JPH0450101A - Fuel reformer - Google Patents
Fuel reformerInfo
- Publication number
- JPH0450101A JPH0450101A JP2159265A JP15926590A JPH0450101A JP H0450101 A JPH0450101 A JP H0450101A JP 2159265 A JP2159265 A JP 2159265A JP 15926590 A JP15926590 A JP 15926590A JP H0450101 A JPH0450101 A JP H0450101A
- Authority
- JP
- Japan
- Prior art keywords
- reforming
- catalyst
- tube
- fuel
- catalyst layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、炭化水素系の原燃料を水蒸気とともに改質触
媒の下に水蒸気改質して水素を含むガスにする燃料改質
器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel reformer that steam-reforms hydrocarbon-based raw fuel together with steam under a reforming catalyst to convert it into a hydrogen-containing gas.
天然ガスやナフサ等の炭化水素系の原燃料に水蒸気を付
加してなる改質原料ガスを改質触媒の下に熱媒体の加熱
により水素を含むガスに改質して改質ガスを生成し、こ
の改質ガスを一酸化炭素変成器を経て燃料電池に供給す
る燃料改質器として第2図に示すものが知られている。Reformed raw material gas, which is obtained by adding water vapor to hydrocarbon raw fuel such as natural gas or naphtha, is reformed into hydrogen-containing gas by heating with a heating medium under a reforming catalyst to generate reformed gas. A fuel reformer shown in FIG. 2 is known as a fuel reformer that supplies this reformed gas to a fuel cell via a carbon monoxide shift converter.
第2図において、燃料改質器1は改質管2と、改質管2
の内側に配されるバーナ3と、このバーナ3を上部に備
え、改質管2内に改質触媒が充填されてなる触媒充填部
を外部から囲む炉容器4とから構成されている。改質管
2において、5は直立した仕切円筒であり、この仕切円
筒5を挟んでその両側に円筒状の外管6と内管7とが配
置されている。外管6と内管7との下端部は仕切円筒5
の下端から離れて半トーラス状の底板で連結され、外管
6と仕切円筒5および仕切円筒5と内管7とによりそれ
ぞれ下端部で接続する外側環状空間8と内側環状空間9
とが形成されている。外側、内側環状空間8.9におい
てその下半部には改質触媒12が充填されて外触媒層I
Oと自触媒層11とが下端部の半トーラス部で接続され
て形成されている。In FIG. 2, the fuel reformer 1 includes a reformer pipe 2 and a reformer pipe 2.
The furnace is comprised of a burner 3 disposed inside the furnace, and a furnace vessel 4 which is provided with the burner 3 at the top and surrounds from the outside a catalyst-filled portion in which the reforming tube 2 is filled with a reforming catalyst. In the reforming tube 2, 5 is an upright partition cylinder, and a cylindrical outer tube 6 and an inner tube 7 are arranged on both sides of the partition cylinder 5. The lower end of the outer tube 6 and the inner tube 7 is a partition cylinder 5
An outer annular space 8 and an inner annular space 9 are connected by a semi-torus-shaped bottom plate apart from the lower end thereof, and are connected at their lower ends by the outer tube 6 and the partition cylinder 5, and by the partition cylinder 5 and the inner tube 7, respectively.
is formed. A reforming catalyst 12 is filled in the lower half of the outer and inner annular spaces 8.9 to form an outer catalyst layer I.
O and the autocatalytic layer 11 are connected at a half-torus portion at the lower end.
そして自触媒層10と外触媒層11とを仕切る仕切円筒
5の下半部は下から上に向って厚さの厚い断熱層13を
有している。一方、外側、内側環状空間8゜9の上半部
には対流伝熱を促進するアルミナ等からなる伝熱粒子2
2が充填されて熱交換部が形成されている。The lower half of the partition cylinder 5 that partitions the autocatalyst layer 10 and the outer catalyst layer 11 has a heat insulating layer 13 that is thick from bottom to top. On the other hand, in the upper half of the outer and inner annular spaces 8°9, there are heat transfer particles 2 made of alumina etc. that promote convective heat transfer.
2 is filled to form a heat exchange section.
外側環状空間8の上端部には改質原料ガスマニホールド
15を介して改質原料ガスの入口16が、また内側環状
空間9の上端部には改質ガス出口マニホールド17を介
して改質ガスの出口18が形成されている。An inlet 16 for the reformed raw material gas is provided at the upper end of the outer annular space 8 via a reformed material gas manifold 15, and an inlet 16 for the reformed gas is provided at the upper end of the inner annular space 9 via a reformed gas outlet manifold 17. An outlet 18 is formed.
