[go: up one dir, main page]

JPH0454702B2 - - Google Patents

Info

Publication number
JPH0454702B2
JPH0454702B2 JP57043429A JP4342982A JPH0454702B2 JP H0454702 B2 JPH0454702 B2 JP H0454702B2 JP 57043429 A JP57043429 A JP 57043429A JP 4342982 A JP4342982 A JP 4342982A JP H0454702 B2 JPH0454702 B2 JP H0454702B2
Authority
JP
Japan
Prior art keywords
resin
hollow molded
molded article
mol
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57043429A
Other languages
Japanese (ja)
Other versions
JPS58160344A (en
Inventor
Tatsu Akashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP4342982A priority Critical patent/JPS58160344A/en
Publication of JPS58160344A publication Critical patent/JPS58160344A/en
Publication of JPH0454702B2 publication Critical patent/JPH0454702B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガスバリアー性に優れたポリエステル
中空成形体に関する。さらに詳しくは熱可塑性ポ
リエステル樹脂とメタキシリレン基含有ポリアミ
ド樹脂との混合からなるガスバリアー性に優れた
中空成形体に関するものである。 従来からポリエチレンテレフタレートを主体と
する熱可塑性ポリエステル樹脂は、その素材の優
れた力学的性質、ガスバリアー性、耐薬品性、保
香性、衛生性などに着目されて各種の容器、フイ
ルム、シートなどに加工され、包装材料として広
範に利用されている。特に近年ブロー成形技術こ
とに二軸延伸吹込成形技術の向上によりびんや缶
といつた中空容器としての利用も目覚しいものが
ある。 然しながらポリエチレンテレフタレートを主体
とする熱可塑性ポリエステル樹脂からなる二軸配
向した容器とて、万全の性能を具備しているわけ
ではなく、特に充填する内容物がガスバリアー性
を要求する食品の容器としてはその酸素に対する
ガスバリアー性の不足から不適当であつた。 本発明者は、熱可塑性ポリエステル樹脂がもつ
優れた力学的性質を何ら損なわず、また実用的透
明性を損なわず、酸素に対する遮断性を向上する
べく鋭意研究を重ね、メタキシリレン基含有ポリ
アミド樹脂の添加により問題点の解決を見出し、
本発明に至つた。すなわち、本発明はエチレンテ
レフタレートを主たる繰返し単位とする熱可塑性
ポリエステル樹脂からなる中空成形体であつて、
該ポリエステル樹脂100重量部当り、アミン成分
としてメタキシリレンジアミン70〜100モル%、
パラキシリレンジアミン30〜0モル%酸成分とし
て炭素数6〜10の脂肪族ジカルボン酸を反応させ
て得られるアミド繰返し単位を全アミド繰返し単
位に対し70モル%以上含有するポリアミド樹脂1
〜100重量部を含有してなることを特徴とするガ
スバリアー性の優れたポリエステル中空成形体で
ある。 本発明でいうエチレンテレフタレートを主たる
繰返し単位とする熱可塑性ポリエステル樹脂と
は、通常酸成分の80モル%以上、好ましくは90モ
ル%以上がテレフタル酸であり、グリコール成分
の80モル%、好ましくは90モル%以上がエチレン
グリコールであるポリエステルを意味し、残部の
他の酸成分としてイソフタル酸、ジフエニルエー
テル4,4′−ジカルボン酸、ナフタレン1,4−
または2,6−ジカルボン酸、アジピン酸、セバ
シン酸、デカン1,10−ジカルボン酸、ヘキサヒ
ドロテレフタル酸、また他のグリコール成分とし
てプロピレングリコール、1,4−ブタンジオー
ル、ネオペンチルグリコール、ジエチレングリコ
ール、シクロヘキサンジメタノール、2,2−ビ
ス(4−ヒドロキシフエニル)プロパン、2,2
−ビス(4−ヒドロキシエトキシフエニル)プロ
パンまたはオキシ酸としてp−オキシ安息香酸、
p−ヒドロキシエトキシ安息香酸等を含有するポ
リエステル樹脂が例示される。また2種以上のポ
リエステルのブレンドによりエチレンテレフタレ
ートが上記範囲となるブレンドでもよい。 本発明の熱可塑性ポリエステル樹脂の固有粘度
は0.55以上の値であり、更に好ましくは0.65〜1.4
である。固有粘度が0.55未満では、容器の前駆成
形体であるパリソンを透明な非晶質状態で得るこ
とが困難であるほか得られる容器の機械的強度も
不充分である。 また、本発明に使用されるポリアミド樹脂は、
メタキシリレンジアミン、もしくはメタキシリレ
ンジアミンとパラキシリレンジアミンとの混合キ
シリレンジアミンでパラキシリレンジアミンを30
%以下含む混合キシリレンジアミンと、炭素数が
6〜10個のα,ω−脂肪族ジカルボン酸(アジピ
ン酸、ピメリン酸、コルク酸、アゼライン酸、セ
バチン酸のうちの少なくとも1種)とから生成さ
れたアミド繰返し単位を全アミド繰返し単位に対
し、少なくとも70モル%含有した重合体である。 これらの重合体の例としてはポリメタキシリレ
ンアジパミド、ポリメタキシリレンセバカミド、
ポリメタキシリレンスペラミド等のような単独重
合体、およびメタキシリレン/パラキシリレンア
ジパミド共重合体、メタキシリレン/パラキシリ
レンピメラミド共重合体、メタキシリレン/パラ
キシリレンアゼラミド共重合体等のような共重合
体、ならびにこれらの単独重合体または共重合体
の成分とヘキサメチレンジアミンのような脂肪族
ジアミン、ピペラジンのような脂環式ジアミン、
パラ−ビス−(2−アミノエチル)ベンゼンのよ
うな芳香族ジアミン、テレフタル酸のような芳香
族ジカルボン酸、ε−カプロラクタムのようなラ
クタム、γ−アミノヘプタン酸のようなω−アミ
ノカルボン酸、パラ−アミノメチル安息香酸のよ
うな芳香族アミノカルボン酸等とを共重合した共
重合体等が挙げられる。上記の共重合体において
パラキシリレンジアミンは全キシリレンジアミン
に対して30%以下であり、またキシリレンジアミ
ンと脂肪族ジカルボン酸とから生成されたアミド
繰返し単位は分子鎖中において少くとも70モル%
以上である。 本発明で言う特定のポリアミド樹脂ポリアミド
樹脂(以下SM樹脂と略記)自体本来は非晶状態
では脆いため、相対粘度が通常1.5以上であるこ
とが必要であり、好ましくは2.0〜4.0である。 従来ガスバリアー性樹脂として公知のエチレン
−酢酸ビニル共重合体けん化物はそれ自体が結晶
性樹脂であるため、熱可塑性ポリエステル樹脂に
添加すると延伸ブロー成形性が損われるほか、得
られた中空成形体はパール状に失透し実用上透明
容器としての機能を有しないし、期待したガスバ
リアー性も得ることが困難である。 また、スチレン−アクリロニトリル共重合体を
添加した場合は、そのガラス転移温度(Tg)が
高いためポリエステル樹脂に適した延伸温度下で
は充分延ばされないという欠点を有している。更
に非晶性樹脂であつて延伸を施しても配向結晶化
を誘起しないため、残存延伸応力により容器が変
形するという欠点も有している。 これらの樹脂に対しSM樹脂自体本来は結晶性
樹脂であるが比較的Tgが高いため、溶融状態か
らの急冷処理により非晶化されやすく、熱可塑性
ポリエステル樹脂100重量部当り、SM樹脂100重
量部以内、好ましくは60重量部以内の添加では実
用性を損なわない透明性を与えると共にそのTg
が熱可塑性ポリエステル樹脂のTgとほぼ等しい
ことから延伸による配向結晶化が充分に誘起さ
れ、前記高ガスバリアー性樹脂と異なつて熱可塑
性ポリエステル樹脂のもつ優れた力学的性質を何
ら損なわず、かつ酸素ガス遮断性を著しく向上さ
せた中空成形体となる。SM樹脂の特に好ましい
配合量は、実用性を損なわない範囲の透明性で、
