[go: up one dir, main page]

JPH0451073B2 - - Google Patents

Info

Publication number
JPH0451073B2
JPH0451073B2 JP1182884A JP1182884A JPH0451073B2 JP H0451073 B2 JPH0451073 B2 JP H0451073B2 JP 1182884 A JP1182884 A JP 1182884A JP 1182884 A JP1182884 A JP 1182884A JP H0451073 B2 JPH0451073 B2 JP H0451073B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
intermediate member
semiconductor laser
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1182884A
Other languages
Japanese (ja)
Other versions
JPS60157284A (en
Inventor
Yasutoshi Kurihara
Tadashi Minagawa
Komei Yatsuno
Kazuhiro Hirose
Koichi Shinohara
Tomiro Yasuda
Mamoru Sawahata
Tadao Kushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59011828A priority Critical patent/JPS60157284A/en
Publication of JPS60157284A publication Critical patent/JPS60157284A/en
Publication of JPH0451073B2 publication Critical patent/JPH0451073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Landscapes

  • Die Bonding (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は半導体装置、特に熱放射性に優れ、安
定した性能の得られる半導体装置に関する。 〔発明の背景〕 半導体装置の一例である半導体レーザ素子は、
最近特に光通信の分野で注目されている。これは
半導体以外の発光素子に比べて出力レベルが低い
点を除けば、(1)低電力駆動が可能、(2)直接変調が
可能、(3)高効率化が可能、(4)長寿命化が可能、(5)
小形,軽量化が可能、という種々の利点を有する
ことに基づく。半導体レーザ素子は例えば
GaAs,GaP,GaAlAs,InGaAsP等で代表され
るような−族化合物や、PbSSe,PbSnTe等
で代表されるような−族化合物のごとき半導
体単結晶材料からなり、この材料中に形成された
Pn接合に順方向電流を流し、この際注入された
キヤリヤの再結合により発光させ、これにより生
じた光の一部を反射鏡によつて接合近傍の発光領
域中に帰還し、この帰還光がさらにキヤリヤの再
結合を促進して新たな発光を促す、誘導放出過程
をくり返すことによつてレーザ発振に至らしめよ
うとするものである。 この種の半導体レーザ素子の高率化をはかるた
めには、レーザ発振に至るしきい値電流を下げる
ことが有効であるが、このためには注入電流によ
つて励起されたキヤリヤを発光領域に有効に閉じ
込めることや誘導放出光を有効に閉じ込め、光子
とキヤリヤの相互作用され促進せしめる必要があ
る。しかし、このような方策を施してもなお発振
しきい値電流密度は、例えば室温で連続発振させ
る場合には1〜3KA/cm2程にも及ぶため、当然
のことながら接合部の発熱を伴なうこととなり、
安定的にレーザ発振させるには半導体レーザ基体
を効率的に冷却、又は半導体レーザ基体で生じた
熱を効率的に放散させる必要がある。同時に、半
導体レーザ素子の動作及び休止にともなう発熱及
び冷却のサイクルにより、半導体レーザ基体と同
基体を搭載するための支持部材との間に両部材の
熱膨張係数差に基づく熱歪によつて接着界面の熱
疲労破壊、例えば接着層におけるクラツクの発生
に至る。このような接着層は半導体レーザ基体の
主要な放熱経路の一部を兼ねていること及び電気
的な導体領域を兼ねていて、レーザ基体自身の過
熱、通電不能を生ずるため、安定的なレーザ発振
を続けることが困難となる。 上述の問題点を克服するため、従来は第1図に
示すように、銅材等からなる金属支持部材1上に
熱伝導性に優れかつ半導体レーザ基体2と熱膨張
係数が略近似したダイヤモンド条片のごとき中間
部材3を介して半導体レーザ基体2を接着する構
造がとられていた。この際、半導体レーザ基体2
は、レーザ素子と受光素子あるいはレーザ素子と
受光素子の間を中継する光フアイバケーブルとの
光結合を容易にするため、中間部材3の端部31
に載置されるとともに、放熱効率を高めるため発
熱源となるpn接合部21が放熱路に近くなるよ
うに配置され、ろう材を用いて接着される。中間
部材3には金属化層32が設けられ中間部材3に
対する接着強度が保持されると同時にろう材に対
するぬれ性が付与されている。中間部材3は一般
にAu−Si,Au−Ge,Au−Snの如き金系ソルダ
やPb−Sn系はんだの如き材料により金属支持部
材1上にろう付けされている。又、半導体レーザ
基体2には導電路構成部材5や当該部材5と半導
体レーザ基体2との電気的機械的接続を可能にす
る電極層及び半導体レーザ基体2と中間部材3と
の電気的及び機械的接続をするためろう材に対す
るぬれ性を付与する電極層が設けられている。半
導体レーザ基体2と中間部材3の間のろう材は上
記ろう材を同質同系の物が用いられる。更に、中
間部材3上には上記半導体レーザ基体2以外に導
電路構成部材5に電気接続するための中継金属板
6が半導体レーザ基体2と同様に接着されてい
る。 半導体レーザ基体2は通常エピタキシヤル成長
法や拡散法によつてpn接合を形成される関係上、
発光領域は基体の厚さ方向における中央部ではな
く、表面に極めて近い部分に形成される。ところ
が、放熱効率を高めるのに半導体レーザ基体2の
pn接合が形成されている側の面を上述の中間部
材3上にろう付けする構造をとるため、次のよう
な問題を生ずる。問題点の第1は半導体レーザ基
体2のろう付けによつてレーザ光放出部の光路が
しや断される点、そして問題点の第2はレーザ光
放出部が理想的な反射面となるように壁開面で形
成されていてpn接合が露出しているため同接合
がろう材により短絡される点である。このような
問題を生ずる原因は、半導体レーザ基体2、中間
部材3の間のろう材接着部端部に放出され、ろう
材が盛上ることによる。 〔発明の目的〕 本発明の目的は上述の問題点を改善し、性能の
安定した半導体装置を歩留りよく製造することの
可能な構造を有する半導体装置を提供することで
ある。 〔発明の概要〕 本発明を概説すれば、本発明は半導体装置に関
する発明であつて、金属支持部材上に、無機質絶
縁体又は無機質半導体からなる中間部材と半導体
素子とが、金属化層を介して順次搭載された半導
体装置において、前記中間部材と半導体素子との
間にある前記金属化層の一部は、前記中間部材の
少なくとも1の側面上の一部にも位置し、前記金
属支持部材、中間部材及び半導体素子は、前記側
面上に位置する金属化層と略同一平面を形成する
側面を有し、それぞれろう材を用いて接着されて
いることを特徴とする。 本発明の半導体装置に使用する各種の材料、及
び層構成を具体例で説明すると、前記中間部材
が、SiC,Al2O3,AlN,BeO,Si3N4,MgO及
びCよりなる群から選択された少なくとも1の材
料からなるセラミツクス又はSi,Ge及びSiCより
なる群から選択された少なくとも1の材料からな
る半導体であり、前記金属化層が、前記セラミツ
クス又は半導体に接する、Cr,Ti,Al,Mo,
Ni,W及びAgよりなる群から選択された1の材
料からなる第1の層と、該第1の層に接する、
Cr,Ti,Al,Mo,Ni,Cu,Ag,Pd,Pt及び
Auよりなる群から選択された1の材料からなる
第2の層と、該第2の層に接する、Ag,Au及び
Ptよりなる群から選択された1の材料からなる
第3の層とを順次積層してなることを特徴とす
る。 〔発明の実施例〕 以下、本発明を実施例を用いて詳細に説明す
る。第2図は本発明の一実施例の半導体レーザ素
子を示す。図において、第1図と同一ないし同等
の部分には第1図と同じ符号を用い、詳しい説明
は省略する。 第2図において、金めつきを施した銅支持部材
1上に、GaAs上にエピタキシヤル成長により形
成されたGaAlAsを含む半導体レーザ基体2(0.3
mm×0.3mm×厚さ0.1mm)がSiC条片からなる中間
部材3を介して接着されている。このSiC条片は
0.8mm×1.6mm×厚さ0.3mmであり、両主面には蒸着
法により形成されたCr−Ni−Au多層金属化層3
2が設けられ、上記両主面に対して略直角な側面
31には金属化層32から延長して設けられた同
質の金属化層33が設けられている。半導体レー
ザ基体2はAu−Sn系ソルダにより中間部材3上
にダイボンデイングされている。半導体レーザ基
体2の主面には最上層をAu層とする電極層が設
けられている。又、中間部材3は支持部材1上に
Pb−Sn系はんだ材により接着されている。導電
路構成部材5は直径30μmのAu線からなり熱圧着
法により半導体レーザ基体2の上側の電極層から
