JPH0456240A - Analysis of trouble of integrated circuit - Google Patents
Analysis of trouble of integrated circuitInfo
- Publication number
- JPH0456240A JPH0456240A JP2167150A JP16715090A JPH0456240A JP H0456240 A JPH0456240 A JP H0456240A JP 2167150 A JP2167150 A JP 2167150A JP 16715090 A JP16715090 A JP 16715090A JP H0456240 A JPH0456240 A JP H0456240A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ion beam
- conductive film
- integrated circuit
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 18
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 30
- 150000002500 ions Chemical class 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000004065 semiconductor Substances 0.000 claims abstract 3
- 239000002184 metal Substances 0.000 abstract description 15
- 230000001681 protective effect Effects 0.000 abstract description 15
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 3
- 238000000992 sputter etching Methods 0.000 abstract description 3
- 230000002950 deficient Effects 0.000 abstract description 2
- 238000005086 pumping Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 22
- 238000009792 diffusion process Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、集積回路の断線不良となる故障箇所を検出す
る故障解析法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a failure analysis method for detecting a fault location where a disconnection occurs in an integrated circuit.
従来の技術
近年、集積回路は、微細化、高集積化が進み、デバイス
構造も複雑化している。例えば、多層配線技術等である
。このような微細化・高集積化の技術動向は必然的に集
積回路の故障解析を困難にしている。従来は故障箇所検
出のためにAI配線をプローブ針あるいはレーザー光線
等で切断し、A1配線上にプローブ針を立てて、電圧ま
たは電流を測定しながら故障箇所を検出していた。2. Description of the Related Art In recent years, integrated circuits have become smaller and more highly integrated, and device structures have become more complex. For example, multilayer wiring technology, etc. These technological trends toward miniaturization and higher integration inevitably make failure analysis of integrated circuits difficult. Conventionally, in order to detect a failure location, the AI wiring was cut with a probe needle or a laser beam, etc., the probe needle was set up on the A1 wiring, and the failure location was detected while measuring voltage or current.
発明が解決しようとする課題
しかしながら、上記従来の故障解析法では、微細化のた
めにプローブ針を立てることが困難であり、高度に集積
された回路の局所的断線箇所を発見するのに多大な時間
と労力とを要するという欠点を有していた。Problems to be Solved by the Invention However, in the conventional failure analysis method described above, it is difficult to set up probe needles due to miniaturization, and it takes a great deal of effort to discover local disconnections in highly integrated circuits. This method has the drawback of requiring time and effort.
本発明は、上記従来の問題点を解決するもので、集積回
路の不良箇所、特に断線発生箇所を簡単に検出できる解
析方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and aims to provide an analysis method that can easily detect defective locations in integrated circuits, particularly locations where disconnections have occurred.
課題を解決するための手段
この目的を達成するために本発明の集積回路の故障解析
方法では、集積回路表面に集束イオンビームを局所的に
照射し、集積回路表面を局所的に帯電させ、集積回路表
面より放射される二次電子量変化を測定するという構成
を有している。Means for Solving the Problem In order to achieve this object, the integrated circuit failure analysis method of the present invention locally irradiates the surface of the integrated circuit with a focused ion beam to locally charge the surface of the integrated circuit. It has a configuration that measures changes in the amount of secondary electrons emitted from the circuit surface.
作用
このように、集積回路表面に集束イオンビームを局所的
に照射すると、保護膜のような絶縁膜上の場合、集積回
路表面を正に帯電させる。また、集積回路表面上に金属
表面が露出していると、帯電した電荷は導電性のある配
線部分に流れこむ。Effect: When the surface of an integrated circuit is locally irradiated with a focused ion beam in this way, the surface of the integrated circuit is positively charged if it is on an insulating film such as a protective film. Furthermore, if a metal surface is exposed on the surface of an integrated circuit, the charged charges will flow into conductive wiring portions.
コンタクト部では、シリコン基板に流れこむ。集束イオ
ンビームによって励起された二次電子像を観察するとコ
ンタクト部のみが保護膜上からでも容易に識別できる。At the contact portion, it flows into the silicon substrate. When observing a secondary electron image excited by the focused ion beam, only the contact portion can be easily identified even from above the protective film.
