JPH0456428B2 - - Google Patents
Info
- Publication number
- JPH0456428B2 JPH0456428B2 JP60046480A JP4648085A JPH0456428B2 JP H0456428 B2 JPH0456428 B2 JP H0456428B2 JP 60046480 A JP60046480 A JP 60046480A JP 4648085 A JP4648085 A JP 4648085A JP H0456428 B2 JPH0456428 B2 JP H0456428B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode active
- active material
- positive electrode
- lithium
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
〔産業上の利用分野〕
本発明は、小型にして充放電容量の大きなリチ
ウム二次電池、詳細にはリチウムあるいはリチウ
ム合金を負極活物質とし、MoO3に、V2O5を加
えて得られる物質を正極活物質として用いた充放
電が可能なリチウム二次電池に関する。
〔従来の技術〕
従来から、リチウムを負極活物質として用いる
高エネルギー密度電池に関する提案は多くなされ
ている。例えば、正極活物質として黒鉛及びフツ
素のインターカレーシヨン化合物、負極活物質と
してリチウム金属をそれぞれ使用した電池が知ら
れている(例えば、米国特許第3514337号明細書
参照)。更にまた、フツ化黒鉛を正極活物質に用
いたリチウム電池や、二酸化マンガンを正極活物
質として用いたリチウム電池が既に市販されてい
る。しかし、これらの電池は一次電池であり、充
電できない欠点があつた。
リチウムを負極活物質として用いる二次電池に
ついては、正極活物質としてチタン、ジルコニウ
ム、ハフニウム、ニオビウム、タンタル、バナジ
ウムの硫化物、セレン化合物、テルル化合物を用
いた電池(例えば、米国特許第4009052号明細書
参照)、あるいは酸化クロム、セレン化ニオビオ
ム等を用いた電池〔ジヤーナル オブ ジ エレ
クトロケミカル ソサエテイ(J.Electrochem.
Soc.)第124巻(7)第968頁及び第325頁(1977)〕等
が提案されているが、これらの電池はその電池特
性及び経済性が必ずしも十分であるとはいえなか
つた。
〔発明が解決しようとする問題点〕
また、非晶質物質を正極活物質に用いたリチウ
ム電池については、MoS2、MoS3、V2S5の場合
〔ジヤーナル オブ エレクトロアナリチカル
ケミストリー(J.Electroanal.Chem.)第118巻第
229頁(1981)〕やLiV3O8の場合〔ジヤーナル
オブ ノン−クリスタリン ソリツズ(J.Non−
Crystalline Solids)第44巻第297頁(1981)等が
提案されている。しかし、大電流密度での放電や
充放電特性の点で問題があつた。
本発明の目的は、上記現状を改良して、小型で
充放電容量が大きく、優れた特性をもつリチウム
二次電池を提供することにある。
〔問題点を解決するための手段〕
本発明を概説すれば、本発明はリチウム二次電
池に関する発明であつて、MoO3に、V2O5を加
え、溶融後急冷することにより得られる非晶質物
質を正極活物質とし、リチウム又はリチウム合金
を負極活物質とし、前記正極活物質及び前記負極
活物質に対して化学的に安定であり、かつリチウ
ムイオンが前記正極活物質あるいは前記負極活物
質と電気化学反応をするための移動を行いうる物
質を電解質物質としたことを特徴とする。
本発明を更に詳しく説明すると、本発明による
リチウム電池に用いられる正極活物質は、前述し
たMoO3とV2O5との溶融急冷により得られる非
晶質物質である。
V2O5の使用量はMoO3に対して、5〜90モル
%が好ましく、特に30〜75モル%が好適である。
この正極活物質を用いて正極を形成するには、
この非晶質物質粉末又はこれとポリテトラフルオ
ロエチレンのごとき結合剤粉末との混合物をニツ
ケル、ステンレス等の支持体上に膜状に圧着成形
する。
あるいは、かかる非晶質物質粉末に導電性を付
与するためアセチレンブラツクのような導電体粉
末を混合し、これに更にポリテトラフルオロエチ
レンのような結合剤粉末を所要に応じて加え、こ
の混合物を金属容器に入れ、あるいは前述の混合
物をニツケルやステンレス等の支持体上に圧着成
形する等の手段によつて形成することができる。
負極活物質であるリチウム若しくはリチウム合
金は、一般のリチウム電池の場合と同様に、シー