できるだけ高いガスバリアー性を発揮させようと
する点からは、ポリエステル樹脂100重量部当り
5重量部を超え、60重量部以下であり、高い透明
性を有し、ガスバリアー性をも発揮させようとす
る点からは、ポリエステル樹脂100重量部当り1
〜5重量部である。 本発明のガスバリアー性中空成形体を得る方法
としては所望濃度の熱可塑性ポリエステル樹脂と
SM樹脂をドライブレンドし、直接中空体成形機
で成形する方法や、所望濃度の熱可塑性ポリエス
テル樹脂とSM樹脂を押出機中で溶融混練して混
合組成物ペレツトを作り該ペレツトを中空成形機
で成形する方法等が例示される。 また熱可塑性ポリエステル樹脂とSM樹脂の層
状成形物を粉砕機で中空成形器に供給可能な状態
に粉砕し、中空成形機で成形する方法も可能であ
る。 中空成形機による成形に関しては、従来のポリ
エステル樹脂の中空成形と何等変ることなく行な
うことができる。例えば一般にダイレクトブロー
と呼ばれる押出吹込成形やインジエクシヨンブロ
ーと呼ばれる成形で、パリソンを射出成形後充分
に冷却しないうちに圧縮気体により吹込成形する
方法や、さらに二軸延伸ブロー成形と呼ばれる成
形体で射出成形または押出成形により有底開口の
パリソンを作製後、延伸ブロー装置でパリソンを
延伸適温、例えば70〜150℃に調温し延伸ロツド
による軸方向の延伸と圧縮気体による周方向の延
伸を同時または逐次に行つて吹込成形する方法等
が使用できる。 延伸により胴部肉薄部分は少くとも一方向に配
向された中空成形体が得られる。 延伸倍率としては面積倍率(軸方向の延伸倍率
×周方向の延伸倍率)で2倍以上が好ましく、更
には3〜15倍が特に好ましい。最終製品胴部の肉
厚は通常0.1mm以上、好ましくは0.15mm以上、特
に好ましくは0.2〜1mmである。 また、上記混合樹脂から未延伸状のシートを押
出成形した後、深絞りにより成形した中空成形体
や、混合樹脂から押出または射出成形によつて成
形されたパイプを場合により延伸配向させて得ら
れる筒体に蓋を一体化したプラスチツク缶であつ
てもよい。 本発明による中空成形体は必要に応じて着色
剤、紫外線吸収剤、帯電防止剤、熱酸化劣化防止
剤、抗菌剤、滑剤、核剤、上記以外の熱可塑性樹
脂等を本発明の目的を損わない範囲内で含有する
ことができる。 以下、本発明を実施例により詳しく説明する。
なお、本発明で測定した主な特性の測定法を以下
に示す。 (1) ポリエステル樹脂の固有粘度〔η〕;フエノ
ール/テトラクロロエタン=6/4(重量比)
混合溶媒を用いて30℃で測定した。 (2) ポリアミド樹脂のηrel;樹脂1gを96重量%
硫酸100mlに溶解、25℃で測定した相対粘度。 (3) 透明度及びヘーズ;東洋精機社製ヘーズメー
ターSを使用し、JIS−K6714に準じ次式より
算出した。 透明度=T2/T1×100(%) ヘーズ=T4−T3(T2/T1)/T2×100(%) T1;入射光量 T2;全光線透過量 T3;装置による散乱光量 T4:装置とサンプルによる散乱光量 (4) 酸素透過量;米国MODERN CONTROLS
社製酸素透過量測定器OX−TRAN100により、
1000c.c.ボトル1本当りの透過量として20℃で測
定した。(c.c./容器1本・24hr・afm) (5) 引張特性;巾10mmのたんざく状試片を用いて
東洋ボールドウイン社製テンシロンにより、チ
ヤツク間50mm、引張速度50mm/minの条件下
で、降伏強度、破断強伸度を測定した(23℃)。 実施例1〜5および比較例 ポリエステル樹脂として〔η〕=0.72のポリエ
チレンテレフタレート(PETと略称)を使用し、
メタキシリレン基含有ポリアミド樹脂としてηrel
=2.2のポリメタキシリレンアジパミド(SM樹脂
と略称)を使用し、外径25mm、長さ130mm、肉厚
4mmの有底パリソンを名機製作所製M−100型射
出成形機で表−1に示す成形条件で成形した。 このパリソンを自転用駆動装置のついたパリソ
ン嵌合部にパリソン開口端を嵌装し、遠赤外ヒー
ターを有するオーブン中で回転させながらパリソ
ンの表面温度が110℃になるまで加熱した。この
あとパリソンを吹込金型内に移送し延伸ロツドの
移動速度22cm/秒、圧縮気体圧20Kg/cm2の条件下
で吹込成形し、全長265mm、胴部の外径80mm、内
容積1000mlのビールびん形状の中空容器を得た。
これらの容器の性能を表−2に示す。
The present invention relates to a polyester hollow molded article having excellent gas barrier properties. More specifically, the present invention relates to a hollow molded article having excellent gas barrier properties, which is made of a mixture of a thermoplastic polyester resin and a metaxylylene group-containing polyamide resin. Thermoplastic polyester resins, mainly composed of polyethylene terephthalate, have been used for various containers, films, sheets, etc. due to their excellent mechanical properties, gas barrier properties, chemical resistance, fragrance retention, and hygienic properties. It is processed and widely used as packaging material. Particularly in recent years, advances in blow molding technology, especially biaxial stretch blow molding technology, have led to remarkable advances in the use of hollow containers such as bottles and cans. However, biaxially oriented containers made of thermoplastic polyester resin mainly composed of polyethylene terephthalate do not have perfect performance, especially as food containers whose contents require gas barrier properties. It was unsuitable due to its lack of gas barrier properties against oxygen. The present inventor has conducted extensive research in order to improve the oxygen barrier properties without impairing the excellent mechanical properties of thermoplastic polyester resins, nor impairing their practical transparency, and has added polyamide resins containing meta-xylylene groups. find a solution to the problem,
This led to the present invention. That is, the present invention is a hollow molded article made of a thermoplastic polyester resin whose main repeating unit is ethylene terephthalate,