もし、配線間で断線がある場合、帯電した電荷は、断線
部分でとだえるため、断線部付近のコンタクト部の二次
電子像は観察されず、配線箇所が検出できる。If there is a disconnection between wires, the electrical charges are stopped at the disconnected portion, so a secondary electron image of the contact portion near the disconnected portion is not observed, and the wiring location can be detected.
実施例
以下本発明の一実施例について図面を参照しながら説明
する。EXAMPLE An example of the present invention will be described below with reference to the drawings.
第1図は本発明の第1の実施例における集積回路装置の
配線部分の断面を示すものである。図において、1はシ
リコン基板、2は不純物拡散層、3は層間絶縁膜、4は
コンタクト窓A、5は導電性被膜、6は保護膜、7はス
ルーホール、8はW金属膜、9は断線箇所、10はコン
タクト窓Bである。FIG. 1 shows a cross section of a wiring portion of an integrated circuit device according to a first embodiment of the present invention. In the figure, 1 is a silicon substrate, 2 is an impurity diffusion layer, 3 is an interlayer insulating film, 4 is a contact window A, 5 is a conductive film, 6 is a protective film, 7 is a through hole, 8 is a W metal film, and 9 is a W metal film. The disconnection point 10 is the contact window B.
第2図は本発明の集積回路の故障解析装置を示す構成図
である。11は集積回路装置、12は集積回路装置11
のチップ表面に局所的に走査集束イオンビームを照射し
、かつチップ表面の任意の位置に可動な走査集束イオン
ビームプローブ、13はイオン銃、14は加速器、15
は照射イオン電流制御装置であり、走査集束イオンビー
ムの加速電圧および照射イオン電流を制御する。16は
二次電子検出器、17は集束イオンビーム励起CVD法
によりW金属膜を成膜するためのガス銃である。FIG. 2 is a block diagram showing the integrated circuit failure analysis apparatus of the present invention. 11 is an integrated circuit device; 12 is an integrated circuit device 11;
a scanning focused ion beam probe that locally irradiates the chip surface with a scanning focused ion beam and is movable to any position on the chip surface; 13 is an ion gun; 14 is an accelerator;
is an ion irradiation current control device, which controls the acceleration voltage and ion irradiation current of the scanning focused ion beam. 16 is a secondary electron detector, and 17 is a gas gun for forming a W metal film by a focused ion beam excitation CVD method.
次に、このような故障解析装置を用いて第1の実施例の
集積回路装置′の故障解析を行う方法について詳細に説
明する。Next, a method for performing failure analysis of the integrated circuit device' of the first embodiment using such a failure analysis apparatus will be described in detail.
まず、集積回路装置の内部の導電性被膜5の断線箇所を
容易に検出するため集束イオンビームとして、例えば加
速電圧30kV、イオンビーム電流103pA、ビーム
径0.45μmの正のGaイオンを保護膜6上に1μm
’X1μmの範囲で、30秒間走査し、保護膜6をスパ
ッタエツチングし、スルーホール7を形成する。更にソ
ースガスとしてW (CO) sガスを用いて、集束イ
オンビーム励起CVD法により、10μmX10μmの
範囲で、比抵抗100〜200μΩ・etaのW金属膜
8をスルーホール7内に蒸着する。First, in order to easily detect a disconnection point in the conductive film 5 inside the integrated circuit device, positive Ga ions with an acceleration voltage of 30 kV, an ion beam current of 103 pA, and a beam diameter of 0.45 μm are injected into the protective film 5 as a focused ion beam. 1μm above
The protective film 6 is sputter-etched by scanning for 30 seconds in a range of 1 μm x 1 μm to form a through hole 7. Furthermore, using W (CO) s gas as a source gas, a W metal film 8 having a specific resistance of 100 to 200 μΩ·eta is deposited in the through hole 7 in a range of 10 μm×10 μm by a focused ion beam excitation CVD method.