他の導電部材へと接続され、他方半導体レーザ基
体2の下側の他の電気領域は金めつきされた銅中
継板6を介して導電路構成部材5により他の導電
部材へと接続される。ここで、重要な点は中間部
材3の側面31に金属化層32から延長して設け
られた金属化層33を有し半導体レーザ基体2と
中間部材3の間のろう材に対するぬれ性が付与さ
れていることである。 このような構造にすることにより、このろう材
が半導体レーザ基体2の端部にはみ出た後金属化
層33上に流出し、垂下るため端部に盛上ること
がない。したがつてレーザ光放出部の光路がしや
断されたりpn接合を電気的に短絡したりするこ
とがない。この効果を定量的に例示すると、従来
の第1図構造を採用した場合の光路しや断及び
pn接合短絡に基づく不良発生率が約5%であつ
たのに対し、本発明の第2図構造を採用した場合
の不良発生率は0.05%以下に低減された。又、従
来構造の場合半導体レーザ基体2と中間部材3の
間のろう材の端部における盛上りを軽減するため
ろう材の使用量を少なくする配慮がなされていた
が、このことは逆に半導体レーザ基体2と中間部
材3間の接着の不完全性を誘発する。しかし、本
発明構造ではろう材の使用量をあまり少なくする
必要がないため上記接着が完全に行なわれる。例
えば第1図構造の場合、半導体レーザ基体2から
支持部材1に至る間の熱抵抗が0.5℃/W以上と
なる割合が5%以上と高かつたのに対して、本発
明の第2図構造では0.05%程度と低くなつた。 又、第1表は本発明の他の実施例の半導体レー
ザ素子に適用した中間部材3用素材、複合層とし
たときの金属化層33相当部、そしてソルダ4相
当部を形成する金属の構成である。
[Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device that has excellent heat radiation and provides stable performance. [Background of the Invention] A semiconductor laser element, which is an example of a semiconductor device, is
Recently, it has been attracting attention especially in the field of optical communications. Other than the fact that the output level is lower than that of non-semiconductor light emitting devices, this has the following advantages: (1) Low power drive possible, (2) Direct modulation possible, (3) High efficiency possible, and (4) Long lifespan. (5)
This is based on the fact that it has various advantages such as being small and lightweight. For example, a semiconductor laser element is
It is made of semiconductor single crystal materials such as - group compounds such as GaAs, GaP, GaAlAs, InGaAsP, etc., and - group compounds such as PbSSe, PbSnTe, etc.
A forward current is passed through the Pn junction, and the injected carriers recombine to emit light. A portion of the light generated is returned to the light emitting region near the junction by a reflecting mirror, and this feedback light is Furthermore, by repeating the stimulated emission process that promotes carrier recombination and new light emission, it is attempted to lead to laser oscillation. In order to increase the efficiency of this type of semiconductor laser device, it is effective to lower the threshold current that leads to laser oscillation. It is necessary to effectively confine the stimulated emission light and promote the interaction between photons and carriers. However, even with such measures, the oscillation threshold current density still reaches 1 to 3 KA/cm 2 when continuous oscillation is performed at room temperature, which naturally causes heat generation at the junction. As a result,
In order to stably oscillate a laser, it is necessary to efficiently cool the semiconductor laser substrate or to efficiently dissipate the heat generated in the semiconductor laser substrate. At the same time, due to the heat generation and cooling cycles associated with the operation and rest of the semiconductor laser element, the semiconductor laser base and the supporting member for mounting the base are bonded due to thermal strain due to the difference in the thermal expansion coefficients of both parts. This can lead to thermal fatigue failure at the interface, such as cracks in the adhesive layer. This type of adhesive layer also serves as a part of the main heat dissipation path of the semiconductor laser substrate and also serves as an electrical conductor area, which may cause the laser substrate itself to overheat and become unable to conduct electricity, thus preventing stable laser oscillation. It becomes difficult to continue. In order to overcome the above-mentioned problems, conventionally, as shown in FIG. 1, a diamond strip having excellent thermal conductivity and having a coefficient of thermal expansion approximately similar to that of the semiconductor laser substrate 2 was placed on a metal support member 1 made of copper or the like. A structure was adopted in which the semiconductor laser substrate 2 was bonded via an intermediate member 3 such as a piece. At this time, the semiconductor laser substrate 2
In order to facilitate optical coupling between the laser element and the light receiving element or the optical fiber cable relaying between the laser element and the light receiving element, the end portion 31 of the intermediate member 3 is
