JPH0454717A - Frequency control method for ultra thin plate multiplex mode piezoelectric filter element - Google Patents
Frequency control method for ultra thin plate multiplex mode piezoelectric filter elementInfo
- Publication number
- JPH0454717A JPH0454717A JP16477390A JP16477390A JPH0454717A JP H0454717 A JPH0454717 A JP H0454717A JP 16477390 A JP16477390 A JP 16477390A JP 16477390 A JP16477390 A JP 16477390A JP H0454717 A JPH0454717 A JP H0454717A
- Authority
- JP
- Japan
- Prior art keywords
- filter element
- electrode
- mask
- piezoelectric
- mode piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- 239000007772 electrode material Substances 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 238000007740 vapor deposition Methods 0.000 abstract description 10
- 239000006185 dispersion Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 10
- 239000000758 substrate Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は多重モード、圧電フィルタ、殊に圧電J!板の
基本波周波数、即ち中心局fI数を才一べ一トーン技術
を使用することなく数IO乃平鳳00MHzに調整する
ことができる多重モード圧電フィルタ素子の周波数JI
g方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to multi-mode, piezoelectric filters, especially piezoelectric J! The frequency JI of the multi-mode piezoelectric filter element allows the fundamental frequency of the plate, that is, the center frequency fI number, to be adjusted to several IO 00MHz without using the one-tone technique.
g method.
(従来技術)
従来から圧電基板表裏に一対の対向分割電極を近接形成
し、これら分割電極に巨に18°位相の異なった交番電
界を印加し励振した際分iIl電極相征の間に生ずる音
響結合にR因して発生する対称及び反対称モートと称す
る共振周波数か夫々【S及びraなる2つのモードの振
動を利用し中心層波数がほぼ「a、バンド幅が概ね2
(fa−Is)なる特性を有する所!!421モード圧
電フィルタが各種通信機器に広く用いられている。(Prior art) Conventionally, a pair of opposing split electrodes are formed close to each other on the front and back sides of a piezoelectric substrate, and when alternating electric fields with a huge 18° phase difference are applied to these split electrodes and excited, the sound generated between the two electrodes. The resonant frequencies called symmetric and antisymmetric motes generated due to R coupling are respectively [Using two modes of vibration S and ra, the center layer wave number is approximately ``a'' and the bandwidth is approximately 2.
A place with the characteristic of (fa-Is)! ! 421 mode piezoelectric filters are widely used in various communication devices.
又、電極を3分割以上に分割するものも存在しこれらを
一般に多重モード圧電フィルタと称するが、この種のフ
ィルタ素子に於いては圧電基板Eに分割形成した各電極
部の共振周波数をかなり厳密に(目標とするバンド幅の
数%以内)一致させる必Wがある為、一応の電極形成が
完Tしたフィルタ素子をベースに固定した後マスクを介
して電降部に所要の付加蒸着を行い分側電極部相ξの共
振周波数を一致せしめ然る徒に封止を行っていた。Additionally, there are filters in which the electrode is divided into three or more parts, and these are generally called multi-mode piezoelectric filters, but in this type of filter element, the resonance frequency of each electrode section formed on the piezoelectric substrate E is set quite strictly. (within a few percent of the target bandwidth), so after fixing the filter element on which electrode formation has been completed to the base, the required additional deposition is performed on the electrode part through a mask. The resonant frequencies of the side electrode part phase ξ were made to match and sealing was performed in vain.