バーナ3は改質管2の内側に設けられ、さらにバーナ3
からの燃焼ガスが改質管2内の触媒充填部を加熱するよ
うに外触媒層10と自触媒層11とからなる触媒層の始
点、終点のレベルに配置されている。The burner 3 is provided inside the reforming tube 2, and the burner 3
The catalyst layer is arranged at the starting point and ending point level of the catalyst layer consisting of the outer catalyst layer 10 and the autocatalyst layer 11 so that the combustion gas from the reformer tube 2 heats the catalyst-filled portion in the reforming tube 2.
炉容器4はバーナ3を上部に備え、改質管2の外触媒層
10と自触媒層11とからなる触媒層を外部から囲むよ
うに設けられ、その内側面と底面とには耐火断熱材19
が配設されている。そして炉容器4内にはバーナ3から
の燃焼ガスが改質管2の内側に沿って流れた後、改質管
2の下端で折返して改質管2の外側に沿って流れる燃焼
ガス通路20が形成されている。なお、改質管2の外側
部の燃焼ガス通路20には燃焼ガスの対流伝熱を促進す
る伝熱粒子22が充填されている。The furnace vessel 4 is equipped with a burner 3 in the upper part, and is provided so as to surround a catalyst layer consisting of an outer catalyst layer 10 and an autocatalyst layer 11 of the reforming tube 2 from the outside, and a fireproof heat insulating material is provided on the inner surface and bottom surface. 19
is installed. Inside the furnace vessel 4 is a combustion gas passage 20 in which combustion gas from the burner 3 flows along the inside of the reforming tube 2, turns around at the lower end of the reforming tube 2, and flows along the outside of the reforming tube 2. is formed. Note that the combustion gas passage 20 on the outside of the reforming tube 2 is filled with heat transfer particles 22 that promote convective heat transfer of the combustion gas.
このような構造の燃料改質器において、バーナ3に燃料
人口23から燃料を送入し、図示しない空気入口から燃
焼空気を送入して燃料を燃焼させると、バーナ3からの
燃焼ガスは燃焼ガス道路20である反応管2の内側を下
方に流れ、反応管2の下端で折返して伝熱粒子22が充
填された反応管2の外側の燃焼ガス通路を上方に流れ、
燃焼ガス出口24から外部に排出される。In a fuel reformer having such a structure, when fuel is fed from the fuel port 23 to the burner 3 and combustion air is fed from an air inlet (not shown) to combust the fuel, the combustion gas from the burner 3 is combusted. Flows downward inside the reaction tube 2 which is the gas road 20, turns back at the lower end of the reaction tube 2, and flows upward through the combustion gas passage outside the reaction tube 2 filled with heat transfer particles 22,
The combustion gas is discharged from the combustion gas outlet 24 to the outside.
一方、原燃料のメタンと水蒸気とからなる改質原料ガス
は改質原料ガス人口16から流入し、外側環状空間8の
上半部を下方に流れ、さらに下半部の外触媒層10を下
方に流れて下端部で折返して内側環状空間部9の下半部
の自触媒層11を上方に流れ、さらに上半部を流れて反
応ガス出口1日から外部に流れる。On the other hand, the reforming material gas consisting of raw fuel methane and water vapor flows in from the reforming material gas port 16, flows downward through the upper half of the outer annular space 8, and further flows downward through the outer catalyst layer 10 in the lower half. The gas is turned around at the lower end, flows upward through the autocatalyst layer 11 in the lower half of the inner annular space 9, and further flows through the upper half to flow outside from the reactant gas outlet.
上記のようにバーナ3からの燃焼ガスにより外触媒層1
0と自触媒層11とからなる触媒層は加熱され、この触
媒層を燃焼ガスの流れる方向と逆方向に流れる改質原料
ガス中のメタンは改質触媒の作用の下に吸熱反応により
水蒸気改質されて水素を含む改質ガスになる。この場合
、吸熱反応に伴い外触媒層10と自触媒層11とからな
る触媒層の隣り合わせる部位では温度差があり、この中
で触媒層の隣り合わせる改質原料ガスが入る始点と反応
ガスがでる終点が最も大きい温度差になるが仕切円筒5
の断熱層13のため熱の移動が阻止される。このため触
媒層の終点近(の温度は吸熱反応を完成させるのに必要
な高温を保持し、十分に水蒸気改質された改質ガスが得
られる。As mentioned above, the outer catalyst layer 1 is heated by the combustion gas from the burner 3.
