JPH0453548B2 - - Google Patents
Info
- Publication number
- JPH0453548B2 JPH0453548B2 JP58028145A JP2814583A JPH0453548B2 JP H0453548 B2 JPH0453548 B2 JP H0453548B2 JP 58028145 A JP58028145 A JP 58028145A JP 2814583 A JP2814583 A JP 2814583A JP H0453548 B2 JPH0453548 B2 JP H0453548B2
- Authority
- JP
- Japan
- Prior art keywords
- blood
- free hemoglobin
- molecular weight
- permeability
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 102000001554 Hemoglobins Human genes 0.000 claims description 47
- 108010054147 Hemoglobins Proteins 0.000 claims description 47
- 239000012528 membrane Substances 0.000 claims description 38
- 230000035699 permeability Effects 0.000 claims description 27
- 238000000926 separation method Methods 0.000 claims description 14
- 229920002307 Dextran Polymers 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 description 29
- 239000008280 blood Substances 0.000 description 29
- 102000009027 Albumins Human genes 0.000 description 18
- 108010088751 Albumins Proteins 0.000 description 18
- 210000002381 plasma Anatomy 0.000 description 12
- 238000001914 filtration Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 102000004506 Blood Proteins Human genes 0.000 description 7
- 108010017384 Blood Proteins Proteins 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 229920002301 cellulose acetate Polymers 0.000 description 6
- 239000012510 hollow fiber Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- FZWBNHMXJMCXLU-UHFFFAOYSA-N 2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexanal Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OCC(O)C(O)C(O)C(O)C=O)O1 FZWBNHMXJMCXLU-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 206010018910 Haemolysis Diseases 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005534 hematocrit Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 108010074605 gamma-Globulins Proteins 0.000 description 2
- 238000001631 haemodialysis Methods 0.000 description 2
- 230000000322 hemodialysis Effects 0.000 description 2
- 230000008588 hemolysis Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- 208000009304 Acute Kidney Injury Diseases 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 206010018901 Haemoglobinaemia Diseases 0.000 description 1
- 206010022822 Intravascular haemolysis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000033626 Renal failure acute Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 201000011040 acute kidney failure Diseases 0.000 description 1
- 208000012998 acute renal failure Diseases 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000002016 colloidosmotic effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000002682 general surgery Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 201000001505 hemoglobinuria Diseases 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
Description
【発明の詳細な説明】
本発明は血液、血漿、血清、赤血球懸濁液に含
まれる遊離ヘモグロビンを過により選択的に除
去するための分離膜に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separation membrane for selectively removing free hemoglobin contained in blood, plasma, serum, and red blood cell suspensions by filtration.
遊離ヘモグロビンは正常な状態では体内を流れ
る、あるいは体外に取り出した血液中には見出さ
れない蛋白とされる。しかし人工心肺を用いる開
心術においては、術野に流出した血液を回収する
ための吸引ポンプ、その他の送血用ポンプ、気泡
型、膜型、あるいは回転円板型人工肺などにおけ
る赤血球の機械的損傷によりヘモグロビンが遊離
され、また他の手術時間の長い一般手術において
も、かなりのヘモグロビンが遊離される。さらに
分子量の大きな有害物質を除去するために、まず
膜で血球と血漿を分離する血漿分離法においても
ヘモグロビンの遊離が問題とされている。また、
全血輸血や赤血球輸血を行なう場合においても保
存時間が長くなるにつれて遊離ヘモグロビンが増
加する。一方、各種の溶血性貧血の中には、血管
内溶血を来たし、ヘモグロビン血症を示す例も知
られている。 Free hemoglobin is a protein that is not found in the blood that flows through the body or is taken out of the body under normal conditions. However, in open-heart surgery using a heart-lung machine, a suction pump to collect blood that has spilled into the surgical field, other blood pumps, a bubble-type, membrane-type, or rotating disk type oxygenator, etc., are used to mechanically collect red blood cells. Hemoglobin is liberated due to injury, and significant amounts of hemoglobin are also liberated during other long general surgeries. Furthermore, the release of hemoglobin is also a problem in plasma separation methods in which blood cells and plasma are first separated using a membrane in order to remove harmful substances with large molecular weights. Also,
Even in the case of whole blood transfusion or red blood cell transfusion, free hemoglobin increases as storage time increases. On the other hand, there are known cases of various hemolytic anemias that cause intravascular hemolysis and hemoglobinemia.