At the same time, in order to increase heat radiation efficiency, the pn junction 21, which is a heat source, is placed close to the heat radiation path and bonded using a brazing material. A metallized layer 32 is provided on the intermediate member 3 to maintain adhesive strength to the intermediate member 3 and at the same time provide wettability to the brazing material. The intermediate member 3 is generally brazed onto the metal support member 1 using a material such as a gold-based solder such as Au-Si, Au-Ge, or Au-Sn or a Pb-Sn-based solder. Further, the semiconductor laser base 2 includes a conductive path forming member 5, an electrode layer that enables electrical and mechanical connection between the member 5 and the semiconductor laser base 2, and an electrical and mechanical connection between the semiconductor laser base 2 and the intermediate member 3. An electrode layer is provided that provides wettability to the brazing material in order to make a positive connection. As the brazing material between the semiconductor laser substrate 2 and the intermediate member 3, a material of the same quality and type as the above-mentioned brazing material is used. Furthermore, in addition to the semiconductor laser base 2, a relay metal plate 6 for electrical connection to the conductive path forming member 5 is bonded on the intermediate member 3 in the same manner as the semiconductor laser base 2. Since the semiconductor laser substrate 2 usually has a pn junction formed by epitaxial growth or diffusion,
The light-emitting region is formed not at the center in the thickness direction of the substrate but at a portion extremely close to the surface. However, in order to increase the heat dissipation efficiency, it is necessary to
Since the structure is such that the surface on which the pn junction is formed is brazed onto the above-mentioned intermediate member 3, the following problems arise. The first problem is that the optical path of the laser light emitting part is cut off by the soldering of the semiconductor laser base 2, and the second problem is that the laser light emitting part is not made to have an ideal reflective surface. Since the pn junction is formed with an open wall and the pn junction is exposed, the junction is short-circuited by the brazing filler metal. The cause of such a problem is that the brazing material is discharged to the end of the bonded portion between the semiconductor laser substrate 2 and the intermediate member 3, and the brazing material bulges up. [Object of the Invention] An object of the present invention is to improve the above-mentioned problems and provide a semiconductor device having a structure that allows semiconductor devices with stable performance to be manufactured with a high yield. [Summary of the Invention] To summarize the present invention, the present invention relates to a semiconductor device, in which an intermediate member made of an inorganic insulator or an inorganic semiconductor and a semiconductor element are placed on a metal support member via a metallized layer. In the semiconductor device that is sequentially mounted on the intermediate member, a portion of the metallized layer between the intermediate member and the semiconductor element is also located on a portion of at least one side surface of the intermediate member, and the metallized layer is located on at least one side surface of the intermediate member. , the intermediate member and the semiconductor element have side surfaces that are substantially coplanar with the metallized layer located on the side surfaces, and are each bonded using a brazing material. To explain the various materials and layer configurations used in the semiconductor device of the present invention with specific examples, the intermediate member is made from the group consisting of SiC, Al 2 O 3 , AlN, BeO, Si 3 N 4 , MgO and C. A ceramic made of at least one selected material or a semiconductor made of at least one material selected from the group consisting of Si, Ge and SiC, wherein the metallized layer is in contact with the ceramic or semiconductor, Cr, Ti, Al, Mo,