The catalyst layer consisting of 0 and autocatalyst layer 11 is heated, and the methane in the reforming raw material gas flowing through this catalyst layer in the opposite direction to the flow direction of the combustion gas is steam reformed by an endothermic reaction under the action of the reforming catalyst. The gas is reformed into reformed gas containing hydrogen. In this case, due to the endothermic reaction, there is a temperature difference between adjacent parts of the catalyst layer consisting of the outer catalyst layer 10 and the autocatalyst layer 11, and there is a temperature difference between the starting point where the reforming raw material gas enters and the reaction gas in the adjacent catalyst layer. The end point where the temperature difference is the largest is the partition cylinder 5.
Heat transfer is prevented by the heat insulating layer 13. Therefore, the temperature near the end of the catalyst layer is maintained at a high temperature necessary to complete the endothermic reaction, and a reformed gas that has been sufficiently reformed with steam can be obtained.
なお、触媒層からでる高温のガスは、外側、内側環状空
間8.9の上半部の熱交換部により改質原料ガス人口1
6から外側環状空間8の上半部を流れる改質原料ガスと
熱交換する。In addition, the high temperature gas coming out of the catalyst layer is transferred to the reformed raw material gas population 1 by the heat exchange section in the upper half of the outer and inner annular spaces 8.9.
6 and exchanges heat with the reformed raw material gas flowing through the upper half of the outer annular space 8.
上記のような燃料改質器において、メタンのような原燃
料を水蒸気改質する際には高温の運転温度で改質反応が
行われ、改質管を形成している耐熱鋼の表面温度は、運
転圧力にもよるが700〜900℃にもなる。In the above-mentioned fuel reformer, when raw fuel such as methane is steam reformed, the reforming reaction takes place at a high operating temperature, and the surface temperature of the heat-resistant steel that forms the reforming tube increases. , depending on the operating pressure, it can reach 700 to 900°C.
また上記の燃料改質器は、この燃料改質器で得られた水
素を含む改質ガスを一酸化炭素変成器にて一酸化炭素濃
度の低い水素に富むガスにした改質ガスを燃料電池の燃
料として供給して燃料電池により発電する燃料電池発電
システムに組み込まれる。In addition, the above fuel reformer uses a carbon monoxide shift converter to convert the hydrogen-containing reformed gas obtained by this fuel reformer into a hydrogen-rich gas with a low carbon monoxide concentration. It is incorporated into a fuel cell power generation system that supplies the fuel as fuel to generate electricity using the fuel cell.
このような燃料電池発電システム全体の起動停止時間は
、発電装置であるという観点から、より短いことが望ま
れており、1〜4時間程度が目標となっている。また最
も頻度が高い場合には、毎日起動停止を繰り返す場合が
ある。これは、従来の化学プラント用に比較して起動時
間は約10〜100分の1.起動停止頻度は約250倍
であり、非常に過酷な条件の下に起動、停止が行われて
いる。The starting and stopping time of such a fuel cell power generation system as a whole is desired to be shorter from the viewpoint of being a power generation device, and the target is about 1 to 4 hours. Furthermore, in the most frequent case, starting and stopping may be repeated every day. This means that the start-up time is about 10 to 100 times shorter than that for conventional chemical plants. The frequency of starting and stopping is about 250 times, and starting and stopping are performed under extremely harsh conditions.
上記のように燃料改質器は、従来の化学プラント用の改
質器に比較して、非常に過酷な条件で頻繁に起動、停止
が繰り返されるため、起動、停止中の温度変化により、
改質管を構成している金属材料は、膨張収縮を繰り返す
、この結果、起動。As mentioned above, compared to conventional reformers for chemical plants, fuel reformers are frequently started and stopped under extremely harsh conditions, so temperature changes during startup and shutdown can cause
The metal material that makes up the reforming tube expands and contracts repeatedly, resulting in activation.