このように流血中に発生する、あるいは流血中
に注入される遊離ヘモグロビン量が生体の処理能
力レベル、例えば濃度としては100mg/dl、ある
いは生成速度としては15mg/dl/hrを越えた時に
遊離ヘモグロビンが尿中に現われ、ヘモグロビン
尿症を来たし、さらには重篤な急性腎不全に至る
ことも知られている。 In this way, when the amount of free hemoglobin generated during bloodshed or injected during bloodshed exceeds the processing capacity level of the living body, for example, the concentration is 100 mg/dl, or the production rate is 15 mg/dl/hr. appears in the urine, leading to hemoglobinuria, and is also known to lead to severe acute renal failure.
ヘモグロビンの分子量は64000である(溶血の
知識、三輪史朗著、P.23、中外医学社、昭和51
年)のに対し、血漿中に多量に存在するアルブミ
ンの分子量は66000であり(血漿タンパク質、構
造・機能・病態、平山千里・右田俊介編、医歯薬
出版、昭和54年)、両者の分子量は極めて接近し
ておりそれらの分離は極めて困難とされる。しか
し、遊離ヘモグロビンは前述のように有害成分で
あり除去が望まれるのに対し、アルブミンは細胞
間質液から血管系への水の出入りを支配する血漿
膠質浸透圧を規定する主要な成分であり、また、
栄養物や老廃物を運搬するという重要な役割りを
担つており、その喪失は極力避けねばならない。 The molecular weight of hemoglobin is 64,000 (Knowledge of hemolysis, Shiro Miwa, p. 23, Chugai Igakusha, 1972)
In contrast, the molecular weight of albumin, which exists in large quantities in plasma, is 66,000 (Plasma Protein, Structure, Function, and Pathology, edited by Chisato Hirayama and Shunsuke Migita, Ishiyaku Publishing, 1972), and the molecular weight of both albumins is 66,000. are extremely close to each other and it is considered extremely difficult to separate them. However, as mentioned above, free hemoglobin is a harmful component and should be removed, whereas albumin is a major component that regulates plasma colloid osmotic pressure, which governs the flow of water from interstitial fluid into the vascular system. ,Also,
It plays an important role in transporting nutrients and waste products, and its loss must be avoided as much as possible.
半透膜の両側に加えた圧力差を駆動力として利
用する血液過法は、尿毒性老廃物を除去しよう
とする場合に、最も一般的な人工腎臓療法であ
り、濃度差を駆動力とする血液透析法に代る療法
として用いられており、その老廃物排出において
血液透析法よりも分子量の大きい物質、たとえば
いわゆる尿毒性中分子量物質(分子量300ないし
5000)の除去に勝れる方法としてその意義が認め
られている。血液過法で用いられている膜とし
ては、ポリアクリロニトリル系ポリマーを膜素材
とするPAN15
(旭メデイカル社製)、RP−610
(ローヌプーラン社製)、ポリメチルメタクリ
レート系ポリマーを膜素材とするB1−L
(東
レ社製)、セルロースアセテート系ポリマーを膜
素材とするHemofilter
(ザルトリウス社製)、
Hemofresh
(ダイセル社製)などが知られて
いるが、これらの膜の分画分子量(過を行なつ
た時に被処理液中の濃度の90%を排除し10%が
過液中の濃度となるような物質の分子量)は約
40000であり、実質的に血漿蛋白を透過させない。 The blood filtration method, which uses the pressure difference applied on both sides of a semipermeable membrane as the driving force, is the most common artificial kidney therapy when trying to remove uremic waste products, and uses the concentration difference as the driving force. It is used as an alternative therapy to hemodialysis, and it uses substances with a larger molecular weight than hemodialysis to eliminate waste products, such as so-called urinary toxic intermediate molecular weight substances (molecular weight 300 or more).
Its significance is recognized as a method that can overcome the removal of 5000). The membranes used in the blood filtration method include PAN15 (manufactured by Asahi Medical Co., Ltd.) and RP-610, which are made of polyacrylonitrile polymer.
