なお、接合は接着剤を用いたり、ガラス融着等によ
っても実現可能である。
Description of each process A low refractive index buffer layer (for example, a SiO2 film of 1.46 because the refractive index of Ti-sapphire is 1.76) is applied to one side of the plate-shaped waveguide material (Ti-sapphire) single-crystal plate 1. 2 is formed using sputtering or the like, and bonded to the substrate 3. The substrate material is a sapphire substrate having almost the same mechanical properties as Ti to Mil Sapphire (FIG. 1). Note that the bonding can also be realized by using an adhesive, glass fusion, or the like.

貼り合わせの後、極めて浅い角度で研磨すると、研磨面
5上に、所望の導波路厚に相当する部分が導波路材1と
低屈折率バッファ層2との境界線4と平行に形成される
(第2図)。第3図は第2図のA部分の拡大断面図であ
る。この所望厚みを有する導波路材の領域を所望のパタ
ーンにイオンエツチング等でバターニングすることで、
Ti−サファイヤ導波路を形成できる(第4図、第5図
)。
After bonding, by polishing at an extremely shallow angle, a portion corresponding to the desired waveguide thickness is formed on the polished surface 5 parallel to the boundary line 4 between the waveguide material 1 and the low refractive index buffer layer 2. (Figure 2). FIG. 3 is an enlarged sectional view of portion A in FIG. 2. By patterning the region of the waveguide material having the desired thickness into a desired pattern using ion etching or the like,
A Ti-sapphire waveguide can be formed (FIGS. 4 and 5).

導波路のサイズは単一モードの場合、10μm以下であ
り、仮に断面が5μmX5μmの導波路を作製するには
、1°の角度で研磨し、バッファ層との境界線より28
0〜290μm離れた位置でバターニングすればよい。
The size of the waveguide is 10 μm or less in the case of a single mode, and if you want to create a waveguide with a cross section of 5 μm x 5 μm, it will be polished at an angle of 1° and 28 mm from the boundary with the buffer layer.
Buttering may be performed at positions 0 to 290 μm apart.

第6図は上述の実施例で作製されたTi−サファイヤ導
波路を使用した可変波長レーザーの構成例を示す図であ
る。
FIG. 6 is a diagram showing an example of the configuration of a tunable wavelength laser using the Ti-sapphire waveguide produced in the above embodiment.

励起光源20よりレンズ21を介してTi−サファイヤ
導波路23に励起光を入射させると、T3“イオン内電
子による反転準位が形成され、誘導放出光の発生と光共
振器(ミラー22.25、波長チューニング機構24)
によりレーザー発振する。発振のためにはレーザー媒質
内(Ti−サファイヤ)の励起光のパワー密度があるし
きい値を越える必要があるが、バルク結晶の場合に比べ
、先導波路構造は高光パワー密度が得られ、このために
レーザー発振しきい値を大幅に低下できるものと期待さ
れる。このように、使用可能な光導波路材の範囲を広げ
ることが可能となる。
When excitation light is incident on the Ti-sapphire waveguide 23 from the excitation light source 20 via the lens 21, an inverted level due to the electrons in the T3 ion is formed, and stimulated emission light is generated and the optical resonator (mirror 22, 25 , wavelength tuning mechanism 24)
The laser oscillates. In order to oscillate, the power density of the excitation light in the laser medium (Ti-sapphire) must exceed a certain threshold, but compared to the case of a bulk crystal, the guiding waveguide structure can obtain a high optical power density, and this Therefore, it is expected that the laser oscillation threshold can be significantly lowered. In this way, it is possible to expand the range of usable optical waveguide materials.

(発明の効果) 以上説明したように本発明によれば、以下の効果が得ら
れる。
(Effects of the Invention) As explained above, according to the present invention, the following effects can be obtained.

(1)導波路材料の薄膜形成や屈折率分布の形成の必要
がなく、バルク結晶が介在すれば導波路を形成できるた
め、適用できる材料か多い。
(1) There is no need to form a thin film of waveguide material or to form a refractive index distribution, and a waveguide can be formed if a bulk crystal is present, so there are many applicable materials.