停止毎に触媒層部に応力が発生し、最悪の場合には改質
触媒の圧壊を起こす、特に第2図で示す改質管2の改質
原料ガスの入高い部分Aとバーナ3に近い部分Bの昇温
曲線は第3図に示すようにバーナ近接部の改質管表面温
度Pは改質原料ガスの触媒層入口部の改質管表面温度Q
より高くなり、改質管に温度差の大きい温度分布が生じ
る。この温度分布によっても改質管に熱変形が生じ触媒
層に応力が生じ、圧壊につながる。Stress is generated in the catalyst layer every time the catalyst is stopped, and in the worst case, the reforming catalyst may be crushed.Especially in the part A of the reforming tube 2 where the reforming raw material gas enters high, as shown in Fig. 2, and near the burner 3. As shown in Fig. 3, the temperature rise curve of part B is such that the reformer tube surface temperature P near the burner is equal to the reformer tube surface temperature Q at the catalyst bed inlet of the reforming raw material gas.
This results in a temperature distribution with a large temperature difference in the reforming tube. This temperature distribution also causes thermal deformation in the reforming tube and stress in the catalyst layer, leading to crushing.
ところで、触媒が圧壊して粉状になると、触媒層の圧力
損失が大きくなり、最悪の場合燃料電池発電システムの
継続運転が不可能になる可能性もあった。By the way, if the catalyst were crushed and turned into powder, the pressure loss in the catalyst layer would increase, and in the worst case, there was a possibility that the fuel cell power generation system could not continue to operate.
このため、触媒粒子自身にある程度の圧壊強度をもたせ
る必要があるが、触媒自身の圧壊強度を増大させること
は、触媒の担体であるアルミナの強度を増加させること
になる。このためには、担体処理時の焼成温度を上昇さ
せるか、処理時間を長くするかのいずれかの方法がある
が、いずれにしてもγ−M、03をα−M、0.として
結晶度をあげる結果、担体内部の細孔容積を減らすこと
になり、触媒活性が低下する。これは、このような細孔
は直接的に触媒反応の速度に寄与し、数が多ければ触媒
活性がよいといえるからである。For this reason, it is necessary for the catalyst particles themselves to have a certain degree of crushing strength, and increasing the crushing strength of the catalyst itself means increasing the strength of alumina, which is the carrier of the catalyst. To achieve this, there are two methods: increasing the firing temperature during carrier treatment or lengthening the treatment time, but in either case, γ-M, 03 can be replaced with α-M, 0. As a result of increasing the crystallinity, the pore volume inside the carrier decreases, resulting in a decrease in catalytic activity. This is because such pores directly contribute to the rate of catalytic reaction, and the larger the number, the better the catalytic activity.
このように、触媒強度と触媒活性の関係は相反する関係
があるため、燃料改質器の改質触媒は、ある程度の強度
と活性との両者をバランスさせて制作している。このた
め、触媒量を減少させることができず、例えばオンサイ
ト用の燃料電池発電システムのような場合には燃料改質
器のサイズがある程度以下にはならないという欠点があ
る。As described above, since the relationship between catalyst strength and catalyst activity is contradictory, reforming catalysts for fuel reformers are manufactured with a certain degree of balance between strength and activity. For this reason, the amount of catalyst cannot be reduced, and for example, in the case of an on-site fuel cell power generation system, there is a drawback that the size of the fuel reformer cannot be reduced below a certain level.
本発明の目的は、改質管内の触媒層の改質触媒が起動、
停止時の昇温、降温時において圧壊しない燃料改質器を
提供することである。The purpose of the present invention is to start the reforming catalyst in the catalyst layer in the reforming tube,
It is an object of the present invention to provide a fuel reformer that does not collapse when the temperature increases or decreases when the temperature is stopped.
上記課題を解決するために、本発明によれば炭化水素系
の原燃料を水蒸気とともに改質触媒が充填されてなる触
媒層を有する改質管に通流し、バーナからの熱媒体によ
り改質管を加熱して原燃料を水素を含むガスに改質する
燃料改質器において、改質管内の触媒層内に改質管の熱
変形により生じる改質触媒の応力を吸収する可撓性の応
力吸収層を改質原料ガスの流れ方向の触媒層長さ方向に
配設するものとする。In order to solve the above problems, according to the present invention, hydrocarbon raw fuel is passed together with steam through a reforming tube having a catalyst layer filled with a reforming catalyst, In fuel reformers that reform raw fuel into hydrogen-containing gas by heating, there is a flexible stress layer in the catalyst layer in the reforming tube that absorbs the stress of the reforming catalyst caused by thermal deformation of the reforming tube. The absorption layer is arranged in the length direction of the catalyst layer in the flow direction of the reformed raw material gas.
改質触媒からなる触媒層を有する改質管の起動。 Start-up of a reforming tube having a catalyst layer consisting of a reforming catalyst.