ところで近年各p4電T機器1通信機器の小型化、R型
化及び高周波化への要求が厳しくなってきた為、これら
に使用する各種圧電デバイスも超小型化と共に高周波化
と高い周波数安定度が要求されており、これに対処する
為、従来から第2図(a)に示す如くAT力9ト水晶の
ように温度−周波数特性の良好な圧電ブロック1の一生
面中央部を槻械研鐙或はエツチング等によって凹陥せし
めて極めて薄肉の振動部2を形成し、その周縁の環状囲
繞部3によって前記振動部2を支持しその形状を確保す
ると共に前記凹陥側の凹陥内m壁を含む表面に全面電極
4をその対向面の前記振動部2表面に対向型JIi5を
夫々形成した超薄板圧電共振子が研究されている。斯る
タイプの共振子はその形状的特徴を活す為同図(b)に
示す如く1例えばセラミックスを焼結成形した皿型パッ
ケージ6の底に圧電ブロック1の前記凹陥側を対面せし
めるよう収納し、その全面電極4と前記パッケージ6底
面に設けた導体l[7とを導電性接着剤8で接着固定す
ると共に前記導体117からパッケージ壁を気密貫通し
てパッケージ外壁に露出する外部リード9と接続する。By the way, in recent years there has been a growing demand for downsizing, R-shape, and high frequency for each communication device, so the various piezoelectric devices used in these devices are also becoming ultra-miniaturized, as well as high frequency and high frequency stability. In order to meet this demand, conventionally, as shown in Fig. 2(a), the center part of the life surface of the piezoelectric block 1, which has good temperature-frequency characteristics like a crystal, is used as a mechanical stirrup. Alternatively, an extremely thin vibrating part 2 is formed by recessing it by etching or the like, and an annular surrounding part 3 on the periphery supports the vibrating part 2 to ensure its shape, and the surface including the inner wall of the recess on the side of the recess. An ultra-thin plate piezoelectric resonator in which a full-surface electrode 4 is formed and a facing JIi 5 is formed on the surface of the vibrating part 2 on the opposite surface thereof has been researched. In order to take advantage of its shape characteristics, this type of resonator is housed so that the concave side of the piezoelectric block 1 faces the bottom of a dish-shaped package 6 made of sintered ceramics, as shown in FIG. 1(b). Then, the entire surface electrode 4 and the conductor l[7 provided on the bottom surface of the package 6 are adhesively fixed with a conductive adhesive 8, and an external lead 9 is formed from the conductor 117 to pass through the package wall in an airtight manner and to be exposed on the outer wall of the package. Connecting.
又、前記全面電極4の対向電極5も同様にパッケージ内
に露出した他の外部リード10と接続するバッド11と
ボンディングワイヤ12で接続する如く構成し、バラケ
ージング工程で或はパッケージング終了后圧電共振子に
加わる歪の影響を極限せんとするものである。Further, the counter electrode 5 of the entire surface electrode 4 is similarly configured to be connected to a pad 11 connected to another external lead 10 exposed inside the package by a bonding wire 12, and piezoelectric This is intended to minimize the effects of distortion on the resonator.
このようなタイプの圧電共振子を2重モード圧電フィル
タに適用すれば、同図(c)に示す如く全面電極4に対
向する電極を所要幅のスリットを介して分割して分割電
極13.14となし夫々電極リード15.16とパッケ
ージ6内に露出する外部リードと接続したバッドI7、
I8とを各々ポンディング・ワイヤ12にて接続する如
く構成するのが一般的であろう。If this type of piezoelectric resonator is applied to a dual-mode piezoelectric filter, the electrode facing the entire surface electrode 4 is divided through slits of a required width to form divided electrodes 13 and 14, as shown in FIG. and pads I7 connected to electrode leads 15 and 16 and external leads exposed inside the package 6, respectively;
It would be common to connect the terminals I8 to each other with bonding wires 12.
しかしながら上述した如き超薄板多重モード圧電フィル
タ素子は前述の通り基本周波数で散lO乃至数100M
H2の共振周波数を有する素板を用いるのみならず超小
型(素板サイズで3mawX3II11程度)の素子を
意図したものであって、−枚の圧電ウェハー上に於いて
一時に多数の素子パターンを形成した後切断して素子を
量産せんとするものである故前記つニへ−の板厚の局部
的バラツキが各素子丘でも保存され、これが前記分割電
極付着部相互間の共振周波数の無視し得ない不一致をひ
きおこすことが明らかとなってきた。又、この間層を解
消すべく前述した如き従来の周波数調整手法を用いんと
すれば極めて精密なマスクを用い、これと概に形成され
ている電極どの位相合わせを厳密に行なわねばならず生
産効率の低下、ひいては製造コストの上昇を招来するの
みならず分割電極間短絡による製造歩留りの低下が予想
されるという間層があった。However, as mentioned above, the ultra-thin multi-mode piezoelectric filter element as described above has a fundamental frequency dispersion of 10 to several 100M.