(2)研磨角度を浅くとることで所望の導波路の厚みの
領域を広い面積で得られ、導波路設計に対して高い自由
度が得られる。例えば、研磨角度0゜5°とすると、4
±1μm厚の導波路が形成できる領域の幅は400μm
となり、現実に十分利用可能である。
(2) By setting a shallow polishing angle, a region with a desired waveguide thickness can be obtained over a wide area, and a high degree of freedom can be obtained in waveguide design. For example, if the polishing angle is 0°5°, 4
The width of the area where a waveguide with a thickness of ±1 μm can be formed is 400 μm.
Therefore, it is fully usable in reality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の先導波路の形成方法の一実施
例を示す工程断面図、 第5図は完成した状態を示す斜視図、 第6図は第5図の先導波路を用いた可変波長レーザー装
置の一例の構成を示す図、 第7図は従来の方法により作製された分布干渉型光変調
器の斜視図、 第8図〜第12図は従来の火炎堆積法と反応性イオンエ
ツチング法による石英系光導波路の製作工程を示す断面
図である。 1・・・光導波路材(Ti−サファイヤ)2・・・バッ
ファ層(S102膜) 3・・・基板        4・・・接合面5・・・
斜面 11.12・・・パターニングされた光導波路20・・
・励起光源      21・・・レンズ22・・・ミ
ラー 23・・・Ti−サファイヤ導波路 24・・・波長チューニング機構 25・・・ミラー       26・・・レーザー光
第1図 第2図 す 第3図 ニーl 第4図 1り 第 図 第 図 第 図 第10図 第11 図 第12 図
1 to 4 are process cross-sectional views showing one embodiment of the method for forming a leading waveguide of the present invention, FIG. 5 is a perspective view showing a completed state, and FIG. Figure 7 is a perspective view of a distributed interference optical modulator fabricated by a conventional method, and Figures 8 to 12 are diagrams showing the configuration of an example of a tunable wavelength laser device manufactured using a conventional flame deposition method. FIG. 3 is a cross-sectional view showing a manufacturing process of a quartz-based optical waveguide using an ion etching method. 1... Optical waveguide material (Ti-sapphire) 2... Buffer layer (S102 film) 3... Substrate 4... Bonding surface 5...
Slope 11.12...Patterned optical waveguide 20...
・Excitation light source 21...Lens 22...Mirror 23...Ti-sapphire waveguide 24...Wavelength tuning mechanism 25...Mirror 26...Laser light Fig. 1 Fig. 2 Fig. 3 Figure 4 Figure 1 Figure Figure 10 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 光導波路とするための導波路材(1)と該導波路材より
も低い屈折率を有する低屈折率層(2)とを接合し、前
記導波路材(1)を、前記接合の面に対して傾斜して研
磨し、研磨面上の所望厚みを有する光導波路材(1)の
領域を所望パターンにパターニングして光導波路(11
、12)を形成することを特徴とする光導波路の形成方
法。
A waveguide material (1) for forming an optical waveguide and a low refractive index layer (2) having a lower refractive index than the waveguide material are bonded, and the waveguide material (1) is attached to the bonded surface. The area of the optical waveguide material (1) having a desired thickness on the polished surface is patterned into a desired pattern to form an optical waveguide (11).
, 12).
JP16819090A 1990-06-28 1990-06-28 Forming method for optical waveguide Pending JPH0458204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16819090A JPH0458204A (en) 1990-06-28 1990-06-28 Forming method for optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16819090A JPH0458204A (en) 1990-06-28 1990-06-28 Forming method for optical waveguide

Publications (1)

Publication Number Publication Date
JPH0458204A true JPH0458204A (en) 1992-02-25

Family

ID=15863456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16819090A Pending JPH0458204A (en) 1990-06-28 1990-06-28 Forming method for optical waveguide

Country Status (1)

Country Link
JP (1) JPH0458204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272259A (en) * 2007-04-27 2008-11-13 Nidek Co Ltd Ophthalmic equipment
US7631971B2 (en) 2004-08-20 2009-12-15 Nidek Co., Ltd. Ophthalmic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631971B2 (en) 2004-08-20 2009-12-15 Nidek Co., Ltd. Ophthalmic apparatus
JP2008272259A (en) * 2007-04-27 2008-11-13 Nidek Co Ltd Ophthalmic equipment

Similar Documents

Publication Publication Date Title
EP1560048B9 (en) Optical isolator utilizing a micro-resonator
JPH09318826A (en) Optical waveguide type filter and its production
US4711514A (en) Product of and process for forming tapered waveguides
US7120322B2 (en) Photonic crystal device
US7515804B2 (en) Optical waveguide device
JPH0458204A (en) Forming method for optical waveguide
US5341449A (en) Wavelength converting device and its method for manufacturing
JP7484631B2 (en) Optical waveguide element, optical modulation device using the same, and optical transmission device
JP3875385B2 (en) Optical waveguide device and method for manufacturing optical waveguide device
JPH1068833A (en) Optical waveguide, method of manufacturing the same, and optical circuit
JPH0720336A (en) Structure of optical waveguide and its production
US7061023B2 (en) Integrated optical devices and methods of making such devices
WO2006103850A1 (en) Waveguide element and laser generator
JPH07281049A (en) Method for manufacturing fiber integrated optical component
JPS60156014A (en) Production of flush type optical waveguide device
Laybourn et al. Integrated optics: a tutorial review
JP2827640B2 (en) Optical component manufacturing method
WO2025070341A1 (en) Method for producing composite substrate
JP2641238B2 (en) Polarizer
JPH04113302A (en) Waveguide type optical circuit and its manufacture
JPH04301625A (en) Optical function element
JPH05264834A (en) Waveguide type optical parts
CN117597626A (en) Waveguide element, optical scanning element, and optical modulation element
JPH02300726A (en) Light switching parts
US6596557B1 (en) Integrated optical devices and methods of making such devices