Per 100 parts by weight of the polyester resin, 70 to 100 mol% of metaxylylene diamine as an amine component,
Paraxylylene diamine 30 to 0 mol% Polyamide resin 1 containing 70 mol% or more of amide repeating units obtained by reacting an aliphatic dicarboxylic acid having 6 to 10 carbon atoms as an acid component based on the total amide repeating units.
This is a polyester hollow molded article with excellent gas barrier properties, characterized by containing ~100 parts by weight. The thermoplastic polyester resin containing ethylene terephthalate as a main repeating unit as used in the present invention usually has an acid component of 80 mol% or more, preferably 90 mol% or more of terephthalic acid, and a glycol component of 80 mol% or more, preferably 90 mol% or more. It means a polyester in which ethylene glycol accounts for at least mol%, and the remaining acid components include isophthalic acid, diphenyl ether 4,4'-dicarboxylic acid, and naphthalene 1,4-
or 2,6-dicarboxylic acid, adipic acid, sebacic acid, decane 1,10-dicarboxylic acid, hexahydroterephthalic acid, and other glycol components such as propylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, cyclohexane. Dimethanol, 2,2-bis(4-hydroxyphenyl)propane, 2,2
- bis(4-hydroxyethoxyphenyl)propane or p-oxybenzoic acid as oxyacid,
Examples include polyester resins containing p-hydroxyethoxybenzoic acid and the like. Alternatively, a blend of two or more types of polyester may be used so that ethylene terephthalate falls within the above range. The thermoplastic polyester resin of the present invention has an intrinsic viscosity of 0.55 or more, more preferably 0.65 to 1.4.
It is. If the intrinsic viscosity is less than 0.55, it is difficult to obtain a parison, which is a precursor molded body of a container, in a transparent amorphous state, and the resulting container also has insufficient mechanical strength. In addition, the polyamide resin used in the present invention is
30% of para-xylylene diamine with metaxylylene diamine or a mixture of metaxylylene diamine and para-xylylene diamine.
% or less, and an α,ω-aliphatic dicarboxylic acid having 6 to 10 carbon atoms (at least one of adipic acid, pimelic acid, corkic acid, azelaic acid, and sebacic acid). It is a polymer containing at least 70 mol% of amide repeating units based on the total amide repeating units. Examples of these polymers include polymethaxylylene adipamide, polymethaxylylene sebacamide,
Homopolymers such as polymethaxylylenesperamide, and metaxylylene/paraxylylene adipamide copolymers, metaxylylene/paraxylylene pimeramide copolymers, metaxylylene/paraxylylene azeramide copolymers, etc. copolymers such as, as well as components of these homopolymers or copolymers with aliphatic diamines such as hexamethylene diamine, cycloaliphatic diamines such as piperazine,
Aromatic diamines such as para-bis-(2-aminoethyl)benzene, aromatic dicarboxylic acids such as terephthalic acid, lactams such as ε-caprolactam, ω-aminocarboxylic acids such as γ-aminoheptanoic acid, Examples include copolymers obtained by copolymerizing aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid. In the above copolymer, paraxylylene diamine accounts for 30% or less of the total xylylene diamine, and the amide repeating unit formed from xylylene diamine and aliphatic dicarboxylic acid is at least 70 moles in the molecular chain. %