ト状に展延し、又はそのシートをニツケルやステ
ンレス等の導電体網に圧着して負極として形成す
ることができる。
更に、電解質としては、プロピレンカーボネー
ト、2−メチルテトラヒドロフラン、ジオキソラ
ン、テトラヒドロフラン、1,2−ジメトキシエ
タン、エチレンカーボネート、γ−ブチロラクト
ン、ジメチルスルホキシド、アセトニトリル、ホ
ルムアミド、ジメチルホルムアミド、ニトロメタ
ン等の一種以上の非プロトン性有機溶媒と
LiClO4、LiAlCl4、LiBF4、LiCl、LiPF6若しく
はLiAsF6等のリチウム塩との組合せ又はLi+を伝
導体とする固体電解質あるいは溶融塩など、一般
にリチウムを負極活物質として用いた電池で使用
される既知の電解質を用いることができる。
また、電池構成上、必要に応じて微孔性セパレ
ータを用いるときなどは、多孔質ポリプロピレン
等より成る薄膜を使用してもよい。
前述したような正極活物質が優れた充放電特性
を有する理由は必ずしも明確ではないが、その1
つの理由は、本発明における正極活物質がほぼ完
全に非晶質であることにある。
すなわち、MoO3と共に溶融、冷却された
V2O5のネツトワークフオーマーによつてMo−O
−Vの結合から成るランダムなネツトワークが形
成され、反応性の高い多くの不対ダングリングボ
ンドを供給している。このボンドは格子系の結晶
構築に直接寄与していないボンドのため、充放電
に伴うダングリングボンドの消費が、格子破壊や
元素析出を伴わないと考えられ、このことが従来
の結晶性正極材料より良好な充放電特性をもたら
す原因と推定される。
また、ここで用いた非晶質化のためのネツトワ
ークフオーマーV2O5は、通常用いられる酸化物
(例えばP2O5など)と異なり、それ自身も正極活
物質として働くため、V2O5の添加によるエネル
ギー密度のロスは少ない。
前記のごとき金属酸化物非晶質材料を製造する
方法は基本的に限定されるものではない。しか
し、簡便な水中急冷法よりも、急冷速度に優れた
ロール急冷法の方が、より均質な非晶質化に有利
である。
例えば、双ロール急冷法の場合第1図に示すよ
うな装置を用いて非晶質材料を作製する。すなわ
ち第1図は金属酸化物非晶質化のための双ロール
急冷装置の断面概略図である。MoO3にV2O5を
混合したものを、先端小孔径0.3mmφの石英ノズ
ル1に入れ、炭化ケイ素ヒーター2により800℃
に加熱溶融する。母材の完全溶融を確認の後、エ
アピストン3によつてノズル孔をロール対接触部
に近付け、同時にノズル内圧をアルゴンガス4に
より150Kg/cm3まで急速加圧することによつて、
ノズル孔より溶融体5を2000〜4000rpmで高速回
転するロール対6間に噴出させ、超急冷固化した
薄帯状非晶質物質7を作製する。
〔実施例〕
以下に図面を参照して本発明を実施例により詳
細に説明する。
なお本発明は以下の実施例にのみ限定されるも
のではない。以下の実施例において電池の作成及
び測定は全てアルゴン雰囲気中で行つた。
実施例 1
前記正極活物質としての非晶質物質は、MoO3
に所定量のV2O5を混合し、約800℃で溶融の後、
ロール急冷して作製した。1例として、50モル%
MoO3−50モル%V2O5からなる非晶質物質のX
線回折図形を第2図に示す。すなわち第2図は本
発明における正極活物質のX線回折結果をブラツ
グ角2θ(度、横軸)と反射強度(cps、縦軸)との
関係で示すグラフである。第2図からわかるよう
に、CuKα線で2θが約26度付近にブロードな山を
持つX線的に無定形なパターンを示しており、非
晶質化していることがわかる。
第3図は、本発明による電池の一具体例である
コイン型電池の構成を示す断面図であり、図中、
31はステンレス製封口板、32はポリプロピレ
ン製ガスケツト、33はステンレス製正極ケー
ス、34はリチウム負極、35はポリプロピレン
製微孔性セパレータ、36は正極合剤ペレツトを
示す。
まず、封口板1上に金属リチウム負極4を加圧
載置したものガスケツト2の凹部に挿入し、金属
リチウム負極4の上にセパレータ5、正極合剤ペ
レツト6をこの順序に載置し、電解液としての
1N LiClO4/プロピレンカーボネート(PC)+
1,2−ジメトキシエタン(DME)〔1:1容量
比〕(プロピレンカーボネートと1,2−ジメト
キシエタンの等容積溶媒)又は、1.5N LiAsF6/
2−メチルテトラヒドロフラン(2MeTHF)を
適量注入して含浸させた後に、正極ケース3をか
ぶせてかしめることにより、直径23mm、厚さ2mm
のコイン型電池を作製した。
正極活物質は、MoO3とV2O5を混合し上述し
た方法に従つて作製した。
作製した正極活物質を、混合粉砕機を用いて約