a first layer made of one material selected from the group consisting of Ni, W and Ag, and in contact with the first layer;
Cr, Ti, Al, Mo, Ni, Cu, Ag, Pd, Pt and
a second layer made of one material selected from the group consisting of Au; and a second layer made of one material selected from the group consisting of Au;
A third layer made of one material selected from the group consisting of Pt is sequentially laminated. [Examples of the Invention] The present invention will be described in detail below using Examples. FIG. 2 shows a semiconductor laser device according to an embodiment of the present invention. In the figure, the same or equivalent parts as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description thereof will be omitted. In FIG. 2, a semiconductor laser substrate 2 (0.3
mm×0.3 mm×thickness 0.1 mm) are bonded via an intermediate member 3 made of a SiC strip. This SiC strip is
It is 0.8 mm x 1.6 mm x 0.3 mm thick, and has a Cr-Ni-Au multilayer metallization layer 3 formed by vapor deposition on both main surfaces.
2, and a homogeneous metallization layer 33 extending from the metallization layer 32 is provided on a side surface 31 substantially perpendicular to the two main surfaces. The semiconductor laser substrate 2 is die-bonded onto the intermediate member 3 using Au--Sn solder. The main surface of the semiconductor laser substrate 2 is provided with an electrode layer whose uppermost layer is an Au layer. Moreover, the intermediate member 3 is placed on the support member 1.
Bonded using Pb-Sn solder material. The conductive path forming member 5 is made of an Au wire with a diameter of 30 μm, and is connected from the upper electrode layer of the semiconductor laser body 2 to other conductive members by thermocompression bonding, while other electrical areas on the lower side of the semiconductor laser body 2 are It is connected to other conductive members by the conductive path forming member 5 via the gold-plated copper relay plate 6. The important point here is that a metallized layer 33 is provided on the side surface 31 of the intermediate member 3 extending from the metallized layer 32 to provide wettability to the brazing material between the semiconductor laser substrate 2 and the intermediate member 3. This is what is being done. With this structure, the brazing material protrudes from the edge of the semiconductor laser substrate 2 and then flows out onto the metallized layer 33 and hangs down, so that it does not bulge at the edge. Therefore, there is no possibility that the optical path of the laser beam emitting section is interrupted or the pn junction is electrically shorted. To quantitatively illustrate this effect, when the conventional structure shown in Figure 1 is adopted, the optical path changes, breaks and
While the failure rate due to pn junction short circuit was approximately 5%, the failure rate was reduced to 0.05% or less when the structure shown in FIG. 2 of the present invention was adopted. In addition, in the conventional structure, consideration was given to reducing the amount of brazing filler metal used in order to reduce the swelling at the end of the filler metal between the semiconductor laser substrate 2 and the intermediate member 3, but this has the opposite effect on the semiconductor laser substrate 2 and the intermediate member 3. This induces incomplete adhesion between the laser body 2 and the intermediate member 3. However, in the structure of the present invention, there is no need to reduce the amount of brazing filler metal so that the above-mentioned adhesion is completely achieved. For example, in the case of the structure shown in FIG. 1, the proportion of thermal resistance between the semiconductor laser substrate 2 and the support member 1 of 0.5° C./W or more was as high as 5% or more, whereas the structure shown in FIG. In terms of structure, it was lower at around 0.05%. Table 1 also shows the composition of the material for the intermediate member 3 applied to the semiconductor laser device of other embodiments of the present invention, the portion corresponding to the metallized layer 33 when it is made into a composite layer, and the metal forming the portion corresponding to the solder 4. It is.