That's all. The specific polyamide resin referred to in the present invention Since the polyamide resin (hereinafter abbreviated as SM resin) itself is inherently brittle in an amorphous state, it is necessary that the relative viscosity is usually 1.5 or more, preferably 2.0 to 4.0. Saponified ethylene-vinyl acetate copolymer, which is conventionally known as a gas barrier resin, is itself a crystalline resin, so if it is added to thermoplastic polyester resin, stretch blow moldability will be impaired, and the resulting hollow molded product will be damaged. It devitrifies in a pearl-like form and has no practical function as a transparent container, and it is difficult to obtain the expected gas barrier properties. Furthermore, when a styrene-acrylonitrile copolymer is added, it has a drawback that it cannot be stretched sufficiently at a stretching temperature suitable for polyester resins because its glass transition temperature (Tg) is high. Furthermore, since it is an amorphous resin and does not induce oriented crystallization even when stretched, it also has the disadvantage that the container deforms due to residual stretching stress. In contrast to these resins, SM resin itself is originally a crystalline resin, but because it has a relatively high Tg, it is easily amorphized by rapid cooling treatment from the molten state, and 100 parts by weight of SM resin per 100 parts by weight of thermoplastic polyester resin. If added within 60 parts by weight, it will provide transparency without impairing practicality and also improve its Tg.
Since Tg is almost equal to the Tg of the thermoplastic polyester resin, oriented crystallization is sufficiently induced by stretching, and unlike the above-mentioned high gas barrier resins, the excellent mechanical properties of the thermoplastic polyester resin are not impaired in any way, and the oxygen This results in a hollow molded body with significantly improved gas barrier properties. A particularly preferable amount of SM resin is to maintain transparency within a range that does not impair practicality.
From the point of view of trying to exhibit gas barrier properties as high as possible, the content should be more than 5 parts by weight and 60 parts by weight or less per 100 parts by weight of polyester resin, and in order to have high transparency and also exhibit gas barrier properties. 1 per 100 parts by weight of polyester resin.
~5 parts by weight. As a method for obtaining the gas barrier blow molded article of the present invention, a thermoplastic polyester resin of a desired concentration and
A method of dry blending SM resin and directly molding it with a hollow body molding machine, or a method of melting and kneading a thermoplastic polyester resin of a desired concentration and SM resin in an extruder to form mixed composition pellets, and then molding the pellets with a blow molding machine. A method of molding, etc. are exemplified. It is also possible to use a crusher to crush a layered molded product of thermoplastic polyester resin and SM resin into a state that can be supplied to a blow molder, and then mold the molded product using a blow molder. Regarding molding using a blow molding machine, it can be carried out in no way different from conventional blow molding of polyester resin. For example, there are extrusion blow molding, commonly called direct blow molding, and injection blow molding, in which the parison is blown with compressed gas before it has been sufficiently cooled after injection molding, and a molded product called biaxial stretch blow molding. After producing a parison with a bottomed opening by injection molding or extrusion molding, the parison is stretched using a stretch blowing device. The temperature is adjusted to an appropriate temperature, e.g. 70 to 150°C, and the axial direction is stretched by a stretching rod and the circumferential direction is stretched by compressed gas at the same time. Alternatively, a method of