70分間にわたつて粉砕したのち、ケツチエンブラ
ツクEC及びテトラフルオロエチレンと重量比で
70:25:5の割合で秤取混合した。この混合粉体
をロールを用いて厚さ0.5mmのシート状に展延し、
直径20mmの正極合剤ペレツト6を作製した。
以上のようにして作製したリチウム二次電池
(電解液として1N LiClO4/PC−DMEを使用し
た)に対して1mAで定電流放電した結果の放電
特性(2V終止)の代表例を第1表に示す。
[Industrial Application Field] The present invention is a lithium secondary battery that is small in size and has a large charge/discharge capacity, specifically, a lithium secondary battery that uses lithium or a lithium alloy as a negative electrode active material and is obtained by adding V 2 O 5 to MoO 3 . The present invention relates to a rechargeable lithium secondary battery that uses the material as a positive electrode active material. [Prior Art] Many proposals regarding high energy density batteries using lithium as a negative electrode active material have been made. For example, a battery is known in which an intercalation compound of graphite and fluorine is used as a positive electrode active material, and lithium metal is used as a negative electrode active material (for example, see US Pat. No. 3,514,337). Furthermore, lithium batteries using graphite fluoride as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries were primary batteries and had the disadvantage that they could not be recharged. Regarding secondary batteries using lithium as a negative electrode active material, batteries using titanium, zirconium, hafnium, niobium, tantalum, vanadium sulfides, selenium compounds, and tellurium compounds as positive electrode active materials (for example, US Pat. No. 4,009,052) ), or batteries using chromium oxide, niobium selenide, etc. [J.Electrochem.
Soc.) Vol. 124 (7), pages 968 and 325 (1977)], but these batteries could not necessarily be said to have sufficient battery characteristics and economic efficiency. [Problems to be solved by the invention] In addition, regarding lithium batteries using amorphous materials as positive electrode active materials, in the case of MoS 2 , MoS 3 , and V 2 S 5 [Journal of Electroanalytical
Chemistry (J.Electroanal.Chem.) Volume 118 No.