(manufactured by Rhone-Poulenc), B1-L (manufactured by Toray Industries, Inc.) whose membrane material is polymethyl methacrylate polymer, Hemofilter (manufactured by Sartorius) whose membrane material is cellulose acetate polymer,
Hemofresh (manufactured by Daicel) is known, but the molecular weight cutoff of these membranes (when filtration is performed, 90% of the concentration in the liquid to be treated is removed, and 10% is the concentration in the filtrate) The molecular weight of a substance such as
40,000 and is virtually impermeable to plasma proteins.
一方、駆動原理としては血液過法と同様であ
るが、抗原と抗体が結合した免疫複合体やγ−グ
ロブリン(分子量160000)などの異常化した大分
子量蛋白を除去するために、血液から血漿を膜を
用いて分離する血漿分離法も用いられている。血
漿分離法で用いられる膜としては、セルロースア
セテート系ポリマーを膜素材とするPlasmflo
(旭メデイカル社製)、ポリビニルアルコール系ポ
リマーを膜素材とするPVAフイルター
(クラ
レ社製)、ポリメチルメタクリレート系ポリマー
を膜素材とするMasmax
などが知られており、
γ−グロブリンの透過率(過液中濃度の被処理
液中濃度に対する比)は80%以上である。 On the other hand, the driving principle is the same as that of the blood filtration method, but in order to remove abnormal large molecular weight proteins such as immune complexes of antigens and antibodies and γ-globulin (molecular weight 160,000), plasma is extracted from blood. Plasma separation methods using membranes have also been used. The membrane used in the plasma separation method is Plasmflo, which is made of cellulose acetate polymer.
(manufactured by Asahi Medical Co., Ltd.), PVA filter (manufactured by Kuraray Co., Ltd.) whose membrane material is polyvinyl alcohol-based polymer, and Masmax whose membrane material is polymethyl methacrylate-based polymer.
The transmittance of γ-globulin (ratio of the concentration in the permeate to the concentration in the liquid to be treated) is 80% or more.
これらの膜を遊離ヘモグロビンを除くための
過膜として用いようとした場合に、前者の血液
過膜では、血漿蛋白を原則的に透過させないよう
な分子量分画特性が付与されているために、遊離
ヘモグロビンの透過率は高々10%であり、遊離ヘ
モグロビンの除去効果はほとんど見出されない。
また、後者の血漿分離膜では、遊離ヘモグロビン
の透過率は90%以上と極めて高く、血液中の遊離
ヘモグロビン濃度と同等の濃度の過液が得られ
るが、有効成分であるアルブミンを始めとした大
部分の血漿蛋白も液側に透過し、そのままでは
本特許の目的とする遊離ヘモグロビンの選択的除
去という意味において全く無効である。 When trying to use these membranes as membranes to remove free hemoglobin, the former blood membranes have molecular weight fractionation characteristics that basically prevent plasma proteins from permeating. The permeability of hemoglobin is at most 10%, and there is almost no effect of removing free hemoglobin.
In addition, with the latter plasma separation membrane, the permeability of free hemoglobin is extremely high at over 90%, and a superfluid with a concentration equivalent to that of free hemoglobin in the blood can be obtained. A portion of plasma protein also permeates into the liquid side, and as it is, it is completely ineffective in the sense of selectively removing free hemoglobin, which is the objective of this patent.
本発明者らは、有害成分である遊離ヘモグロビ
ンを選択的に簡便に除去する方法につき鋭意検討
を加えたところ、驚くべきことに、遊離ヘモグロ
ビンと他の血液中に通常大量に共存するヘモグロ
ビンと同等の分子量の各種の血漿蛋白とを、特定
の限定された分子量分画特性を持つ膜を用いる
過により分離できることを見出した。 The present inventors conducted extensive research into a method for selectively and easily removing free hemoglobin, which is a harmful component, and surprisingly found that free hemoglobin is equivalent to other hemoglobins that normally coexist in large amounts in blood. We have found that various plasma proteins with a molecular weight of 1000 can be separated by filtration using a membrane with specific and limited molecular weight fractionation characteristics.