次にイオンビーム電流を10pA、ビーム径を0.1μ
mに変えて、Gaイオンを集積回路11表面上に照射し
、1000倍以下の倍率で二次電子像を観察する。Ga
イオンは保護膜6、例えば窒化珪素膜のような絶縁膜上
に入射すると、絶縁膜上を正に帯電させる。よって絶縁
膜表面がら二次電子は微小しか放出されず、二次電子検
出器16には微小信号が伝達する。また、Gaイオンが
W金属膜8のような金属表面に入射すると、金属膜上を
帯電することなく、電荷は導電性被膜9例えばA1合金
膜に流れこむ。またコンタクト部では、導電性被膜9、
不純物拡散層2を通じてシリコン基板1に流れこむ。よ
ってW金属膜8表面及びコンタクト部では保護膜6に比
べて多量の二次電子が放出される。二次電子像として、
二次電子検出器16に印加する高電圧、及び、ビデオ信
号直流レベルを適確に選ぶことによりW金属膜8表面及
びコンタクト部が観察される。Next, the ion beam current was set to 10 pA, and the beam diameter was set to 0.1 μ.
m, Ga ions are irradiated onto the surface of the integrated circuit 11, and a secondary electron image is observed at a magnification of 1000 times or less. Ga
When the ions are incident on the protective film 6, for example an insulating film such as a silicon nitride film, the insulating film is positively charged. Therefore, only a small amount of secondary electrons are emitted from the surface of the insulating film, and a small signal is transmitted to the secondary electron detector 16. Further, when Ga ions are incident on a metal surface such as the W metal film 8, the charges flow into the conductive coating 9, for example, the A1 alloy film, without charging the metal film. In addition, in the contact part, the conductive coating 9,
It flows into the silicon substrate 1 through the impurity diffusion layer 2 . Therefore, a larger amount of secondary electrons are emitted at the surface of the W metal film 8 and at the contact portion than at the protective film 6. As a secondary electron image,
By appropriately selecting the high voltage applied to the secondary electron detector 16 and the DC level of the video signal, the surface of the W metal film 8 and the contact portion can be observed.
配線に断線がある場合、電荷の流れこみは配線断線箇所
9で途絶えるため、断線部分のコンタクト部への電荷の
流れこみがなくなる。よって、次電子像として断線部分
のコンタクト部10が観察されない。このことにより、
配線の断線箇所を検出することができる。If there is a disconnection in the wiring, the flow of charge is stopped at the disconnection point 9 of the wiring, so that no charge flows into the contact portion of the disconnection portion. Therefore, the contact portion 10 at the disconnected portion is not observed as a secondary electron image. Due to this,
It is possible to detect the location of wire breakage.
ここで、保護膜6中にGaイオンが導入され帯電が起こ
るが、保護膜6を突き抜けるイオンがあると、ここで示
した故障解析方法は精度の低いものとなる。しかし、実
際には、イオンはその径が電子と比べると非常に大きい
ために、物質内に注入されたイオンの平均自由工程がか
なり短く、般に保護膜として用いられる種々の物質、例
えば窒化珪素や酸化珪素等の珪素化合物では、加速エネ
ルギーが30keV程度であると、物質表面がら数百A
程度しか侵入できない。また、イオンの侵入深さは、通
常用いられるような30〜100keV程度の加速電圧
では、数百A程度である。Here, Ga ions are introduced into the protective film 6 and charging occurs, but if there are ions that penetrate the protective film 6, the failure analysis method shown here becomes less accurate. However, in reality, since the diameter of ions is very large compared to electrons, the mean free path of ions injected into a material is quite short, and various materials commonly used as protective films, such as silicon nitride, For silicon compounds such as silicon oxide and silicon oxide, when the acceleration energy is about 30 keV, the surface of the material is heated by several hundreds of amps.
It can only penetrate to a certain extent. Further, the penetration depth of ions is about several hundred A at an accelerating voltage of about 30 to 100 keV, which is commonly used.
以上のことから、この解析方法は保護膜6の膜厚が数百
A以上であれば、以上並べたような効果が得られる。From the above, this analysis method can produce the effects listed above if the thickness of the protective film 6 is several hundred amps or more.