229 (1981)] and LiV 3 O 8 [Journal
Of Non-Crystalline Solites (J.Non-
Crystalline Solids, Vol. 44, p. 297 (1981), etc. have been proposed. However, there were problems with discharge at high current density and charge/discharge characteristics. An object of the present invention is to improve the above-mentioned current situation and provide a lithium secondary battery that is small in size, has a large charge/discharge capacity, and has excellent characteristics. [Means for Solving the Problems] To summarize the present invention, the present invention relates to a lithium secondary battery, and it is a non-volatile battery obtained by adding V 2 O 5 to MoO 3 and rapidly cooling it after melting. A crystalline substance is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and the material is chemically stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions are used as the positive electrode active material or the negative electrode active material. It is characterized in that a substance that can move to cause an electrochemical reaction with a substance is used as an electrolyte substance. To explain the present invention in more detail, the positive electrode active material used in the lithium battery according to the present invention is an amorphous material obtained by melting and rapidly cooling MoO 3 and V 2 O 5 as described above. The amount of V 2 O 5 used is preferably 5 to 90 mol %, particularly preferably 30 to 75 mol %, based on MoO 3 . To form a positive electrode using this positive electrode active material,
This amorphous material powder or a mixture of the amorphous material powder and a binder powder such as polytetrafluoroethylene is pressure-molded into a film on a support such as nickel or stainless steel. Alternatively, a conductive powder such as acetylene black may be mixed with the amorphous substance powder to impart conductivity, and a binder powder such as polytetrafluoroethylene may be added thereto as required. It can be formed by placing it in a metal container or by pressure-molding the above-mentioned mixture on a support such as nickel or stainless steel. Lithium or lithium alloy, which is the negative electrode active material, can be formed into a negative electrode by spreading it into a sheet or by pressing the sheet onto a conductor network such as nickel or stainless steel, as in the case of general lithium batteries. can. Further, as the electrolyte, one or more aprotons such as propylene carbonate, 2-methyltetrahydrofuran, dioxolane, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane, etc. organic solvent and
Combinations with lithium salts such as LiClO 4 , LiAlCl 4 , LiBF 4 , LiCl, LiPF 6 or LiAsF 6 or solid electrolytes or molten salts with Li + as the conductor, generally used in batteries using lithium as the negative electrode active material. Any known electrolyte can be used. Further, when a microporous separator is used as necessary in the battery configuration, a thin film made of porous polypropylene or the like may be used. The reason why the positive electrode active material has excellent charge and discharge characteristics as described above is not necessarily clear, but one reason is
One reason is that the positive electrode active material in the present invention is almost completely amorphous. i.e., melted and cooled with MoO3
Mo-O by network former of V 2 O 5
A random network of -V bonds is formed, supplying many highly reactive unpaired dangling bonds. Since this bond does not directly contribute to the construction of crystalline lattice systems, it is thought that the consumption of dangling bonds during charging and discharging does not involve lattice destruction or element precipitation, which is why conventional crystalline positive electrode materials This is presumed to be the cause of better charge/discharge characteristics. In addition, the network former V 2 O 5 used here for amorphization is different from commonly used oxides (such as P 2 O 5 ), and since it itself acts as a positive electrode active material, V 2 O 5 There is little loss in energy density due to the addition of 2 O 5 . The method for producing the metal oxide amorphous material as described above is basically not limited. However, the roll quenching method, which is superior in quenching speed, is more advantageous in forming a more homogeneous amorphous material than the simple underwater quenching method. For example, in the case of the twin roll quenching method, an amorphous material is produced using an apparatus as shown in FIG. That is, FIG. 1 is a schematic cross-sectional view of a twin-roll quenching apparatus for amorphizing metal oxides. A mixture of MoO 3 and V 2 O 5 was put into a quartz nozzle 1 with a small hole diameter of 0.3 mmφ at the tip, and heated to 800°C by a silicon carbide heater 2.
Heat to melt. After confirming that the base material is completely melted, the nozzle hole is moved closer to the contact area between the rolls using the air piston 3, and at the same time, the internal pressure of the nozzle is rapidly increased to 150 kg/cm 3 using argon gas 4.
The melt 5 is ejected from a nozzle hole between a pair of rolls 6 rotating at a high speed of 2,000 to 4,000 rpm to produce a thin strip-shaped amorphous material 7 that is ultra-quenched and solidified. [Example] The present invention will be described in detail below by way of example with reference to the drawings. Note that the present invention is not limited only to the following examples. In the following examples, all battery preparations and measurements were performed in an argon atmosphere. Example 1 The amorphous material as the positive electrode active material is MoO 3
After mixing a predetermined amount of V2O5 and melting at about 800℃,
It was made by rapidly cooling a roll. As an example, 50 mol%
MoO 3 - X of an amorphous material consisting of 50 mol% V 2 O 5
The line diffraction pattern is shown in FIG. That is, FIG. 2 is a graph showing the X-ray diffraction results of the positive electrode active material in the present invention in terms of the relationship between Bragg angle 2θ (degrees, horizontal axis) and reflection intensity (cps, vertical axis). As can be seen from Figure 2, the CuKα ray shows an amorphous pattern in X-rays with a broad peak around 2θ of about 26 degrees, indicating that it has become amorphous. FIG. 3 is a sectional view showing the structure of a coin-type battery, which is a specific example of the battery according to the present invention, and in the figure,
31 is a stainless steel sealing plate, 32 is a polypropylene gasket, 33 is a stainless steel positive electrode case, 34 is a lithium negative electrode, 35 is a polypropylene microporous separator, and 36 is a positive electrode mixture pellet. First, a metal lithium negative electrode 4 placed under pressure on a sealing plate 1 is inserted into the recess of the gasket 2, a separator 5 and a positive electrode mixture pellet 6 are placed in this order on the metal lithium negative electrode 4, and electrolysis is started. as a liquid
1N LiClO 4 /propylene carbonate (PC) +
1,2-dimethoxyethane (DME) [1:1 volume ratio] (equal volume solvent of propylene carbonate and 1,2-dimethoxyethane) or 1.5N LiAsF 6 /
After injecting and impregnating an appropriate amount of 2-methyltetrahydrofuran (2MeTHF), the cathode case 3 is covered and caulked, resulting in a diameter of 23 mm and a thickness of 2 mm.