すなわち本発明は、重量平均分子量40000のデ
キストランに対する透過率が65%以上で、かつ重
量平均分子量500000のデキストランに対する透過
率が45%以下である遊離ヘモグロビン分離膜であ
る。(これらのデキストラン透過率は、過流束40
ml/min/m2で測定した時の値である。)
本発明の特定の分子量分画領域および分子量分
画の先鋭さが限定された範囲の膜を通常の使用条
件下、すなわち温度10℃〜45℃、過流束20ml/
min/m2〜1000ml/min/m2、遊離ヘモグロビン
の透過率が50%以上、アルブミンの透過率が30%
以下、ヘモグロビンの透過率のアルブミンの透過
率に対する比が2.0以上となり遊離ヘモグロビン
を、アルブミンをはじめとした各種の血漿蛋白か
ら有効に分離できる。そして例えば、ヘマトクリ
ツト値(赤血球の体積分率)20%、遊離ヘモグロ
ビン70mg/dl、アルブミン1.5g/dlを含む血液
2に対して、遊離ヘモグロビン透過率60%、ア
ルブミン透過率20%の膜から成るモジユールを一
回通過させて過を行ない800mlの液を得た時
には、ヘマトクリツト値33%、遊離ヘモグロビン
92mg/dl、アルブミン2.6g/dlの血液が得られ、
遊離ヘモグロビンの絶対量の35%が除去されるの
に、アルブミンの絶対量の14%が損失するに止ま
るという効果が達成される。 That is, the present invention is a free hemoglobin separation membrane having a permeability of 65% or more for dextran having a weight average molecular weight of 40,000 and a permeability of 45% or less for dextran having a weight average molecular weight of 500,000. (These dextran permeabilities are based on flux 40
The value is measured in ml/min/ m2 . ) The membrane of the present invention having a specific molecular weight fractionation region and a limited range of molecular weight fraction sharpness was subjected to normal use conditions, i.e., a temperature of 10°C to 45°C, and a flux of 20ml/min.
min/m 2 ~1000ml/min/m 2 , free hemoglobin permeability is 50% or more, albumin permeability is 30%
Hereinafter, the ratio of hemoglobin permeability to albumin permeability will be 2.0 or more, and free hemoglobin can be effectively separated from various plasma proteins including albumin. For example, for blood 2 containing a hematocrit value (volume fraction of red blood cells) of 20%, free hemoglobin 70 mg/dl, and albumin 1.5 g/dl, a membrane with a free hemoglobin permeability of 60% and an albumin permeability of 20% is used. When 800 ml of liquid was obtained by passing through the module once, the hematocrit value was 33%, and the free hemoglobin
Blood with 92 mg/dl and albumin 2.6 g/dl was obtained.
The effect achieved is that 35% of the absolute amount of free hemoglobin is removed, while only 14% of the absolute amount of albumin is lost.
重量平均分子量40000のデキストランに対する
透過率が65%未満の分離膜では、遊離ヘモグロビ
ンの透過率が極めて低く、該ヘモグロビンの除去
が困難である。一方、重量平均分子量500000のデ
キストランに対する透過率が45%を越えると、遊
離ヘモグロビン透過率は高くなるがアルブミン等
の有益成分も液側に透過してしまい、遊離ヘモ
グロビンの選択的除去が不可能である。 A separation membrane having a permeability of less than 65% for dextran having a weight average molecular weight of 40,000 has an extremely low permeability of free hemoglobin, making it difficult to remove the hemoglobin. On the other hand, when the permeability to dextran with a weight average molecular weight of 500,000 exceeds 45%, the free hemoglobin permeability increases, but beneficial components such as albumin also permeate to the liquid side, making it impossible to selectively remove free hemoglobin. be.
従来の血液過膜および血漿分離率の透過率
は、フアルマシア社製の比較的分子量分布の狭い
デキストラン、T40、T500(各々の公称重量平均
分子量:40000、500000)の水溶液を用いてを測
定した結果では、前者の血液過膜はT40で1%
ないし45%で、T500で2%以下である。一方、
後者の血漿分離膜はT40で95%ないし100%、
T500で80%ないし100%である。 The permeability of the conventional blood membrane and plasma separation rate was measured using an aqueous solution of dextran, T40, and T500 (nominal weight average molecular weight: 40,000 and 500,000, respectively) manufactured by Pharmacia, which has a relatively narrow molecular weight distribution. So, the former blood membrane is 1% at T40.
or 45%, and T500 is less than 2%. on the other hand,
The latter plasma separation membrane has T40 of 95% to 100%,
T500 is 80% to 100%.