successive blow molding can be used. By stretching, a hollow molded body is obtained in which the thin body portion is oriented in at least one direction. The stretching ratio is preferably 2 times or more in terms of area ratio (axial stretching ratio x circumferential stretching ratio), and particularly preferably 3 to 15 times. The wall thickness of the body of the final product is usually 0.1 mm or more, preferably 0.15 mm or more, and particularly preferably 0.2 to 1 mm. In addition, a hollow molded body formed by extrusion molding an unstretched sheet from the above mixed resin and then deep drawing, or a pipe molded from the mixed resin by extrusion or injection molding may be obtained by stretching or orientation. It may also be a plastic can with a lid integrated into the cylinder. The hollow molded article according to the present invention may contain colorants, ultraviolet absorbers, antistatic agents, thermal oxidative deterioration inhibitors, antibacterial agents, lubricants, nucleating agents, thermoplastic resins other than those mentioned above, etc., as necessary. It can be contained within the range. Hereinafter, the present invention will be explained in detail with reference to Examples.
The methods for measuring the main characteristics measured in the present invention are shown below. (1) Intrinsic viscosity of polyester resin [η]; Phenol/tetrachloroethane = 6/4 (weight ratio)
Measurement was performed at 30°C using a mixed solvent. (2) ηrel of polyamide resin; 1g of resin is 96% by weight
Relative viscosity measured at 25°C, dissolved in 100ml of sulfuric acid. (3) Transparency and haze: Calculated using Hazemeter S manufactured by Toyo Seiki Co., Ltd. according to the following formula according to JIS-K6714. Transparency = T 2 / T 1 × 100 (%) Haze = T 4 - T 3 (T 2 / T 1 ) / T 2 × 100 (%) T 1 ; Incident light amount T 2 ; Total light transmission amount T 3 ; Equipment Amount of light scattered by T 4 : Amount of light scattered by the device and sample (4) Amount of oxygen permeation; US MODERN CONTROLS
Using the company's oxygen permeation measuring device OX-TRAN100,
The amount of permeation per 1000 c.c. bottle was measured at 20°C. (cc/1 container, 24 hr, afm) (5) Tensile properties: Using a strip-shaped specimen with a width of 10 mm, it was measured using a tensilon manufactured by Toyo Baldwin Co., Ltd., under the conditions of a chuck distance of 50 mm and a tensile speed of 50 mm/min. Yield strength and breaking strength and elongation were measured (23°C). Examples 1 to 5 and Comparative Examples Using polyethylene terephthalate (abbreviated as PET) with [η] = 0.72 as the polyester resin,
ηrel as metaxylylene group-containing polyamide resin
Using polymethaxylylene adipamide (abbreviated as SM resin) of = 2.2, a bottomed parison with an outer diameter of 25 mm, a length of 130 mm, and a wall thickness of 4 mm was made using an M-100 injection molding machine made by Meiki Seisakusho. It was molded under the molding conditions shown below. The open end of this parison was fitted into a parison fitting part equipped with a rotation drive device, and heated while rotating in an oven equipped with a far-infrared heater until the surface temperature of the parison reached 110°C. After that, the parison was transferred into a blow mold and blow molded under the conditions of a stretching rod moving speed of 22 cm/sec and a compressed gas pressure of 20 Kg/cm 2 to produce a beer with a total length of 265 mm, an outer diameter of the body of 80 mm, and an internal volume of 1000 ml. A bottle-shaped hollow container was obtained.
Table 2 shows the performance of these containers.