This method not only uses a raw plate with a resonant frequency of H2, but also is intended to be an ultra-small element (about 3 maw x 3 II 11 in base plate size), and a large number of element patterns are formed simultaneously on two piezoelectric wafers. Since the device is intended to be mass-produced by cutting and then cutting, local variations in the thickness of the two plates are preserved in each device hill, and this causes the resonant frequency between the divided electrode attachment portions to be ignored. It has become clear that this can lead to unnecessary inconsistencies. In addition, if the conventional frequency adjustment method described above is used to eliminate this interlayer, an extremely precise mask must be used and the phases of the electrodes formed must be precisely matched, which reduces production efficiency. There was a concern that not only would this result in a decrease in the manufacturing cost, but also a decrease in manufacturing yield due to short circuits between the divided electrodes.
(発明の目的)
本発明は上述した如き従来から研究のなされていた超薄
板多重モード圧電フィルタ素子の製造上の欠陥を除去す
べくなされたものであって、フィルタ素子と蒸着マスク
とのM密な位置合わせを要せずしかも分割電極間短絡の
生じない、従って高い生産効率1歩留りを確保し得る周
波数調整方法を提供することを目的とする。(Object of the Invention) The present invention has been made in order to eliminate the manufacturing defects of ultra-thin multi-mode piezoelectric filter elements, which have been studied in the past, as described above. It is an object of the present invention to provide a frequency adjustment method that does not require close alignment, does not cause short circuits between divided electrodes, and can therefore ensure high production efficiency and yield.
(発明の概要)
上述の目的を達成する為1本発明に係る周波数調整方法
は、フィルタ素子をパッケージに組込む前にその全面電
極の分割電極とほぼ対応する側に適当なマスクを配置し
、該マスクとフィルタ素子とを相対的に移動しつつ所要
の付加蒸着を行なうものである。(Summary of the Invention) In order to achieve the above-mentioned object, 1 the frequency adjustment method according to the present invention is such that, before a filter element is assembled into a package, an appropriate mask is placed on the side substantially corresponding to the divided electrodes of the entire surface electrode, and The required additional deposition is performed while moving the mask and the filter element relatively.
(実施例)
以下、本発明を図面に示した実施例に基づいて詳細に説
明する。(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings.
実施例の説明に先立って本発明の理解を助ける為、従来
一般の多重モード圧電フィルタ素子に於ける周波数調整
方法について簡単に解説する。Prior to describing the embodiments, a frequency adjustment method in a conventional multi-mode piezoelectric filter element will be briefly explained in order to facilitate understanding of the present invention.
第3図(a)は従来一般に製造されていた2重モード圧
電フィルタの構造を示す一部破断正面図であって1例え
ば水晶素板19の一主面には分割電極!3.14及びこ
れから夫々素板19縁部に延びる電極リード20.21
を、その対向面には共通電[I22及び電極リード23
を真空蒸着によって形成し、前記各リード20.2J及
び23の端部をベース24を気密貫通するホット・リー
ド25.26及び接地リード27の先端と夫々導電性接
着剤で接続固定する0以上の製造段階に於いて前記分割
電極13及び14の部分の共振周波数を測定し、周波数
の高い側の分割電極に対しマスク28を介して電極材料
の付加蒸着を行うか(同図(b)参照)或は前記共通電
極22の半面に付加蒸着を行う(同図(c)参照)が、
いずれにしても断るタイプのフィルタ素子は全面フラッ
ト基板である為量産した基板相互の間で板厚のバラツキ
も少なく1個々の基板についても板厚の局部的差異は実
質的に存在しない上、基板サイズも電極サイズも本発明
に係る超薄板多重モード圧電フィルタ素子に比べればは
るかに大きいので上述した如き周波数調整は比較的容易
に実施し得るものであった。FIG. 3(a) is a partially cutaway front view showing the structure of a conventionally manufactured dual mode piezoelectric filter. 3.14 and electrode leads 20.21 extending from these to the edge of the blank plate 19, respectively.
, and a common voltage [I22 and electrode lead 23] is connected to the opposite surface.
are formed by vacuum evaporation, and the ends of the leads 20.2J and 23 are connected and fixed to the tips of the hot leads 25, 26 and the ground lead 27, which pass through the base 24 in an airtight manner, respectively, with conductive adhesive. At the manufacturing stage, the resonance frequency of the divided electrodes 13 and 14 is measured, and the electrode material is additionally vapor-deposited through the mask 28 on the divided electrodes with higher frequencies (see FIG. 2(b)). Alternatively, additional vapor deposition may be performed on one half of the common electrode 22 (see FIG. 3(c)).