従つて、従来のこれらの膜では遊離ヘモグロビ
ンの選択的除去は不可能である。 Therefore, selective removal of free hemoglobin is not possible with these conventional membranes.
本発明の分離膜の、重量平均分子量40000のデ
キストランに対する透過率が75%以上が特に好ま
しい。また重量平均分子量500000のデキストラン
透過率は35%以下が特に好ましい。 It is particularly preferable that the separation membrane of the present invention has a permeability of 75% or more for dextran having a weight average molecular weight of 40,000. Further, the permeability of dextran having a weight average molecular weight of 500,000 is particularly preferably 35% or less.
本発明の膜の素材については、本発明の特定の
分画分子量特性を持つ膜であれば特に限定するも
のではないが、例えばセルロースアセテート系、
ポリメチルメタクリレート系、ポリアクリロニト
リル系、ポリビニルアルコール系、ポリエチレン
系、ポリプロピレン系、ポリエーテルスルホン系
重合体など、およびこれらの素材相互間の共重量
合体(たとえばエチレンビニルアルコール共重合
体)あるいは混合物から成る素材から、このよう
な特性の膜を得ることができる。 The material for the membrane of the present invention is not particularly limited as long as it has the specific molecular weight cut-off characteristics of the present invention, but for example, cellulose acetate,
Consisting of polymethyl methacrylate, polyacrylonitrile, polyvinyl alcohol, polyethylene, polypropylene, polyethersulfone polymers, etc., and copolymer (e.g. ethylene vinyl alcohol copolymer) or mixtures of these materials. Films with these characteristics can be obtained from these materials.
本発明の分離膜を製造するには、例えばポリメ
チルメタクリレート系重合体を素材として用いた
時には、ポリマ濃度が10wt%ないし20wt%にな
るようにジメチルスルホキシドなどの溶媒に溶解
し、水を主体とした凝固浴に導いて固化、脱溶媒
することにより得られる。 To produce the separation membrane of the present invention, for example, when polymethyl methacrylate polymer is used as a material, it is dissolved in a solvent such as dimethyl sulfoxide so that the polymer concentration is 10 wt% to 20 wt%, and water is the main component. It can be obtained by introducing it into a coagulation bath, solidifying it, and removing the solvent.
また、膜の形態としては本発明の特定の分画分
子量特性をもつものであれば特に限定するもので
はないが、例えば中空繊維膜、平膜のいずれでも
利用できる。さらに、このような過膜の使い方
としては、開心術で一般に見られるように既に希
釈された血液について、そのまま過するだけと
いう使い方だけでなく、過により濃縮された被
処理液を後から生理的食塩水などの生理的液で希
釈したり、過する前に生理的液で希釈してから
過する方法などであつてもよく、それぞれ最終
的に得られる処理済み液中に存在する遊離ヘモグ
ロビンや各種血漿蛋白の量および濃度は、未処理
液での量や濃度に対して種々異なつたものとな
る。なお、あらかじめ希釈してから過するとい
う使い方は、膜の性能を安定化させる効果および
または遊離ヘモグロビンの分離効率を向上させる
効果が認められ、好ましい使い方である。 Further, the form of the membrane is not particularly limited as long as it has the specific molecular weight cut-off characteristics of the present invention, and for example, either a hollow fiber membrane or a flat membrane can be used. Furthermore, this kind of membrane can be used not only to simply pass through already diluted blood as is commonly seen in open-heart surgery, but also to use the concentrated membrane to be processed later in a physiological manner. Methods such as diluting with a physiological fluid such as saline or diluting with a physiological fluid before filtration may be used, and the free hemoglobin and The amount and concentration of various plasma proteins will vary relative to the amount and concentration in the untreated fluid. Note that diluting the solution in advance and then filtering it is a preferred method because it is recognized to have the effect of stabilizing membrane performance and/or improving the separation efficiency of free hemoglobin.