【表】 実施例 6 実施例1に記載のPET100重量部に対しSM樹
脂3重量部を用い、実施例1に記載の成形法に従
い内容積1000mlのビールビン形状の中空成形体を
成形した。この中空成形体の引張降状強度は1100
Kg/cm2、透明度83%、ヘーズ15%、酵素透過量は
0.38c.c./本・24hr・atmであつた。
[Table] Example 6 Using 3 parts by weight of SM resin for 100 parts by weight of PET described in Example 1, a beer bottle-shaped hollow molded product having an internal volume of 1000 ml was molded according to the molding method described in Example 1. The tensile strength of this hollow molded body is 1100
Kg/ cm2 , transparency 83%, haze 15%, enzyme permeation amount is
It was 0.38cc/book, 24hr, ATM.

【表】 本実施例により得られた容器は比較例に示す従
来のポリエチレンテレフタレート容器に比べ実用
的透明度を損なわず、力学的性質の何ら犠牲な
く、酸素ガス遮断性を著しく向上させたものであ
ることがわかる。得られた容器は所望により更に
耐水性耐擦過傷性コーテイングを施してもよい。
[Table] Compared to the conventional polyethylene terephthalate container shown in the comparative example, the container obtained in this example does not impair practical transparency, does not sacrifice any mechanical properties, and has significantly improved oxygen gas barrier properties. I understand that. The resulting container may optionally be further provided with a water-resistant and scratch-resistant coating.