【表】 SiCに接する第1の層、第1の層に接する第2
の層、第2の層及びソルダに接する第3の層を同
表に示した各種組合せで蒸着形成させた。このよ
うにしても、上記実施例の場合と全く同じ効果が
得られた。 又、中間部材として、熱膨張係数が4.5×
10-6/℃であるAlNを用いた場合、及び3.5×
10-6/℃であるSiCを用いた場合について、半導
体装置に熱ストレスを印加した時の、半導体レー
ザ基体2と支持部材1との間の熱抵抗変化量(初
期値に対する)、及びレーザ光出力の変化量(初
期値に対する)を第2表に示す。
[Table] First layer in contact with SiC, second layer in contact with first layer
The layer, the second layer, and the third layer in contact with the solder were formed by vapor deposition in various combinations shown in the table. Even in this case, exactly the same effect as in the above embodiment was obtained. Also, as an intermediate member, the coefficient of thermal expansion is 4.5×
When using AlN, which is 10 -6 /℃, and 3.5×
10 -6 /℃ using SiC, the amount of thermal resistance change (with respect to the initial value) between the semiconductor laser substrate 2 and the support member 1 when thermal stress is applied to the semiconductor device, and the laser beam Table 2 shows the amount of change in output (relative to the initial value).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、性能及
び安定した半導体装置を歩留りよく製造すること
が可能である。
As described above, according to the present invention, it is possible to manufacture a semiconductor device with high performance and stability at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置を説明する図、第2
図は本発明の一実施例の半導体装置を説明する
図、第3図は本発明の一実施例の半導体装置の製
法を説明する図である。 1…金属支持部材、2…半導体レーザ基体、3
…中間部材、5…導電路構成部材、6…中継金属
板、31…端部、32,33…金属化層。
Figure 1 is a diagram explaining a conventional semiconductor device, Figure 2 is a diagram explaining a conventional semiconductor device.
The figure is a diagram for explaining a semiconductor device according to an embodiment of the present invention, and FIG. 3 is a diagram for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention. 1... Metal support member, 2... Semiconductor laser base, 3
...Intermediate member, 5...Conducting path constituent member, 6...Relay metal plate, 31...End portion, 32, 33...Metalized layer.