また、ここでは材料上をイオンを走査し、集積回路装置
表面の物質から発生する二次電子像を観察する訳である
が、金属膜8に照射されたイオンは導電性被膜9を通っ
てシリコン基板1に形成された不純物拡散層2を通じて
シリコン基板1に流れる。一方、第1の実施例の集積回
路装置のように断線箇所9があるとイオン電流は不純物
拡散層2のみから流れる。もし、断線が起こっていなけ
ればイオン電流は導電性被膜5を通って不純物拡散層2
および10から流れ出る。このようにイオン電流をシリ
コン基板1より検出することで、イオン電流が不純物拡
散層2から出たものか、不純物拡散層2および10から
出たものかを判断することによって電気的にも故障解析
ができる。In addition, here, ions are scanned over the material to observe the secondary electron image generated from the material on the surface of the integrated circuit device, but the ions irradiated to the metal film 8 pass through the conductive film 9 to the silicon. It flows into the silicon substrate 1 through the impurity diffusion layer 2 formed on the substrate 1 . On the other hand, if there is a disconnection point 9 as in the integrated circuit device of the first embodiment, the ionic current flows only from the impurity diffusion layer 2. If there is no disconnection, the ionic current will pass through the conductive film 5 to the impurity diffusion layer 2.
and flows out from 10. By detecting the ion current from the silicon substrate 1 in this way, it is possible to conduct electrical failure analysis by determining whether the ion current is coming from the impurity diffusion layer 2 or from the impurity diffusion layers 2 and 10. I can do it.
この場合には、解析のために用いられるイオンビームは
少なくともW金属膜8であれば十分である。In this case, it is sufficient that the ion beam used for analysis is at least the W metal film 8.
また、集束イオンビームにより断線箇所をスパッタエツ
チングにより断面加工を施し、断線部の構造を二次電子
像を観察することにより、断線原因を解明することがで
きる。Furthermore, the cause of the disconnection can be elucidated by processing the cross section of the disconnected area by sputter etching using a focused ion beam and observing the secondary electron image of the structure of the disconnected area.
以下本発明の第2の実施例である、多層配線構造におけ
る断線箇所の検出方法について図面を参照しながら説明
する。第3図は本発明の第2の実施例における集積回路
の配線部分の断面を示すものである。A second embodiment of the present invention, a method for detecting a disconnection location in a multilayer wiring structure, will be described below with reference to the drawings. FIG. 3 shows a cross section of a wiring portion of an integrated circuit in a second embodiment of the present invention.
第3図において、21はシリコン基板、22は不純物拡
散層、23は眉間絶縁膜、24はコンタクト窓A125
は下層AI配線、26は眉間絶縁膜、27は上層A1配
線、28は保護膜、29は第1層Al配線断線箇所、3
0はコンタクト窓B131は第2層Al配線断線箇所で
ある。In FIG. 3, 21 is a silicon substrate, 22 is an impurity diffusion layer, 23 is an insulating film between eyebrows, and 24 is a contact window A125.
26 is the lower layer AI wiring, 26 is the insulating film between the eyebrows, 27 is the upper layer A1 wiring, 28 is the protective film, 29 is the first layer Al wiring disconnection point, 3
0 is the contact window B131 where the second layer Al wiring is broken.
まず断線箇所を容易に検出するために、保護膜28を弗
素を含むガス例えばフレオンガス(CF 4 )と酸素
ガスとの混合ガスを用いて、ドライエツチング装置によ
り除去し、第2層Al配線27を露出させる(第3図(
b))。次に集束イオンビームとして、例えば加速電圧
30kV、イオンビーム電流10pA、ビーム径0.1
μmの正のGaイオンを集積回路11表面上に照射し
、1000倍以下の倍率で第2層AI配線の二次電子像
を観察する。First, in order to easily detect the disconnection point, the protective film 28 is removed using a dry etching device using a gas containing fluorine, such as a mixture of Freon gas (CF 4 ) and oxygen gas, and the second layer Al wiring 27 is removed. Expose (Figure 3 (
b)). Next, as a focused ion beam, for example, an acceleration voltage of 30 kV, an ion beam current of 10 pA, a beam diameter of 0.1
Positive Ga ions of μm are irradiated onto the surface of the integrated circuit 11, and a secondary electron image of the second layer AI wiring is observed at a magnification of 1000 times or less.