In any case, since the type of filter element that is rejected has a completely flat substrate, there is little variation in thickness between mass-produced substrates.1 There is virtually no local difference in thickness between individual substrates, and the substrate Since both the size and the electrode size are much larger than the ultra-thin plate multi-mode piezoelectric filter element according to the present invention, the frequency adjustment as described above can be carried out relatively easily.
然るに本発明に係る超薄板多重モード圧電フィルタ素子
は大面積の圧電ウェハー上にエツチング或は機械研磨の
手法を用いて多数の凹陥を整列形成した後、これら凹陥
側には全面電極を、前記凹陥の対向面には夫々所要の分
割電極を形成し、これらフィルタ累子夫々に所要の周波
数調整を施した後切断し一挙に大量のフィルタ素子な得
んとするものであるが、大面積の圧電ウェハーには局所
的な厚さのバラツキは避は難い上この板厚のバラツキが
第4図に示す如く前記凹陥の深さ、換言すれば個々のフ
ィルタ素子の振動部2の板厚のバラツキに反映すると共
に、ウェハーの状態で最初に行う一律な電極形成稜も前
記板厚のバラツキが保存される為分割電極13と14と
の部分相互の間の共振周波数にかなりの差を生ずるが、
この問題を上述した如き従来の付加蒸着手法で解消する
のは困難であったこと前述の通りである。However, in the ultra-thin multi-mode piezoelectric filter element according to the present invention, a large number of recesses are formed in alignment on a large-area piezoelectric wafer by etching or mechanical polishing, and then electrodes are placed on the entire surface of the recesses on the sides of the recesses. The required divided electrodes are formed on the opposing surfaces of the recesses, and each of these filter elements is cut after the required frequency adjustment is performed to obtain a large number of filter elements at once. Piezoelectric wafers inevitably have local variations in thickness, and these variations in thickness cause variations in the depth of the recesses, as shown in FIG. In addition to reflecting this, the uniform electrode formation edge initially performed in the wafer state also causes a considerable difference in the resonance frequency between the portions of the divided electrodes 13 and 14 because the variation in plate thickness is preserved.
As mentioned above, it has been difficult to solve this problem using the conventional additive deposition method as described above.
この間層を解決する為1本発明は以下の如き方法をとる
。In order to solve this problem, the present invention takes the following method.
第1図(a )は本発明に係る超薄板多重モード圧電フ
ィルタ素子の周波数a!!方法の概念を説明する為の断
面図てあって、先ず圧電ウェハー上に整列形成された個
々のフィルタ素子の分割電極13及びI4の部分につい
て夫々共振周波数を測定すると本図の場合には電!!1
3の部分が電極14の部分より周波数が高いことは自明
である。FIG. 1(a) shows the frequency a! of the ultra-thin multi-mode piezoelectric filter element according to the present invention. ! This is a cross-sectional view for explaining the concept of the method. First, the resonant frequencies of the divided electrodes 13 and I4 of the individual filter elements formed in alignment on the piezoelectric wafer are measured. ! 1
It is obvious that the frequency of the portion 3 is higher than that of the electrode 14.
このことは・殻に振動部2の113が付着した部分の圧
電素板板厚(電極の厚さを含めて)が電!t14が付着
した部分のそれよりも薄いということを意味するからウ
ェハー凹陥面の電極13を付着した半面に対して該面の
環状囲繞部311から中央2にかけて付加a#膜29の
厚さが漸減する如く蒸着を行う必要がある。これを可能
ならしめる為には前記電極13とその対向面電極(全面
電極4)との間で共振周波数を測定しつつ付加蒸着を行
うべき面に適当なサイズの開口30を有するマスク31
を当接し所要の速度で前記マスク3Iをウェハーに対し
て相対移動すればよい。This means that the thickness of the piezoelectric plate (including the thickness of the electrode) at the part where 113 of the vibrating part 2 is attached to the shell is electric! Since t14 means that it is thinner than that of the attached part, the thickness of the additional A# film 29 gradually decreases from the annular surrounding part 311 to the center 2 of the half surface of the wafer concave surface to which the electrode 13 is attached. It is necessary to perform the vapor deposition as follows. In order to make this possible, a mask 31 having an opening 30 of an appropriate size on the surface where additional vapor deposition is to be performed is used while measuring the resonance frequency between the electrode 13 and the electrode on the opposite surface (the entire surface electrode 4).