Claims (1)

【特許請求の範囲】 1 金属支持部材上に、無機質絶縁体又は無機質
半導体からなる中間部材と半導体素子とが、金属
化層を介して順次搭載された半導体装置におい
て、前記中間部材と半導体素子との間にある前記
金属化層の一部は、前記中間部材の少なくとも1
の側面上の一部にも位置し、前記金属支持部材、
中間部材及び半導体素子は、前記側面上に位置す
る金属化層と略同一平面を形成する側面を有し、
それぞれろう材を用いて接着されていることを特
徴とする半導体装置。 2 前記中間部材が、SiC,Al2O3,AlN,BeO,
Si3N4,MgO及びCよりなる群から選択された少
なくとも1の材料からなるセラミツクス又はSi,
Ge及びSiCよりなる群から選択された少なくとも
1の材料からなる半導体であり、前記金属化層
が、前記セラミツクス又は半導体に接する、Cr,
Ti,Al,Mo,Ni,W及びAgよりなる群から選
択された1の材料からなる第1の層と、該第1の
層に接する、Cr,Ti,Al,Mo,Ni,Cu,Ag,
Pd,Pt及びAuよりなる群から選択された1の材
料からなる第2の層と、該第2の層に接する、
Ag,Au及びPtよりなる群から選択された1の材
料からなる第3の層とを順次積層してなることを
特徴とする特許請求の範囲第1項記載の半導体装
置。
[Scope of Claims] 1. A semiconductor device in which an intermediate member made of an inorganic insulator or an inorganic semiconductor and a semiconductor element are sequentially mounted on a metal supporting member with a metallized layer interposed therebetween, in which the intermediate member and the semiconductor element are sequentially mounted on a metal supporting member. A portion of said metallized layer between said at least one of said intermediate members
The metal support member is also located on a part of the side surface of the
the intermediate member and the semiconductor element have a side surface that is substantially coplanar with a metallization layer located on the side surface;
A semiconductor device characterized in that each of the semiconductor devices is bonded using a brazing material. 2 The intermediate member is made of SiC, Al 2 O 3 , AlN, BeO,
Ceramics made of at least one material selected from the group consisting of Si 3 N 4 , MgO and C, or Si;
A semiconductor made of at least one material selected from the group consisting of Ge and SiC, wherein the metallized layer is in contact with the ceramic or semiconductor, Cr,
A first layer made of one material selected from the group consisting of Ti, Al, Mo, Ni, W and Ag, and Cr, Ti, Al, Mo, Ni, Cu, Ag in contact with the first layer. ,
a second layer made of one material selected from the group consisting of Pd, Pt and Au, and in contact with the second layer;
2. The semiconductor device according to claim 1, further comprising a third layer made of one material selected from the group consisting of Ag, Au, and Pt.
JP59011828A 1984-01-27 1984-01-27 semiconductor equipment Granted JPS60157284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011828A JPS60157284A (en) 1984-01-27 1984-01-27 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011828A JPS60157284A (en) 1984-01-27 1984-01-27 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS60157284A JPS60157284A (en) 1985-08-17
JPH0451073B2 true JPH0451073B2 (en) 1992-08-18