Claims (1)

【特許請求の範囲】 1 主たる繰返し単位がエチレンテレフタレート
である熱可塑性ポリエステル樹脂からなる中空成
形体であつて、該ポリエステル樹脂100重量部当
り、アミン成分としてメタキシリレンジアミン70
〜100モル%、パラキシリレンジアミン30〜0モ
ル%、酸成分として炭素数6〜10の脂肪族ジカル
ボン酸を反応させて得られるアミド繰返し単位を
少なくとも全アミド繰返し単位に対し70モル%以
上含有するポリアミド樹脂1〜100重量部を含有
してなることを特徴とするガスバリアー性の優れ
たポリエステル中空成形体。 2 中空成形体が胴部肉薄部分において少なくと
も一方向に配向していることを特徴とする特許請
求の範囲第1項記載のガスバリアー性の優れたポ
リエステル中空成形体。
[Scope of Claims] 1. A hollow molded article made of a thermoplastic polyester resin whose main repeating unit is ethylene terephthalate, which contains 70 parts of metaxylylene diamine as an amine component per 100 parts by weight of the polyester resin.
~100 mol%, paraxylylenediamine 30-0 mol%, contains at least 70 mol% or more of amide repeating units obtained by reacting an aliphatic dicarboxylic acid having 6 to 10 carbon atoms as an acid component based on the total amide repeating units. A polyester hollow molded article having excellent gas barrier properties, characterized in that it contains 1 to 100 parts by weight of a polyamide resin. 2. The polyester hollow molded article having excellent gas barrier properties as claimed in claim 1, wherein the hollow molded article is oriented in at least one direction in the thin body portion.
JP4342982A 1982-03-17 1982-03-17 Hollow polyester molding having excellent gas barrier properties Granted JPS58160344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4342982A JPS58160344A (en) 1982-03-17 1982-03-17 Hollow polyester molding having excellent gas barrier properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4342982A JPS58160344A (en) 1982-03-17 1982-03-17 Hollow polyester molding having excellent gas barrier properties