実施例1で説明したように、イオンビーム照射による二
次電子放出特性より二次電子像として、二次電子検出器
16に印加する高電圧、及びビデオ信号直流レベルを的
確に選ぶことにより第2層Al配線27表面及びコンタ
クト窓部が観察される。As explained in Example 1, a secondary electron image can be obtained by appropriately selecting the high voltage applied to the secondary electron detector 16 and the video signal DC level based on the secondary electron emission characteristics caused by ion beam irradiation. The surface of the layered Al wiring 27 and the contact window are observed.
第2層Al配線27に断線がある場合、実施例1で説明
したように、電荷の流れこみは配線断線箇所29で途絶
える。よって、断線箇所では二次電子放出量が極端に減
少する。このことにより、配線の断線箇所を検出するこ
とができる。ここでも、第1の実施例で電気的に故障解
析を行えることを示したが、第2の実施例においても全
く同一の方法によって電気的に故障解析を行えることは
言うまでもない。If there is a disconnection in the second layer Al wiring 27, the flow of charge is interrupted at the disconnection point 29, as described in the first embodiment. Therefore, the amount of secondary electron emission is extremely reduced at the disconnection location. With this, it is possible to detect a disconnection point in the wiring. Although it has been shown here that the failure analysis can be performed electrically in the first embodiment, it goes without saying that the failure analysis can be performed electrically in the second embodiment as well, using exactly the same method.
第1層Al配線25に断線がある場合、第1の実施例で
説明したように、電荷の流れこみは配線断線箇所31で
途絶えるため、断線部分のコンタクト部への電荷の流れ
こみがな(なる。よって、二次電子像として断線部分の
コンタクト部30が観察されない。このことにより、第
1層AI配線25の断線箇所31を検出することができ
る。When there is a disconnection in the first layer Al wiring 25, as explained in the first embodiment, the flow of charge stops at the disconnection point 31, so that the charge does not flow into the contact part of the disconnection ( Therefore, the contact portion 30 at the disconnected portion is not observed as a secondary electron image.Thereby, the disconnected portion 31 of the first layer AI wiring 25 can be detected.
また、集束イオンビームにより断線箇所をスパッタエツ
チングにより断面加工を施し、多層配線の断線部の構造
を二次電子像観察することにより、断線原因を解明する
ことができる。In addition, the cause of the disconnection can be elucidated by performing cross-sectional processing of the disconnection location by sputter etching using a focused ion beam and observing the structure of the disconnection portion of the multilayer wiring as a secondary electron image.
なお、本実施例では導電性被膜としてA1合金膜を用い
たが、多結晶シリコン膜、シリサイド膜。In this example, an A1 alloy film was used as the conductive film, but a polycrystalline silicon film or a silicide film may also be used.
多結晶シリコン膜を含む多層膜、高融点金属膜について
も同様の効果を得る。Similar effects can be obtained with multilayer films including polycrystalline silicon films and high melting point metal films.
発明の効果
以上のように本発明は、簡単に故障箇所が検出でき、集
積回路が高密度に集積されたものでも故障箇所検出を容
易に実現できる。Effects of the Invention As described above, according to the present invention, a fault location can be easily detected, and a fault location can be easily detected even in a device in which integrated circuits are highly integrated.