A coin-type battery was fabricated. The positive electrode active material was prepared by mixing MoO 3 and V 2 O 5 according to the method described above. The prepared cathode active material was crushed using a mixing pulverizer to approx.
After pulverizing for 70 minutes, it was mixed with Kettchen Black EC and tetrafluoroethylene in a weight ratio.
They were weighed and mixed at a ratio of 70:25:5. This mixed powder was spread into a sheet with a thickness of 0.5 mm using a roll.
A positive electrode mixture pellet 6 having a diameter of 20 mm was prepared. Table 1 shows a typical example of the discharge characteristics (2V termination) of the lithium secondary battery produced as described above (using 1N LiClO 4 /PC-DME as the electrolyte) at a constant current of 1mA. Shown below.
【表】
また、1mAの定電流、正極活物質当り
150Ah/Kgの容量で充放電を行つた結果の充放電
特性(サイクル数)の代表例を第2表に示す。[Table] Also, 1mA constant current, per positive electrode active material
Table 2 shows typical examples of charge and discharge characteristics (number of cycles) resulting from charge and discharge at a capacity of 150Ah/Kg.
以上説明したように、本発明によれば、充放電
容量の大きい小型高エネルギー密度のリチウム二
次電池を構成することができ、かかる本発明の電
池はコイン型電池など種々の分野に利用できると
いう利点を有する。
As explained above, according to the present invention, it is possible to construct a small, high energy density lithium secondary battery with a large charge/discharge capacity, and the battery of the present invention can be used in various fields such as coin-type batteries. has advantages.
第1図は金属酸化物非晶質化のための双ロール
急冷装置の断面概略図、第2図は本発明における
正極活物質のX線回折結果をブラツグ角と反射強
度との関係で示したグラフ、第3図は本発明の1
実施例であるコイン型電池の構成を示す断面図、
第4図〜第6図は本発明の1実施例における電池
の充放電特性を示す特性図である。
1:石英ノズル、2:炭化ケイ素ヒーター、
3:エアピストン、4:アルゴンガス、5:溶融
体、6:ロール対、7:薄帯状非晶質物質、3
1:封口板、32:ガスケツト、,33:正極ケ
ース、34:リチウム負極、35:セパレータ、
36:正極合剤ペレツト。
Figure 1 is a cross-sectional schematic diagram of a twin-roll quenching device for amorphizing metal oxides, and Figure 2 shows the X-ray diffraction results of the positive electrode active material in the present invention in terms of the relationship between Bragg angle and reflection intensity. The graph, FIG. 3, is one of the present invention
A cross-sectional view showing the configuration of a coin-type battery as an example,
FIGS. 4 to 6 are characteristic diagrams showing the charging and discharging characteristics of a battery in one embodiment of the present invention. 1: Quartz nozzle, 2: Silicon carbide heater,
3: air piston, 4: argon gas, 5: melt, 6: roll pair, 7: ribbon-shaped amorphous material, 3
1: sealing plate, 32: gasket, 33: positive electrode case, 34: lithium negative electrode, 35: separator,
36: Positive electrode mixture pellet.