停止時に生じる温度変化や温度差の大きい温度分布によ
り、膨張収縮や熱変形が生じ、このため改質触媒には応
力が生じる。この際改質触媒に圧縮応力が加わった場合
には触媒層内に改質ガスの流れ方向に設けられた可撓性
の応力吸収層が加わった応力に応じて縮み、改質触媒が
圧壊しないように保護する。なお、改質管の温度変化や
温度分布の温度差が減少し、触媒層に加わる圧縮応力が
減少した場合には応力吸収層は再び厚さを増して触媒層
を元の形状に戻す作用をする。Expansion/contraction and thermal deformation occur due to temperature changes and temperature distribution with large temperature differences that occur during shutdown, which causes stress in the reforming catalyst. At this time, if compressive stress is applied to the reforming catalyst, a flexible stress absorbing layer provided in the flow direction of the reformed gas within the catalyst layer will shrink in response to the applied stress, preventing the reforming catalyst from being crushed. Protect as such. Note that when the temperature change in the reforming tube or the temperature difference in the temperature distribution decreases, and the compressive stress applied to the catalyst layer decreases, the stress absorption layer increases its thickness again and has the effect of returning the catalyst layer to its original shape. do.
以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明の実施例による燃料改質器の断面図であ
る。なお第1図において第2図の従来例と同一部品には
同じ符号を付し、その説明を省略する。第1図において
従来例と異なるのは改質管2の仕切円筒部の断熱層13
の両側に可撓性の材料、例えば断熱材として通常用いら
れているセラミックファイバー系不織布等からなる応力
吸収層30を取付けたことである。FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 2 are given the same reference numerals, and their explanations will be omitted. What is different from the conventional example in FIG.
A stress absorbing layer 30 made of a flexible material such as a ceramic fiber nonwoven fabric commonly used as a heat insulating material is attached to both sides of the structure.
このような構造により燃料改質器1の起動、停止中に住
しる改質管の温度変化や温度分布により生じる改質管の
膨張、収縮や熱変形による改質触媒に生じる圧縮応力を
吸収して改質触媒の圧壊を防止する。This structure absorbs compressive stress that occurs in the reforming catalyst due to expansion, contraction, and thermal deformation of the reforming tube caused by temperature changes and temperature distribution of the reforming tube during startup and shutdown of the fuel reformer 1. to prevent crushing of the reforming catalyst.
なお、本実施例では二重管構造の改質管について説明し
たが、単管構造においても可撓性の応力吸収層を触媒層
内に改質原料ガスの流れ方向の触媒層長さ方向に設けて
も同じ効果が得られる。Although this example describes a reforming tube with a double tube structure, even in a single tube structure, a flexible stress-absorbing layer can be placed in the catalyst layer in the length direction of the catalyst layer in the flow direction of the reforming raw material gas. The same effect can be obtained even if it is provided.
以上の説明から明らかなように、本発明によれば改質管
内の改質触媒からなる触媒層内に改質原料ガスの流れ方
向の触媒層長さ方向に可撓性の応力吸収層を配設したこ
とにより、燃料改質器の起動、停止時の改質管の温度変
化や温度分布により触媒層の改質触媒に生しる圧縮応力
を可撓性の応力吸収層により吸収するので、改質触媒の
圧壊を防止できる。したがって改質触媒として強度を減
少させる細孔が多く、このためより活性の良好な触媒を
使用できるので、触媒量を少なくでき、このため燃料改
質器をコンパクトにすることができる。As is clear from the above description, according to the present invention, a flexible stress absorbing layer is disposed in the length direction of the catalyst layer in the flow direction of the reforming raw material gas in the catalyst layer consisting of the reforming catalyst in the reforming tube. With this structure, compressive stress generated in the reforming catalyst in the catalyst layer due to temperature changes and temperature distribution in the reforming tube when the fuel reformer starts and stops is absorbed by the flexible stress absorbing layer. It can prevent crushing of the reforming catalyst. Therefore, there are many pores that reduce the strength of the reforming catalyst, and therefore a catalyst with better activity can be used, so the amount of catalyst can be reduced, and the fuel reformer can therefore be made more compact.