以下、実施例により本発明の効果を更に詳しく
説明する。 Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.
実施例 1
ポリメチルメタクリレート系重合体15部を85部
のジメチルスルホキシドに溶解した紡糸原液を環
状紡糸口金の外側吐出孔より吐出し、内側に乾燥
窒素ガスを導入し中空繊維を形成した。この糸条
を30℃のジメチルスルホキシドを約10%含む水溶
液へ導き凝固させ、次に水洗、熱処理して内径
370μ、膜厚85μの中空繊維を得た。この中空繊維
を束ねて作られた有効面積0.8m2のモジユールに
ついて、フアルマシア社製デキストランを用いて
分子量分画特性を測定した。被処理液流量は200
ml/min、過流量は32ml/minすなわち過流束
は40ml/min/m2とした。デキストランの濃度は
高速液体クロマトグラフイー(カラム:ウオータ
ーズ社製、μ−Bondagel−E500/E1000)を用
いて測定した。T40、T500(各々の公称重量平均
分子量およびw/n;40000、1.5;500000、
2.7)の1%水溶液に対する透過率はそれぞれ79
%、20%であつた。Example 1 A spinning stock solution in which 15 parts of a polymethyl methacrylate polymer was dissolved in 85 parts of dimethyl sulfoxide was discharged from the outer discharge hole of a circular spinneret, and dry nitrogen gas was introduced inside to form hollow fibers. This yarn is introduced into an aqueous solution containing approximately 10% dimethyl sulfoxide at 30°C to coagulate, then washed with water and heat treated to reduce the inner diameter.
A hollow fiber with a thickness of 370μ and a film thickness of 85μ was obtained. For a module with an effective area of 0.8 m 2 made by bundling these hollow fibers, molecular weight fractionation characteristics were measured using dextran manufactured by Pharmacia. Processed liquid flow rate is 200
ml/min, and the overflow rate was 32ml/min, that is, the overflow rate was 40ml/min/ m2 . The concentration of dextran was measured using high performance liquid chromatography (column: μ-Bondagel-E500/E1000, manufactured by Waters). T40, T500 (nominal weight average molecular weight and w/n; 40000, 1.5; 500000,
The transmittance for 1% aqueous solution of 2.7) is 79, respectively.
%, 20%.
上記特性のモジユールに対して、次に血液過
実験を行なつた。ヘマトクリツト値42%、総蛋白
量6.5g/dlの血液に、ヘモグロビンを加えて、
遊離ヘモグロビンが190mg/dl存在する血液を得
た。ヘモグロビンは赤血球に水を加えて溶血させ
て得た。 Next, blood flow experiments were conducted on the module with the above characteristics. By adding hemoglobin to blood with a hematocrit value of 42% and a total protein content of 6.5 g/dl,
Blood containing 190 mg/dl of free hemoglobin was obtained. Hemoglobin was obtained by adding water to red blood cells and causing hemolysis.
遊離ヘモグロビンはシアンメトヘモグロビン法
により測定した。この血液をさらに生理的食塩水
で2.1倍に希釈した。 Free hemoglobin was measured by the cyanmethemoglobin method. This blood was further diluted 2.1 times with physiological saline.
希釈血液を前記モジユールを用いて、血液流量
200ml/min、37℃の条件下で過処理した。
過側には吸引ポンプを用いて過流量を規制し
た。 Dilute the blood using the module and adjust the blood flow rate.
Overtreatment was performed at 200 ml/min and 37°C.
A suction pump was used on the overflow side to regulate overflow.
過流量が54ml/min(過流束68ml/min/m2)
の条件で、遊離ヘモグロビンの透過率は61%、ア
ルブミンの透過率は16%であり、遊離ヘモグロビ
ンの透過率のアルブミンの透過率に対する比は
3.8であつた。アルブミン量は、ビウレツト法に
よる総蛋白量とセルロースアセテート膜電気泳動
分画から算出した。 Overflow: 54ml/min (overflow: 68ml/min/m 2 )
Under the conditions, the permeability of free hemoglobin is 61% and the permeability of albumin is 16%, and the ratio of the permeability of free hemoglobin to the permeability of albumin is
It was 3.8. The albumin amount was calculated from the total protein amount by the Biuret method and the cellulose acetate membrane electrophoresis fraction.