The mask 3I may be brought into contact with the wafer and moved relative to the wafer at a required speed.
斯くすることによって前記振動部2の素板板厚の不拘・
を補償し得ると共にSl!極冨極上34の部分W4互の
共振周波数をかなりの精度で一致せしめることができる
。By doing this, there is no restriction on the thickness of the raw plate of the vibrating section 2.
can be compensated for and Sl! The resonant frequencies of the portions W4 of the top layer 34 can be matched with each other with considerable accuracy.
尚、前記マスク3璽はウェハーに対して相対運動させる
ものであるから、各フィルタ素子に対して相い位置合わ
せな行えば足り1分1R電極I3或は14に対する付加
#、着の如くM密な位置合わせを必要としない。Incidentally, since the mask 3 is moved relative to the wafer, it is sufficient to align each filter element with respect to the 1R electrode I3 or 14, so that the mask 3 is moved relative to the wafer. does not require precise alignment.
ところで、上、述の周波数jl整を実行する為には1例
えばiE1図(b)に示す如き装置を用いればよい、即
ち、圧電ウェハ−32を固定する基台33の下に付加蒸
着用のマスク31及びこれを所定の速度で移動せしめる
為の駆動機構34を配覆し、前記マスク31の下には該
マスク31を全体的に覆うフード35を、該フード35
の底には蒸薯物賞加熱部36を、又前記マスク31と前
記加熱部36との間にはシャッタ37を配置しこれらを
真空槽に収納する。尚、前記マスク31の駆動機構34
は精密ネジ38に係合したナツト39をモータで送るも
のが一般的であろう。By the way, in order to carry out the above-mentioned frequency jl adjustment, it is sufficient to use a device as shown in FIG. A mask 31 and a drive mechanism 34 for moving the same at a predetermined speed are disposed, and a hood 35 that completely covers the mask 31 is provided below the mask 31.
A steamed food heating section 36 is disposed at the bottom of the chamber, and a shutter 37 is disposed between the mask 31 and the heating section 36, and these are housed in a vacuum chamber. In addition, the drive mechanism 34 of the mask 31
Generally, a nut 39 engaged with a precision screw 38 is fed by a motor.
1述した周波数調整用付加蒸着装置は、先ずウェハー3
2上の各フィルタ素子にについて図示を省略した共振周
波数測定装置を用い分割電極1314の部分の共振周波
数を夫々測定記憶し、付加蒸着を施すべき部位を法定し
た優、R記つェハー固定基台33に付属するこれも図示
を省略したX−Y座標設定機構を駆動して付加蒸着を行
うべきフィルタ素子を前記フード35上に移動した上で
1記シヤツタ37を開放し次いでマスク31を移動しつ
つ付加蒸着を行う。The additional evaporation device for frequency adjustment described in 1.
2. Using a resonant frequency measuring device (not shown) for each of the above filter elements, the resonant frequency of the divided electrode 1314 portion was measured and stored, and the portions to be subjected to additional vapor deposition were determined. 33, which is also not shown, moves the filter element to be subjected to additional vapor deposition onto the hood 35, opens the shutter 37, and then moves the mask 31. Additional vapor deposition is performed while
このH前記マスク3Iの移動速度は予め測定した付加蒸
着部の共振周波数に基づいて予測し得る付加蒸着量との
関係によって法定すればよいが。The moving speed of the mask 3I may be determined according to the relationship with the amount of additional deposition that can be predicted based on the resonant frequency of the additional deposition portion measured in advance.
付加蒸着手法っている過程に於いて核部の共振周波数の
下降を計測しその結果に基づいて途中で変更してもよい
、これらの操作はいずれも付加蒸着装置に付属するC2
0に所要のプログラムを与えておけば確実に実施し得る
ことは明らかであるから明細書の煩雑を皇けるためより
詳細な説明は省略する。During the additive deposition process, the drop in the resonant frequency of the core may be measured and changes may be made midway based on the results. These operations can be performed using the C2 attached to the additive deposition equipment.