第1図は本発明の実施例による燃料改質器の断面図、第
2図は従来の燃料改質器の断面図、第3図は燃料改質器
の起動時の改質管の昇温特性を示す図である。
1:燃料改質器、2:改質管、3:バーナ、12:改質
触媒、30:応力吸収層。
第2図Fig. 1 is a cross-sectional view of a fuel reformer according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional fuel reformer, and Fig. 3 is a temperature increase in the reforming tube when the fuel reformer is started. FIG. 3 is a diagram showing characteristics. 1: Fuel reformer, 2: Reforming tube, 3: Burner, 12: Reforming catalyst, 30: Stress absorption layer. Figure 2
Claims (1)
填されてなる触媒層を有する改質管に通流し、バーナか
らの熱媒体により改質管を加熱して原燃料を水素を含む
ガスに改質する燃料改質器において、改質管内の触媒層
内に改質管の熱変形により生じる改質触媒の応力を吸収
する可撓性の応力吸収層を改質原料ガスの流れ方向の触
媒層長さ方向に配設したことを特徴とする燃料改質器。1) Hydrocarbon-based raw fuel is passed along with steam through a reforming tube that has a catalyst layer filled with a reforming catalyst, and the reforming tube is heated by a heat medium from a burner to convert the raw fuel into hydrogen-containing gas. In a fuel reformer for reforming gas to A fuel reformer characterized in that a catalyst layer is arranged in the length direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2159265A JP2712766B2 (en) | 1990-06-18 | 1990-06-18 | Fuel reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2159265A JP2712766B2 (en) | 1990-06-18 | 1990-06-18 | Fuel reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0450101A true JPH0450101A (en) | 1992-02-19 |
JP2712766B2 JP2712766B2 (en) | 1998-02-16 |
Family
ID=15689995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2159265A Expired - Lifetime JP2712766B2 (en) | 1990-06-18 | 1990-06-18 | Fuel reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2712766B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009209003A (en) * | 2008-03-05 | 2009-09-17 | Aisin Seiki Co Ltd | Reformer for fuel cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183602A (en) * | 1984-09-29 | 1986-04-28 | Toshiba Corp | Reforming apparatus |
JPS61114730A (en) * | 1984-11-09 | 1986-06-02 | Hitachi Ltd | catalytic reactor |
JPS63201001A (en) * | 1987-02-18 | 1988-08-19 | Hitachi Ltd | fuel reformer |
-
1990
- 1990-06-18 JP JP2159265A patent/JP2712766B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183602A (en) * | 1984-09-29 | 1986-04-28 | Toshiba Corp | Reforming apparatus |
JPS61114730A (en) * | 1984-11-09 | 1986-06-02 | Hitachi Ltd | catalytic reactor |
JPS63201001A (en) * | 1987-02-18 | 1988-08-19 | Hitachi Ltd | fuel reformer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009209003A (en) * | 2008-03-05 | 2009-09-17 | Aisin Seiki Co Ltd | Reformer for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2712766B2 (en) | 1998-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100677016B1 (en) | Cylindrical Steam Reformers | |
KR101127688B1 (en) | Small-sized reformer of cylinder type | |
EP0600621B1 (en) | A combined reformer and shift reactor | |
JP5185493B2 (en) | Fuel conversion reactor | |
RU2354608C2 (en) | Synthetic gas regeneration process and device | |
JP2004501759A (en) | System for improved hydrogen generation by steam reforming of hydrocarbons and integrated chemical reactor for producing hydrogen from hydrocarbons | |
KR20040058180A (en) | Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range | |
KR100857703B1 (en) | Reaction vessel and reaction apparatus | |
JP2703831B2 (en) | Fuel reformer | |
JP2001106507A (en) | Reformer and fuel cell power generation device provided with the reformer | |
KR20180002263A (en) | Reactor reforming for liquid hydrocarbon fuel | |
JP2004519405A (en) | Fuel gas reformer assembly | |
JP2001342002A (en) | Fuel reformer | |
JPH0450101A (en) | Fuel reformer | |
JPH11189401A (en) | Fuel reactor | |
WO2002000548A1 (en) | Apparatus for producing hydrogen | |
JP4147521B2 (en) | Self-oxidation internal heating type reforming method and apparatus | |
JPH0679664B2 (en) | Fuel reformer | |
JPH04265147A (en) | Fuel reformer | |
JPH0335241B2 (en) | ||
JP2998217B2 (en) | Fuel reformer | |
JPH01208303A (en) | Fuel reformer | |
JPH01157402A (en) | methanol reformer | |
JP2938245B2 (en) | Starting the fuel reformer | |
JPS59102804A (en) | Device for modifying fuel |