さらに前記希釈血液2.5に対して、前記モジ
ユールを用いて血液流量300ml/minの条件でモ
ジユール出口液を血液容器に戻す循環過を行な
つたところ、15分間で950mlの過液が得られ、
血液中の遊離ヘモグロビン量は当初の67%に減少
した。 Furthermore, when the diluted blood 2.5% was circulated using the module at a blood flow rate of 300 ml/min and the module outlet liquid was returned to the blood container, 950 ml of filtrate was obtained in 15 minutes.
The amount of free hemoglobin in the blood decreased to 67% of its original level.
実施例 2
アセチル化度42%のジアセチルセルロース10部
を90部のジメチルホルムアミドに溶解した製膜原
液をガラス板上に塗延して4℃の水へ浸透し凝
固、脱溶媒して厚さ150μのセルロースアセテー
ト平膜を得た。この膜をアミコン社の撹拌子付き
過装置モデル52
にセツトして、以下実施例1
と同様の実験を行なつた。37℃、過流束40ml/
min/m2の条件でのデキストランT40、T500の透
過率はそれぞれ85%、29%であつた。Example 2 A film-forming solution prepared by dissolving 10 parts of diacetyl cellulose with a degree of acetylation of 42% in 90 parts of dimethylformamide was spread on a glass plate, penetrated into 4°C water, coagulated, and removed the solvent to form a film with a thickness of 150 μm. A cellulose acetate flat membrane was obtained. This membrane was set in Amicon's filter device model 52 with a stirring bar, and the following Example 1 was prepared.
conducted a similar experiment. 37℃, excess flux 40ml/
The transmittance of dextran T40 and T500 under the condition of min/m 2 was 85% and 29%, respectively.
次に実施例1で用いたのと同じ血液で、生理的
食塩水で希釈する前の血液について過実験を行
ない、過流束45ml/min/m2の条件下での遊離ヘ
モグロビンおよびアルブミンの透過率はそれぞれ
61%、27%であり、両透過率の比は2.3であつた。 Next, an overexperiment was performed on the same blood used in Example 1, but before dilution with physiological saline, and the permeation of free hemoglobin and albumin was performed under conditions of overflow of 45 ml/min/ m2. The rate is each
61% and 27%, and the ratio of both transmittances was 2.3.
比較実施例 1
ポリメチルメタクリレート系の素材を用いた
B1−L
(東レ社製)およびポリアクリロニト
リル系の素材を用いたPAN−15
(旭メデイカ
ル社製)は共に中空繊維膜であり、おもに血液
過法で用いられているが、これらについて実施例
1と同様の実験を行なつた。Comparative Example 1 Using polymethyl methacrylate material
Both B1-L (manufactured by Toray Industries, Inc.) and PAN-15 (manufactured by Asahi Medical Co., Ltd.) using polyacrylonitrile-based materials are hollow fiber membranes and are mainly used in blood filtration methods. conducted a similar experiment.
B1−L
ではデキストランT40、T500の透過
率はそれぞれ10%、1%であり、血液過実験で
は遊離ヘモグロビンの透過率2%が得られ、アル
ブミンの透過は認められなかつた。PAN−15
ではデキストランT40、T500の透過率はそれぞ
れ2%、0%であり、血液過実験では遊離ヘモ
グロビンの透過率0.5%が得られ、アルブミンの
透過は認められなかつた。以上のようにB1−L
、PAN−15
は共に、過により遊離ヘモグ
ロビンを除くという意味では、ほとんど無効であ
つた。 In B1-L, the permeability of dextran T40 and T500 was 10% and 1%, respectively, and the permeation rate of free hemoglobin was 2% in the blood permeation experiment, and no permeation of albumin was observed. PAN−15
In this case, the permeability of dextran T40 and T500 was 2% and 0%, respectively, and the permeation of free hemoglobin was 0.5% in the blood permeation experiment, and no permeation of albumin was observed. As above, B1-L
, PAN-15 were both largely ineffective in removing free hemoglobin.