Family

ID=11788622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011828A Granted JPS60157284A (en) 1984-01-27 1984-01-27 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS60157284A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132495A (en) * 1986-11-21 1988-06-04 Mitsubishi Electric Corp Sub-mount for photo-semiconductor device
JPS63160292A (en) * 1986-12-23 1988-07-04 Mitsubishi Electric Corp Submount for optical semiconductor element
JP4855341B2 (en) * 2007-06-05 2012-01-18 株式会社パイロットコーポレーション Knock-type writing instrument
JP2009272656A (en) * 2009-08-20 2009-11-19 Sumitomo Electric Ind Ltd Semiconductor light-emitting element, and manufacturing method thereof
WO2013150715A1 (en) * 2012-04-05 2013-10-10 パナソニック株式会社 Semiconductor laser apparatus and method for manufacturing same
JP7619812B2 (en) 2021-01-28 2025-01-22 ゼブラ株式会社 Retractable writing implement

Also Published As

Publication number Publication date
JPS60157284A (en) 1985-08-17

Similar Documents

Publication Publication Date Title
JP2001168442A (en) Method of manufacturing semiconductor laser element, installation substrate, and support substrate
JP2016054279A (en) Semiconductor laser
JP2003101113A (en) Nitride semiconductor laser
JP4811629B2 (en) Semiconductor laser device
US10748836B2 (en) Semiconductor laser module and method for manufacturing the same
US6621839B1 (en) Method for contacting a high-power diode laser bar and a high-power diode laser bar-contact arrangement of electrical contacts with minor thermal function
JPH0750813B2 (en) Submount for semiconductor laser device
JP2006344743A (en) Semiconductor laser device
JP5031136B2 (en) Semiconductor laser device
JPH0451073B2 (en)
JP3912130B2 (en) Submount
US6870866B2 (en) Powerpack laser diode assemblies
JP2001230498A (en) Group iii nitride-base compound semiconductor laser
JP2005101149A (en) Semiconductor light emitting device and manufacturing method thereof
JPH0637403A (en) Semiconductor laser device
JPH06188516A (en) Semiconductor device and fabrication thereof
JPS63132495A (en) Sub-mount for photo-semiconductor device
JP2018113377A (en) Laser light source device
JPH01138777A (en) Submount for optical semiconductor element
JPH1022570A (en) Nitride semiconductor laser element
WO2024162073A1 (en) Light emitting device, light emitting module, method for producing light emitting device, and method for producing light emitting module
JPS60110185A (en) Optical integrated circuit package
JPH04283948A (en) Submount for optical semiconductor device
JPH01134983A (en) Sub-mount for optical semiconductor element
JPH10233549A (en) Nitride semiconductor laser diode