It is clear that the process can be implemented reliably by providing the required program to 0, so a more detailed explanation will be omitted to avoid complication of the specification.
尚1本発明は以Fの如き手法を用いるものであるからフ
ィルタ素子振動部の圧電素板板圧の薄い部分を電極材料
によって厚くし、結果的に振動部板厚を等価的に均一化
することができるので1分割電極への付加蒸着によって
単に分割電極部相互の共振周波数を一致させた場合に比
して圧電素板表裏の電極付着量のバランスを崩すことが
少ない故スプリアスの発生を抑制する効果もあることに
注目されたい。1. Since the present invention uses the following method, the thin part of the piezoelectric plate of the filter element vibrating part is made thicker by the electrode material, and as a result, the vibrating part thickness is equivalently made uniform. This reduces the amount of electrode deposits on the front and back sides of the piezoelectric plate and suppresses the generation of spurious noise, compared to simply matching the resonant frequencies of the divided electrode parts by additional vapor deposition on one divided electrode. It should be noted that it also has the effect of
(発明の効果)
本発明は以上説明した如き手法を用いるものであるから
、8NN薄板型モード圧電フィルタ素子の分割電極部相
互の間に於いて該部圧電素板板厚のバラツキに起因して
発生する共振周波数の不一致を高精度を要しないマスク
とフィルタ素子の位置合わせを以って容易に解消し得る
のでフィルタ素子の生産効率を向上し製造コストを低減
し得るのみならず、本発明に係る付加蒸着手法を用いれ
ば圧電素板表裏の等価的な電極付着量のバランスを崩す
ことがないのでスプリアスの発生を抑制する上でも効果
的である。(Effects of the Invention) Since the present invention uses the method as explained above, it is possible to eliminate the problem caused by the variation in the thickness of the piezoelectric element between the divided electrode parts of the 8NN thin plate mode piezoelectric filter element. Since the mismatch in resonant frequency that occurs can be easily resolved by positioning the mask and filter element that does not require high precision, it is possible not only to improve the production efficiency of filter elements and reduce manufacturing costs, but also to improve the present invention. If such an additional vapor deposition method is used, the balance between the equivalent amounts of electrode deposits on the front and back surfaces of the piezoelectric element plate will not be disturbed, and therefore it is effective in suppressing the generation of spurious noise.
第1図(a)は本発明に係る周波数j1!!方法を説明
する概念図、同図(b)は本発明に係る方法を実行する
為の装置の一実施例を示す構成図、第2図(a)及び(
b)は夫々超薄板圧電共振子の構造を示す斜視図及びそ
のパッケージング方法を示す断面図、同図(c)は本発
明の方法を適用すべき超薄板重曹モード圧電フィルタ素
子をパッケージに収納した状態を示す平面図、第3図(
a)乃至(c)は夫々従来の多重モード圧電フィルタ素
子の構成を示す正面図及びその1った周波数調整方法を
示す概念図、第4図は本発明を適用すべき超薄板多重モ
ード圧電フィルタ素子の周波数調整前の状態を示す断面
図である。
符号l・・・圧電素板、2・・・振動部、3・・・環状
囲繞部、4・・・全面電極、13.14・・・分割電極
、31・・・マスク
特許出願人 東洋通信機株式会社FIG. 1(a) shows the frequency j1! according to the present invention. ! FIG. 2(b) is a conceptual diagram illustrating the method; FIG.
b) is a perspective view showing the structure of an ultra-thin piezoelectric resonator and a sectional view showing its packaging method, and (c) is a package of an ultra-thin baking soda mode piezoelectric filter element to which the method of the present invention is applied. Figure 3 is a plan view showing the state in which it is stored in the
a) to (c) are front views showing the configuration of a conventional multi-mode piezoelectric filter element and a conceptual diagram showing one frequency adjustment method thereof, and FIG. 4 is an ultra-thin multi-mode piezoelectric filter element to which the present invention is applied. FIG. 3 is a cross-sectional view showing the state of the filter element before frequency adjustment. Symbol 1...Piezoelectric element plate, 2...Vibrating part, 3...Annular surrounding part, 4...Full surface electrode, 13.14...Divided electrode, 31...Mask patent applicant Toyo Tsushin Machine Co., Ltd.