比較実験例 2
セルロースアセテート系の素材を用いた血漿分
離用中空繊維モジユールPlasmaflo
(旭メデイ
カル社製)について実施例1と同様の実験を行な
つた。Comparative Experimental Example 2 The same experiment as in Example 1 was conducted using Plasmaflo (manufactured by Asahi Medical Co., Ltd.), a hollow fiber module for plasma separation using a cellulose acetate-based material.
デキストランT40、T500の透過率はそれぞれ
98%、95%であり、血液過実験では遊離ヘモグ
ロビン透過率99%が得られたが、アルブミン透過
率も94%となり、遊離ヘモグロビンを過により
分離するという意味においては無効であつた。 The transmittance of dextran T40 and T500 is
98% and 95%, and a free hemoglobin permeability of 99% was obtained in the blood filtration experiment, but the albumin permeability was also 94%, which was ineffective in the sense of separating free hemoglobin by filtration.
Claims (1)
る透過率が65%以上で、かつ重量平均分子量
500000のデキストランに対する透過率が45%以下
である遊離ヘモグロビン分離膜。1. Transmittance to dextran with a weight average molecular weight of 40,000 is 65% or more, and the weight average molecular weight is 40,000.
Free hemoglobin separation membrane with a permeability of 45% or less for dextran of 500,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58028145A JPS59155260A (en) | 1983-02-22 | 1983-02-22 | Free hemoglobin separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58028145A JPS59155260A (en) | 1983-02-22 | 1983-02-22 | Free hemoglobin separation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59155260A JPS59155260A (en) | 1984-09-04 |
JPH0453548B2 true JPH0453548B2 (en) | 1992-08-26 |
Family
ID=12240590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58028145A Granted JPS59155260A (en) | 1983-02-22 | 1983-02-22 | Free hemoglobin separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59155260A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4737258B2 (en) * | 2008-09-26 | 2011-07-27 | トヨタ自動車株式会社 | Automatic vehicle braking device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5743748A (en) * | 1980-08-28 | 1982-03-11 | Toshirou Wada | Artificial lung device |
-
1983
- 1983-02-22 JP JP58028145A patent/JPS59155260A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5743748A (en) * | 1980-08-28 | 1982-03-11 | Toshirou Wada | Artificial lung device |
Also Published As
Publication number | Publication date |
---|---|
JPS59155260A (en) | 1984-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4059543B2 (en) | Medical device for extracorporeal treatment of blood or plasma and method for manufacturing the device | |
US9138529B2 (en) | Anticoagulant-free dialysis systems and methods | |
US4839055A (en) | Method for treating blood and apparatus therefor | |
WO1997034687A1 (en) | Hollow yarn membrane used for blood purification and blood purifier | |
JP2007215569A (en) | Plasma component separator and blood purifying apparatus by double filtration | |
AU2016202698B2 (en) | Membrane and device for treating hemolytic events | |
JP2000254222A (en) | Hollow fiber membrane for hematocatharsis and hollow fiber membrane type artificial kidney | |
JPS63109871A (en) | Blood dialytic membrane | |
AU672856B2 (en) | High flux hollow fiber membrane | |
JP3714686B2 (en) | Polysulfone-based hollow fiber membrane and method for producing the same | |
Ronco et al. | Dialysis membranes in convective treatments | |
KR100804330B1 (en) | Blood purifier | |
JP2832835B2 (en) | Virus removal method | |
Mineshima | Optimal design of Dialyzers | |
JPH0453548B2 (en) | ||
JP3424810B2 (en) | High performance blood purification membrane | |
JPH07289866A (en) | Polysulfone-based selective permeable membrane | |
JP4003982B2 (en) | Polysulfone-based selectively permeable separation membrane | |
JPH09308684A (en) | Selective separating membrane | |
JPH01254204A (en) | Method for removing virus | |
JPH08970A (en) | Hollow fiber membrane | |
JPS58175565A (en) | Serum treating apparatus | |
JP2002186667A (en) | Hollow fiber type hemodialyzer | |
Nosé et al. | Plasma filtration detoxification on hepatic patients: its optimal operating conditions | |
JP2005058905A (en) | Hollow fiber membrane type body liquid treating device |