Publications (2)

Publication Number Publication Date
JPS58160344A JPS58160344A (en) 1983-09-22
JPH0454702B2 true JPH0454702B2 (en) 1992-09-01

Family

ID=12663448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342982A Granted JPS58160344A (en) 1982-03-17 1982-03-17 Hollow polyester molding having excellent gas barrier properties

Country Status (1)

Country Link
JP (1) JPS58160344A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139334A (en) * 1987-11-27 1989-05-31 Mitsubishi Gas Chem Co Inc Parison and blow-molded container
US5202052A (en) * 1990-09-12 1993-04-13 Aquanautics Corporation Amino polycarboxylic acid compounds as oxygen scavengers
US6709724B1 (en) 1990-05-02 2004-03-23 W. R. Grace & Co.-Conn. Metal catalyzed ascorbate compounds as oxygen scavengers
US5364555A (en) * 1991-04-30 1994-11-15 Advanced Oxygen Technologies, Inc. Polymer compositions containing salicylic acid chelates as oxygen scavengers
US20020037377A1 (en) 1998-02-03 2002-03-28 Schmidt Steven L. Enhanced oxygen-scavenging polymers, and packaging made therefrom
JP2000302952A (en) * 1999-04-19 2000-10-31 Mitsubishi Gas Chem Co Inc Polyester resin composition
DE60200355T2 (en) * 2001-03-05 2004-08-12 Mitsubishi Gas Chemical Co., Inc. Polyester resin composition and molded articles made of the polyester resin
JP2002294055A (en) * 2001-04-02 2002-10-09 Mitsui Chemicals Inc Polyester composition, method for producing the same and molding comprising the composition
JP4710484B2 (en) * 2002-06-03 2011-06-29 東洋紡績株式会社 Polyester composition and polyester packaging material comprising the same
JP2005297344A (en) * 2004-04-12 2005-10-27 Mitsubishi Gas Chem Co Inc Multi-layer container
JP6028343B2 (en) 2012-03-09 2016-11-16 三菱瓦斯化学株式会社 Polyester resin composition
KR102796221B1 (en) * 2018-09-21 2025-04-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for manufacturing elongated body, PET bottle and container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880651A (en) * 1972-01-24 1973-10-29
JPS5910893B2 (en) * 1975-04-23 1984-03-12 三菱樹脂株式会社 Method for producing stretched pine film

Also Published As

Publication number Publication date
JPS58160344A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
US4398642A (en) Multi-ply vessel and method for production thereof
AU618770B2 (en) Transparent gas-barrier multilayer structure
AU604896B2 (en) Gas-barrier multilayered structure
CA2133110C (en) Polyester/polyamide blend having improved flavor retaining property and clarity
JP4573060B2 (en) Polyester resin composition and molded article
US5068136A (en) Five-layered container
EP0186154B2 (en) Multilayer parison, process for its production and multilayer container
EP0857194A1 (en) Polyester/polyamide blend having improved flavor retaining property and clarity
JP2000302952A (en) Polyester resin composition
JPH0454702B2 (en)
US4844987A (en) Polyamide molding material and hollow-molded body obtained therefrom
JP2663578B2 (en) Polyester hollow molded body
JP3674650B2 (en) Resin composition
JPH0227942B2 (en) TASOYOKI
WO1987002680A2 (en) Polyamide packaging material
JP2864595B2 (en) Polyester hollow molded body with improved color tone
JPS62263250A (en) Polyester resin composition
JPH062871B2 (en) Polyester resin composition
JP2003113295A (en) Polyester resin composition and molded article
JPS63213529A (en) Hollow molded article of polyester
JPS6230912B2 (en)
JPS60238355A (en) Polyester composition and its use
JPS6239088B2 (en)
JP2629333B2 (en) Polyester hollow molded body
KR940003185B1 (en) Polyester blow molding