Claims (1)
囲繞部を一体形成して圧電素板の前記振動部一主面に近
接分割電極を、その対向面の少なくとも前記分割電極と
対応する面に全面電極を形成した超薄板多重モード圧電
フィルタ素子に於いて、前記全面電極側に所定の開口を
有するマスクを配置し該マスクと前記フィルタ素子との
相対運動を行いつつ前記マスクを介して電極材料の付加
蒸着を行うことによって前記フィルタ素子の前記各分割
電極形成部分の共振周波数が一致する如く調整するよう
にしたことを特徴とする超薄板多重モード圧電フィルタ
素子の周波数調整方法。An ultra-thin vibrating part and a thick annular surrounding part that supports the periphery of the vibrating part are integrally formed, and a divided electrode is provided close to one principal surface of the vibrating part of a piezoelectric element plate, and at least the divided electrode is connected to the opposite surface of the vibrating part. In an ultra-thin multi-mode piezoelectric filter element in which a full-surface electrode is formed on a corresponding surface, a mask having a predetermined opening is disposed on the full-surface electrode side, and while relative movement between the mask and the filter element is performed, the mask is removed. Frequency adjustment of an ultra-thin multi-mode piezoelectric filter element, characterized in that the resonant frequencies of the divided electrode forming portions of the filter element are adjusted to match by additionally depositing an electrode material through the filter element. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16477390A JPH0454717A (en) | 1990-06-22 | 1990-06-22 | Frequency control method for ultra thin plate multiplex mode piezoelectric filter element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16477390A JPH0454717A (en) | 1990-06-22 | 1990-06-22 | Frequency control method for ultra thin plate multiplex mode piezoelectric filter element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0454717A true JPH0454717A (en) | 1992-02-21 |
Family
ID=15799666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16477390A Pending JPH0454717A (en) | 1990-06-22 | 1990-06-22 | Frequency control method for ultra thin plate multiplex mode piezoelectric filter element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0454717A (en) |
-
1990
- 1990-06-22 JP JP16477390A patent/JPH0454717A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6414569B1 (en) | Method of adjusting frequency of piezoelectric resonance element by removing material from a thicker electrode or adding, material to a thinner electrode | |
JP3953554B2 (en) | Monolithic thin film resonator grating filter and manufacturing method thereof | |
US4365181A (en) | Piezoelectric vibrator with damping electrodes | |
US5235240A (en) | Electrodes and their lead structures of an ultrathin piezoelectric resonator | |
US20240088869A1 (en) | Frequency-tunable film bulk acoustic resonator and preparation method therefor | |
US10523173B2 (en) | Quartz crystal resonator and method for manufacturing the same, and quartz crystal resonator unit and method for manufacturing the same | |
US5307034A (en) | Ultrathin multimode quartz crystal filter element | |
WO2024140171A1 (en) | Manufacturing method for surface acoustic wave filter and surface acoustic wave filter | |
US3924312A (en) | Method of manufacturing an electromechanical system having a high resonance frequency | |
US7888849B2 (en) | Piezoelectric resonator and method for producing the same | |
WO2022077707A1 (en) | Thin-film bulk acoustic resonator | |
US12107561B2 (en) | Vibrator and method for manufacturing vibrator | |
JPH0454717A (en) | Frequency control method for ultra thin plate multiplex mode piezoelectric filter element | |
JP2022153702A (en) | piezoelectric filter | |
JP5949445B2 (en) | Piezoelectric filter | |
JPS62266906A (en) | Piezoelectric thin film resonator | |
JPH03235408A (en) | Structure of ultrathin plate piezoelectric resonator | |
CN214851161U (en) | A Frequency Tunable Thin Film Bulk Acoustic Resonator | |
JP4701504B2 (en) | Manufacturing method of triple mode piezoelectric filter | |
JPH0131728B2 (en) | ||
JPS58137318A (en) | Thin-film piezoelectric oscillator | |
US2281778A (en) | Piezoelectric crystal apparatus | |
JPH06224677A (en) | Frequency adjusting method for piezoelectric resonator | |
JPS5912812Y2 (en) | Piezoelectric vibrator cage | |
JPS5846577Y2 (en) | Composite resonator holding container |