Claims (1)
とにより得られる非晶質物質を正極活物質とし、
リチウム又はリチウム合金を負極活物質とし、前
記正極活物質及び前記負極活物質に対して化学的
に安定であり、かつリチウムイオンが前記正極活
物質あるいは前記負極活物質と電気化学反応をす
るための移動を行いうる物質を電解質物質とした
ことを特徴とするリチウム二次電池。1. An amorphous material obtained by adding V 2 O 5 to MoO 3 and rapidly cooling it after melting is used as a positive electrode active material,
Lithium or a lithium alloy is used as a negative electrode active material, which is chemically stable with respect to the positive electrode active material and the negative electrode active material, and for lithium ions to undergo an electrochemical reaction with the positive electrode active material or the negative electrode active material. A lithium secondary battery characterized in that an electrolyte material is a substance capable of movement.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046480A JPS61206168A (en) | 1985-03-11 | 1985-03-11 | Lithium secondary battery |
US06/796,084 US4675260A (en) | 1984-11-12 | 1985-11-08 | Lithium battery including vanadium pentoxide base amorphous cathode active material |
DE19853540074 DE3540074A1 (en) | 1984-11-12 | 1985-11-12 | LITHIUM BATTERY |
CA495009A CA1265842C (en) | 1984-11-12 | 1985-11-12 | Lithium battery including vanadium pentoxide base amorphous cathode active material |
FR8516875A FR2573250B1 (en) | 1984-11-12 | 1985-11-12 | LITHIUM BATTERY COMPRISING AN AMORPHOUS CATHODE CONSISTING OF AN ACTIVE MATERIAL BASED ON VANADIUM PENTOXIDE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046480A JPS61206168A (en) | 1985-03-11 | 1985-03-11 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61206168A JPS61206168A (en) | 1986-09-12 |
JPH0456428B2 true JPH0456428B2 (en) | 1992-09-08 |
Family
ID=12748363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60046480A Granted JPS61206168A (en) | 1984-11-12 | 1985-03-11 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61206168A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01128353A (en) * | 1987-11-11 | 1989-05-22 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of nonaqueous solvent battery |
JP2664710B2 (en) * | 1988-03-28 | 1997-10-22 | 日本電信電話株式会社 | Non-aqueous solvent battery |
US9461306B2 (en) * | 2013-11-13 | 2016-10-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vanadium oxide based amorphous cathode materials for rechargeable magnesium battery |
WO2019163726A1 (en) | 2018-02-21 | 2019-08-29 | イーグル工業株式会社 | Mechanical seal |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54108821A (en) * | 1978-02-15 | 1979-08-25 | Atsushi Matsui | Molding method of spin type pile |
JPS58206063A (en) * | 1982-05-27 | 1983-12-01 | Nippon Telegr & Teleph Corp <Ntt> | Battery |
JPS59224064A (en) * | 1983-06-01 | 1984-12-15 | Hitachi Ltd | Cathode material for lithium batteries |
-
1985
- 1985-03-11 JP JP60046480A patent/JPS61206168A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61206168A (en) | 1986-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3769291B2 (en) | Non-aqueous electrolyte battery | |
KR100396492B1 (en) | Positive active material for lithium-sulfur battery and method of preparing positive active material composition comprising same | |
US5759719A (en) | Electrode material for lithium intercalation electrochemical cells | |
JP6998335B2 (en) | Negative electrode active material and power storage device | |
JPH07230800A (en) | Nonaqueous electrolyte secondary battery and manufacture thereof | |
JPH06325765A (en) | Nonaqueous electrolytic secondary battery and its manufacture | |
JPH06302320A (en) | Nonaqueous electrolyte secondary battery | |
EP1132984B1 (en) | Non-Aqueous electrolyte secondary battery | |
JP3546566B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2724350B2 (en) | Lithium battery | |
JPH0456428B2 (en) | ||
JP2003157896A (en) | Non-aqueous electrolyte secondary battery | |
JP6916337B1 (en) | Lithium ion secondary battery | |
JPH047070B2 (en) | ||
JPH0424828B2 (en) | ||
JPH0381268B2 (en) | ||
JPH04332480A (en) | Nonaqueous secondary battery | |
JPH0412589B2 (en) | ||
JPH0350385B2 (en) | ||
JPH0467751B2 (en) | ||
JP2559055B2 (en) | Lithium battery | |
JP3005688B2 (en) | Lithium battery | |
JPH0467750B2 (en) | ||
JP3050016B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2004071340A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |