[go: up one dir, main page]

JPH045360B2 - - Google Patents

Info

Publication number
JPH045360B2
JPH045360B2 JP59280771A JP28077184A JPH045360B2 JP H045360 B2 JPH045360 B2 JP H045360B2 JP 59280771 A JP59280771 A JP 59280771A JP 28077184 A JP28077184 A JP 28077184A JP H045360 B2 JPH045360 B2 JP H045360B2
Authority
JP
Japan
Prior art keywords
membrane
polymer membrane
polymerizable monomer
acid
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59280771A
Other languages
Japanese (ja)
Other versions
JPS61155998A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP28077184A priority Critical patent/JPS61155998A/en
Publication of JPS61155998A publication Critical patent/JPS61155998A/en
Publication of JPH045360B2 publication Critical patent/JPH045360B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 発明の利用される分野 本発明は均一大面積線源およびその製造方法に
関する。本発明の線源は大面積を有する平面線源
はハンドフツトモニタ、表面汚染検査用サーベイ
メーターなどの校正用線源として、利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a uniform large area radiation source and a method for manufacturing the same. The radiation source of the present invention has a large area and is used as a radiation source for calibrating hand-foot monitors, survey meters for inspecting surface contamination, and the like.

従来技術の説明 大面積を有する平面線源はハンドフツトモニタ
表面汚染検査用サーベイメーターなどの校正用線
源として、利用価値が高い。しかし、従来、放射
能強度および、放射能面密度の一様性、形状など
において、上記の使用目的を満足するものが得ら
れていない。特に、β線源の場合には、サーベイ
メータの校正などの放射線管理用線源や、β線標
準照射用線源として、放射能面密度の一様性のみ
でなく、自己吸収や後方散乱の小さい薄形平面線
源の開発が待たれている。
Description of the Prior Art A plane radiation source having a large area has high utility value as a radiation source for calibrating a survey meter for inspecting surface contamination of a hand-foot monitor. However, until now, no material has been available that satisfies the above intended use in terms of radioactivity intensity, uniformity of radioactivity surface density, shape, etc. In particular, in the case of β-ray sources, they are used as a source for radiation control such as in the calibration of survey meters, and as a source for standard irradiation of β-rays.They are suitable for not only uniform radioactivity surface density, but also thin, low self-absorption and backscattering. The development of a shaped planar radiation source is awaited.

従来一般に行なわれてきた線源作成法として
は、薄膜の表面への塗布、あるいは薄紙を放射性
水溶液に浸漬してから乾燥するなどの方法がある
が、放射能面密度の一様性を向上させることがき
わめて困難である。また、電着法や、金属粉末と
混合焼結化したり、微粒子状のイオン交換樹脂を
吹きつけ塗布するなどの方法があるが技術的に煩
雑であり、2次汚染などの問題や、自己吸収を小
さくするための未解決な点が多い。一方、従来法
のイオン交換膜を基材に用いた場合には、膜面方
向に対する寸法安定性を向上するため、パツキン
グ材による補強が必要となり、放射能面密度の均
一性や自己吸収の点で問題があり、膜厚が1ミク
ロンから30ミクロン程度の薄膜の製造が不可能で
ある。
Conventional radiation source preparation methods include coating a thin film on the surface or immersing thin paper in a radioactive aqueous solution and then drying it, but it is important to improve the uniformity of the radioactive surface density. is extremely difficult. In addition, there are methods such as electrodeposition, mixing with metal powder, sintering, and spraying fine particles of ion exchange resin, but these methods are technically complicated and pose problems such as secondary contamination and self-absorption. There are many unresolved issues regarding how to reduce the size of . On the other hand, when a conventional ion-exchange membrane is used as a base material, reinforcement with packing material is required to improve dimensional stability in the membrane surface direction, which reduces the uniformity of radioactive surface density and self-absorption. Due to this problem, it is impossible to manufacture thin films with a thickness of about 1 micron to 30 microns.

発明が解決する問題点 本発明によつて、均一大面積線源を製造するに
当つて放射能強度および放射能面密度を一様にし
且つ、自己吸収や後方散乱を小さくする技術が解
決される。
Problems Solved by the Invention The present invention solves a technique for making uniform the radioactivity intensity and radioactivity area density and reducing self-absorption and backscattering when manufacturing a uniform large-area radiation source.

問題点を解決するための具体的手段 上述した問題点を解決するための本発明は、 イ 高分子膜に放射線グラフト重合法で放射性核
種の捕捉機能を付与する方法;および ロ 放射線グラフト重合膜に均一に放射性核種を
導入する方法の二つの方法を包含する。
Specific Means for Solving the Problems The present invention for solving the above-mentioned problems consists of: (a) a method of imparting a radionuclide trapping function to a polymer membrane by a radiation graft polymerization method; It includes two methods for uniformly introducing radionuclides.

イの方法をより詳細に述べると、高分子膜に電
離性放射線を照射した後放射性核種捕捉機能を有
する重合性単量体又はカチオン基に変換し得る官
能基を有する重合性単量体と接触させることによ
りあるいは高分子膜と該重合性単量体に同時に電
離性放射線を照射することによつて該高分子膜に
該単量体がグラフト重合したグラフト重合膜を製
造しついで該グラフト重合膜に放射性核種を含む
溶液を含浸させることから主として成る。
To describe method (a) in more detail, the polymer membrane is irradiated with ionizing radiation and then contacted with a polymerizable monomer that has a radionuclide capture function or a polymerizable monomer that has a functional group that can be converted into a cationic group. or by simultaneously irradiating the polymer membrane and the polymerizable monomer with ionizing radiation to produce a graft polymer film in which the monomer is graft-polymerized to the polymer membrane; It mainly consists of impregnating the water with a solution containing radionuclides.

本発明を実施するにあたつて使用される高分子
膜としては、放射線照射により、放射性核種捕捉
機能を有する又はカチオン基に変換し得る官能基
を有する単量体をグラフト重合し得るものであれ
ば形状、材質を問うものではないが、例えば、ポ
リエチレン、ポリプロピレン、エチレン−テトラ
フルオロエチレン共重合体およびポリエチレンテ
レフタレートなどが好ましい。
The polymer membrane used in carrying out the present invention may be one that can be graft-polymerized with a monomer that has a radionuclide capture function or a functional group that can be converted into a cationic group by irradiation with radiation. Although the shape and material are not critical, preferred examples include polyethylene, polypropylene, ethylene-tetrafluoroethylene copolymer, and polyethylene terephthalate.

本発明で使用される放射性核種捕捉機能を有す
る重合性単量体または、カチオン基に変換し得る
官能基を有する重合性単量体としては、ビニルス
ルホン酸、スチレンスルホン酸、アクリル酸、メ
タクリル酸、パラビニルフエノールおよびフルオ
ロビニルスルホン酸、フルオロビニルカルボン酸
およびこれらの金属塩等である。
The polymerizable monomers having a radionuclide capture function or having a functional group that can be converted into a cationic group used in the present invention include vinyl sulfonic acid, styrene sulfonic acid, acrylic acid, and methacrylic acid. , paravinylphenol, fluorovinylsulfonic acid, fluorovinylcarboxylic acid, and metal salts thereof.

本発明のグラフト重合に際して用いる電離性放
射線源としては、α線、β線、γ線、加速電子
線、線などであるが、実用的には電子線または
γ線が好ましい。
Ionizing radiation sources used in the graft polymerization of the present invention include α rays, β rays, γ rays, accelerated electron beams, and rays, but electron beams or γ rays are practically preferred.

本発明のグラフト重合方法としては、基材と重
合性単量体とを、共存下に放射線を照射する同時
照射グラフト重合法または基材のみをあらかじめ
放射線を照射したのち、これを重合性単量体と接
触させる前照射グラフト重合法のいずれでも可能
である。
The graft polymerization method of the present invention includes a simultaneous irradiation graft polymerization method in which the base material and the polymerizable monomer are irradiated with radiation while coexisting with each other, or a method in which only the base material is irradiated with radiation in advance and then the polymerizable monomer is irradiated with radiation. Any pre-irradiation graft polymerization method with contact with the body is possible.

本発明の別法としての、放射線グラフト重合膜
に放射性核種を導入する方法としては、放射性核
種を含有する水溶液中にイオン交換膜を浸漬し
て、放射性核種を吸着させることにより容易に達
成できることが特徴である。しかし、放射能面密
度の一様性に優れた平面線源を作成するために
は、放射性核種の水溶液に膜を浸漬する際に膜面
のキズや折れ曲り、さらに、気泡の付着などの影
響を受けやすい。したがつて、第1図に示したよ
うな持具に膜をセツトし、第2図に示すような浸
漬容器を用い、膜面を液面に対し、容器の中央に
平衡に静置して浸漬することが望ましい。第1図
でAおよびBは各々平面図および立面図である。
As another method of the present invention, a method of introducing radionuclides into a radiation-grafted polymerized membrane can be easily achieved by immersing an ion exchange membrane in an aqueous solution containing radionuclides and adsorbing the radionuclides. It is a characteristic. However, in order to create a flat radiation source with excellent uniformity of radioactive surface density, it is necessary to avoid the effects of scratches and bends on the membrane surface, as well as the adhesion of air bubbles, when the membrane is immersed in an aqueous solution of radioactive nuclides. Easy to accept. Therefore, set the membrane in a holder as shown in Figure 1, use an immersion container as shown in Figure 2, and place the membrane at the center of the container with the membrane surface in equilibrium with the liquid level. Soaking is recommended. In FIG. 1, A and B are a plan view and an elevation view, respectively.

第1図および第2図において、リング断面がU
字溝形状の保持リング1にグラフト重合膜3を張
り渡し、この膜の上から断面U字形状の固定リン
グ2を押し込んで膜を保持リングに張り渡したも
のが示されている。そして4はこれらのリング等
を浸漬する際に使用される固定用のテープであ
る。
In Figures 1 and 2, the ring cross section is U.
A graft polymer membrane 3 is stretched over a groove-shaped retaining ring 1, and a fixing ring 2 having a U-shaped cross section is pushed in from above the membrane to stretch the membrane onto the retaining ring. 4 is a fixing tape used when dipping these rings and the like.

以下実施例により、本発明の構成および効果を
具体的に解記する。
The structure and effects of the present invention will be specifically explained below with reference to Examples.

実施例 1 厚さ25μmの低密度ポリエチレン膜に電子加速
器(加速電圧1.5meV、電子線電流1mA)を用
いて窒素雰囲気下で100KGyを照射したのち、こ
の照射膜をあらかじめ溶液中の酸素濃度を
0.1ppm以下にした50wt%のアクリル酸水溶液
(0.25wt%のモール塩含有)に浸漬して、25℃で
5時間反応させた。これによりグラフト率49%の
膜を得た。
Example 1 A 25 μm thick low density polyethylene film was irradiated with 100 KGy in a nitrogen atmosphere using an electron accelerator (acceleration voltage 1.5 meV, electron beam current 1 mA).
It was immersed in a 50 wt% aqueous acrylic acid solution (containing 0.25 wt% Mohr's salt) with a concentration of 0.1 ppm or less, and reacted at 25°C for 5 hours. As a result, a membrane with a grafting rate of 49% was obtained.

このグラフト重合膜を1N塩酸溶液に5時間浸
漬した後精製水で充分に洗浄する。洗浄後膜を乾
燥させないように速やかに第1図に示した持具に
均一にセツトする。第2図の容器に 147Pmの塩
酸水溶液(0.1N、PH−6)を入れ、第1図の持
具を膜面が水平になるように固定して、50時間静
置する、線源溶液から膜を取り出し、持具のまま
充分水洗後、自然乾燥する。この膜を線用フイ
ルムを用いたオートラジオグラフイにより、黒化
度を測定した結果、放射能強度の標準偏差は5.6
%以下であり、放射能面密度の均一性はきわめて
良好であり、平面標準線源として優れたものであ
つた。第3図は得られた膜の放射能強度分布図で
ある。
This graft polymerized membrane is immersed in a 1N hydrochloric acid solution for 5 hours, and then thoroughly washed with purified water. After washing, immediately set the membrane uniformly on the holder shown in FIG. 1 to prevent it from drying. Pour 147 Pm hydrochloric acid aqueous solution (0.1N, PH-6) into the container shown in Figure 2, fix the holder shown in Figure 1 so that the membrane surface is horizontal, and leave it for 50 hours. Remove the membrane from the container, rinse thoroughly with water, and air dry. The degree of blackening of this film was measured by autoradiography using linear film, and the standard deviation of radioactivity intensity was 5.6.
% or less, the uniformity of the radioactive surface density was extremely good, and it was excellent as a flat standard radiation source. FIG. 3 is a radioactivity intensity distribution map of the obtained film.

実施例 2 実施例1の膜に実施例1と同様な方法で 204Tl
線源を作成し、線用オートラジオグラフイで放
射能分布を測定した結果、第4図に示すように放
射能強度のばらつきは4%以下であり、きわめて
均一性に優れたβ線源であることが確認された。
この線源の放射性表面汚染の検査をスミヤロ紙に
よるふきとり試験を行い、GM計数管で汚染度を
測定した結果、第5図に示す通り50回でも変化が
認められず、放射能の機械的剥離のないことが確
認された。
Example 2 204 Tl was applied to the membrane of Example 1 in the same manner as in Example 1.
As a result of creating a radiation source and measuring its radioactivity distribution using radiation autoradiography, as shown in Figure 4, the variation in radioactivity intensity was less than 4%, indicating that it is a highly uniform β-ray source. It was confirmed that there is.
To inspect the radioactive surface contamination of this radiation source, we conducted a wiping test using Sumiyaro paper and measured the degree of contamination using a GM counter. It was confirmed that there was no

実施例 3 厚さ25μmの高密度ポリエチレン膜に実施例1
と同様な方法でグラフト重合を行なつた結果69%
のグラフト率を得た。この膜に実施例1と同様な
方法で 60Co核種を導入したのち、オートラジオ
グラフイで放射能強度の分布を求めた結果4.5%
以下であり、均一性に優れたγ線源を得ることが
出来た。
Example 3 Example 1 was applied to a 25 μm thick high-density polyethylene film.
The result of graft polymerization using the same method as 69%
The grafting rate was obtained. After introducing 60 Co nuclide into this film in the same manner as in Example 1, the distribution of radioactivity intensity was determined by autoradiography, and the result was 4.5%.
It was possible to obtain a γ-ray source with excellent uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で膜を保持するために使用する
持具。第2図は膜を浸漬するための容器。第3図
は本発明で製造された線源の放射能強度分布図。
第4図は放射能強度の偏差図そして第5図は線源
の表面フキ取り試験結果図である。
FIG. 1 shows a holder used to hold a membrane in the present invention. Figure 2 shows a container for immersing the membrane. FIG. 3 is a radioactivity intensity distribution diagram of the radiation source manufactured according to the present invention.
FIG. 4 is a deviation diagram of radioactivity intensity, and FIG. 5 is a diagram showing the results of a test for removing flakes from the surface of the radiation source.

Claims (1)

【特許請求の範囲】 1 高分子膜に電離性放射線を照射した後、放射
性核種捕捉機能を有する重合性単量体又はカチオ
ン基に変換し得る官能基を有する重合性単量体と
接触させることにより、或いは高分子膜と核重合
性単量体に同時に電離性放射線を照射することに
より該高分子膜に該単量体がグラフト重合したグ
ラフト重合膜を製造し、ついで該グラフト重合膜
に、放射性核種を含む溶液を含浸させて均一大面
積線源を製造する方法において、 (a) 所望の大きさの放射性線源を得るために見合
つた大きさを有し、且つリング断面がU字溝形
状である膜保持リング上に該グラフト重合膜を
張り渡し、 (b) 該保持リングのU字形状溝に嵌合する断面U
字形状の固定リングを、保持リング上に張り渡
したグラフト重合膜の上から押し込むことによ
つて該膜を保持リングに固定し、 (c) この膜面を液面に対して浸漬容器の中央に平
衡に静置して放射性核種を含む溶液に浸漬させ
ることを特徴とする方法。 2 放射性核種捕捉機能を有する重合性単量体、
又はカチオン基に変換し得る官能基を有する重合
性単量体が、ビニルスルホン酸、スチレンスルホ
ン酸、アクリル酸、メタクリル酸、パラビニルフ
エノール、フルオロビニルスルホン酸、フルオロ
ビニルカルボン酸、及びこれらの金属塩から選択
される特許請求の範囲第1項に記載の方法。
[Claims] 1. After irradiating the polymer membrane with ionizing radiation, it is brought into contact with a polymerizable monomer having a radionuclide capture function or a polymerizable monomer having a functional group that can be converted into a cationic group. or by simultaneously irradiating the polymer membrane and the nuclear polymerizable monomer with ionizing radiation to produce a graft polymer membrane in which the monomer is graft-polymerized to the polymer membrane, and then to the graft polymer membrane, In a method of manufacturing a uniform large-area radiation source by impregnating a solution containing a radionuclide, (a) a ring having a size appropriate to obtain a radioactive radiation source of a desired size and a ring cross section having a U-shaped groove; The graft polymerized membrane is stretched over a membrane retaining ring having the shape of: (b) a cross section U that fits into the U-shaped groove of the retaining ring;
(c) Fix the membrane to the retaining ring by pushing a letter-shaped fixing ring over the graft polymer membrane stretched over the retaining ring; A method characterized by allowing the solution to stand still in equilibrium and immersing it in a solution containing a radionuclide. 2. Polymerizable monomer having a radionuclide capture function,
Or, the polymerizable monomer having a functional group that can be converted into a cationic group is vinylsulfonic acid, styrenesulfonic acid, acrylic acid, methacrylic acid, paravinylphenol, fluorovinylsulfonic acid, fluorovinylcarboxylic acid, and these metals. 2. A method according to claim 1, wherein the salt is selected from salts.
JP28077184A 1984-12-28 1984-12-28 Manufacturing method of uniform large area radiation source Granted JPS61155998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28077184A JPS61155998A (en) 1984-12-28 1984-12-28 Manufacturing method of uniform large area radiation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28077184A JPS61155998A (en) 1984-12-28 1984-12-28 Manufacturing method of uniform large area radiation source

Publications (2)

Publication Number Publication Date
JPS61155998A JPS61155998A (en) 1986-07-15
JPH045360B2 true JPH045360B2 (en) 1992-01-31

Family

ID=17629730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28077184A Granted JPS61155998A (en) 1984-12-28 1984-12-28 Manufacturing method of uniform large area radiation source

Country Status (1)

Country Link
JP (1) JPS61155998A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538689A (en) * 1976-07-14 1978-01-26 Japan Atom Energy Res Inst Preparation of ion-exchange membrane
JPS538690A (en) * 1976-07-14 1978-01-26 Japan Atom Energy Res Inst Preparation of graft copolymer for ion-exchange membrane
JPS56132600A (en) * 1980-02-27 1981-10-16 Nemoto Tokushu Kagaku Kk Sealed radiation source for discharge tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538689A (en) * 1976-07-14 1978-01-26 Japan Atom Energy Res Inst Preparation of ion-exchange membrane
JPS538690A (en) * 1976-07-14 1978-01-26 Japan Atom Energy Res Inst Preparation of graft copolymer for ion-exchange membrane
JPS56132600A (en) * 1980-02-27 1981-10-16 Nemoto Tokushu Kagaku Kk Sealed radiation source for discharge tube

Also Published As

Publication number Publication date
JPS61155998A (en) 1986-07-15

Similar Documents

Publication Publication Date Title
Hinterberger et al. Elastic scattering of 52 MeV deuterons
Appleby et al. Imaging of radiation dose by visible color development in ferrous‐agarose‐xylenol orange gels
Cooper et al. Neutralizing charged aerosols with radioactive sources
JPS60235819A (en) Manufacture of electrophoretic gel material by radiation
Thach et al. Damage to biological samples caused by the electron beam during electron microscopy
Grant et al. Radiotracer techniques for protein adsorption measurements
Hsiao et al. A comparative study of non-ionic detergent adsorption by radiotracer, spectrophotometric and surface tension methods
Gottlieb Measurement of the Surface Potentials of Metals Due to Adsorption of Organic Compounds from Solution
JPH045360B2 (en)
Bryant et al. Strontium-90 by Ion Exchange Method
Smith The inactivation of monomolecular films of protein and its relation to the lifetime of active radicals formed in water by X-radiation
Tommasino et al. ELECTROCHEMICAL ETCHING-II METHODS, APPARATUS, RESULTS
Tsoupko-Sitnikov et al. A novel method for large-area sources preparation for the calibration of β-and α-contamination monitors
Getoff et al. Molecular plating: VI. Quantitative electrodeposition of americium
Aladdine et al. The adsorption of water and amino acids onto hydrophilic and hydrophobic quartz surfaces
JPS63221278A (en) Radiation dose detector
Yoshida et al. Preparation of extended sources with homogeneous polyethylene ion-exchange membranes
US2631245A (en) Method of forming coating containing uranium and method of isotopic analysis
Nakamura et al. Multiparticle emission in the interactions of hadrons with complex nuclei at incident momenta from 2 to 4 GeV/c
El-Kelany et al. Development of ion exchange membrane for possible use in radiation processing dosimetry
Gineste et al. Synthesis and characterization of polyethylene film grafted with acrylic acid and diethyleneglycol‐dimethacrylate
Jönsson et al. The exposure of plastic films and their response to 1.3–5.5 MeV helium ions
Roop Effects of gamma radiation on ion exchange membranes.
Chen et al. Preparation of reference sources for calibration of surface contamination monitors using Nafion ion exchange membrane
Yerimbetova et al. Suitability testing of polyethylene terephthalate film as a solid-state nuclear track detector for using in radon studies

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term