第1図は本発明の第1の実施例における集積回路の断面
図、第2図は本発明の故障解析装置を示す構成図、第3
図(a) 、 (b)はそれぞれ本発明の第2の実施例
における集積回路の断面図である。
1・・・・・・シリコン基板、2・・・・・・不純物拡
散層、3・・・・・・層間絶縁膜、4・・・・・・コン
タクト窓A、5・・・・・・導電性被膜、6・・・・・
・保護膜、7・・・・・・スルーホール、8・・・・・
・W金属膜、9・・・・・・断線箇所、10・・・・・
・コンタクト窓B111・・・・・・集積回路装置、1
2・・・・・・走査集束イオンビームプローブ、13・
・・・・・イオン銃、14・・・・・・加速器、15・
・・・・・照射イオン電流制御装置、16・・・・・・
二次電子検出器、17・・・・・・ガス銃、21・・・
・・・シリコン基板、22・・・・・・不純物拡散層、
23・・・・・・層間絶縁膜、24・・・・・・コンタ
クト窓A125・・・・・・第1層AI配線、26・・
・・・・層間絶縁膜、27・・・・・・第2層AIWi
!線、28・・・・・・保M#、29・・・・・・第1
層AI配線断線箇所、30・・・・・・コンタクト窓B
131・・・・・・第2層AI配線断線箇所。FIG. 1 is a sectional view of an integrated circuit according to a first embodiment of the present invention, FIG. 2 is a configuration diagram showing a failure analysis device of the present invention, and FIG.
Figures (a) and (b) are sectional views of an integrated circuit according to a second embodiment of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Impurity diffusion layer, 3... Interlayer insulating film, 4... Contact window A, 5... Conductive film, 6...
・Protective film, 7...Through hole, 8...
・W metal film, 9...Disconnection point, 10...
・Contact window B111...Integrated circuit device, 1
2...Scanning focused ion beam probe, 13.
...Ion gun, 14...Accelerator, 15.
...Irradiation ion current control device, 16...
Secondary electron detector, 17... Gas gun, 21...
... silicon substrate, 22 ... impurity diffusion layer,
23... Interlayer insulating film, 24... Contact window A125... First layer AI wiring, 26...
...Interlayer insulating film, 27...Second layer AIWi
! Line, 28...Main M#, 29...1st
Layer AI wiring disconnection point, 30...Contact window B
131...Second layer AI wiring disconnection location.
Claims (3)
形成された半導体基板の所定領域に第1のイオンビーム
を照射し、前記絶縁膜をエッチングして前記第1の導電
膜を露出する窓を形成する工程と、少なくとも前記窓を
含む領域に第2のイオンビームで第2の導電膜を形成す
る工程と、前記絶縁膜及び前記第2の導電膜表面を第3
のイオンで走査する工程と、前記第3のイオンの走査で
発生した二次電子を検出する工程とを備えたことを特徴
とする集積回路の故障解析方法。(1) A first ion beam is irradiated to a predetermined region of a semiconductor substrate in which at least a first conductive film and an insulating film are formed in this order, and the insulating film is etched to expose the first conductive film. forming a second conductive film using a second ion beam in at least a region including the window; and forming a third conductive film on the surface of the insulating film and the second conductive film.
A method for analyzing a failure of an integrated circuit, comprising the steps of: scanning with the third ion; and detecting secondary electrons generated during scanning with the third ion.
形成された半導体基板の所定領域に第1のイオンビーム
を照射し、前記絶縁膜をエッチングして前記第1の導電
膜を露出する窓を形成する工程と、少なくとも前記窓を
含む領域に第2のイオンビームで第2の導電膜を形成す
る工程と、前記第2の導電膜表面を第3のイオンで走査
する工程と、前記第3のイオンの走査で発生したイオン
電流を検出する工程とを備えたことを特徴とする集積回
路の故障解析方法。(2) A first ion beam is irradiated to a predetermined region of a semiconductor substrate on which at least a first conductive film and an insulating film are formed in this order, and the insulating film is etched to expose the first conductive film. a step of forming a second conductive film with a second ion beam in at least a region including the window; a step of scanning the surface of the second conductive film with a third ion; A method for analyzing a failure of an integrated circuit, comprising the step of detecting an ion current generated by the third ion scan.
とを特徴とする請求項(1)または(2)に記載の集積
回路の故障解析方法。(3) The integrated circuit failure analysis method according to claim (1) or (2), wherein the first and third ions are ions of the same element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2167150A JP2971529B2 (en) | 1990-06-25 | 1990-06-25 | Failure analysis method for integrated circuits |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2167150A JP2971529B2 (en) | 1990-06-25 | 1990-06-25 | Failure analysis method for integrated circuits |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0456240A true JPH0456240A (en) | 1992-02-24 |
JP2971529B2 JP2971529B2 (en) | 1999-11-08 |
Family
ID=15844350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2167150A Expired - Fee Related JP2971529B2 (en) | 1990-06-25 | 1990-06-25 | Failure analysis method for integrated circuits |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2971529B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7709062B2 (en) * | 2002-04-22 | 2010-05-04 | Hitachi High-Technologies Corporation | Refilling method by ion beam, instrument for fabrication and observation by ion beam, and manufacturing method of electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62271444A (en) * | 1986-02-27 | 1987-11-25 | フエアチヤイルド セミコンダクタコ−ポレ−シヨン | Electron beam test of semiconductor wafer |
JPS63116443A (en) * | 1986-11-05 | 1988-05-20 | Seiko Instr & Electronics Ltd | Fib tester |
JPS63142825A (en) * | 1986-12-05 | 1988-06-15 | Seiko Instr & Electronics Ltd | Auxiliary evaluation method for ic operation |
JPH01140107U (en) * | 1988-03-16 | 1989-09-26 |
-
1990
- 1990-06-25 JP JP2167150A patent/JP2971529B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62271444A (en) * | 1986-02-27 | 1987-11-25 | フエアチヤイルド セミコンダクタコ−ポレ−シヨン | Electron beam test of semiconductor wafer |
JPS63116443A (en) * | 1986-11-05 | 1988-05-20 | Seiko Instr & Electronics Ltd | Fib tester |
JPS63142825A (en) * | 1986-12-05 | 1988-06-15 | Seiko Instr & Electronics Ltd | Auxiliary evaluation method for ic operation |
JPH01140107U (en) * | 1988-03-16 | 1989-09-26 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7709062B2 (en) * | 2002-04-22 | 2010-05-04 | Hitachi High-Technologies Corporation | Refilling method by ion beam, instrument for fabrication and observation by ion beam, and manufacturing method of electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP2971529B2 (en) | 1999-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100298566B1 (en) | Semiconductor device and its test method | |
US7391039B2 (en) | Semiconductor processing method and system | |
JPH11121561A (en) | Method and device for testing semiconductor and integrated circuit constitutional body | |
JP2006505114A (en) | Contact hole manufacturing monitoring | |
JPH10318949A (en) | Inspection device and semiconductor inspection method | |
US6670717B2 (en) | Structure and method for charge sensitive electrical devices | |
US7473911B2 (en) | Specimen current mapper | |
US6645781B1 (en) | Method to determine a complete etch in integrated devices | |
US20080296496A1 (en) | Method and apparatus of wafer surface potential regulation | |
JP2008016858A (en) | Substrate inspection method and apparatus for circuit pattern using charged-particle beam | |
US6297503B1 (en) | Method of detecting semiconductor defects | |
JP2953751B2 (en) | Inspection method for semiconductor device | |
JPH0456240A (en) | Analysis of trouble of integrated circuit | |
US6252227B1 (en) | Method for sectioning a semiconductor wafer with FIB for viewing with SEM | |
JP2004227879A (en) | Pattern inspection method and pattern inspection device | |
US5747803A (en) | Method for preventing charging effect and thermal damage in charged-particle microscopy | |
JP2959529B2 (en) | Semiconductor wafer inspection apparatus and inspection method using charged particle beam | |
JPH0563939B2 (en) | ||
JP3219147B2 (en) | Contact failure location identification method | |
JP2004239877A (en) | Circuit pattern inspection method and semiconductor device manufacturing method | |
CN112179931B (en) | Physical failure analysis sample and preparation method thereof | |
US4843238A (en) | Method for identifying a blistered film in layered films | |
US6894294B2 (en) | System and method for reducing charged particle contamination | |
JP2539359B2 (en) | Ion beam processing method and device for semiconductor device | |
JP2011179959A (en) | Method for preparing electric characteristic measuring sample, measuring method, and sample processing and measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |