[go: up one dir, main page]

JPH0449906B2 - - Google Patents

Info

Publication number
JPH0449906B2
JPH0449906B2 JP61162025A JP16202586A JPH0449906B2 JP H0449906 B2 JPH0449906 B2 JP H0449906B2 JP 61162025 A JP61162025 A JP 61162025A JP 16202586 A JP16202586 A JP 16202586A JP H0449906 B2 JPH0449906 B2 JP H0449906B2
Authority
JP
Japan
Prior art keywords
ammonia
light
detection element
optical fiber
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61162025A
Other languages
Japanese (ja)
Other versions
JPS6318251A (en
Inventor
Katsuyuki Igarashi
Minoru Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORITETSUKUSU KK
Original Assignee
MORITETSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORITETSUKUSU KK filed Critical MORITETSUKUSU KK
Priority to JP61162025A priority Critical patent/JPS6318251A/en
Publication of JPS6318251A publication Critical patent/JPS6318251A/en
Publication of JPH0449906B2 publication Critical patent/JPH0449906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は水の汚染等の環境計測・管理バイオリ
アクターの管理、生化学試料のアンモニアの連続
測定、水耕栽培管理等の際に問題となる気中ある
いは液体中のアンモニアを連続定量するために用
いられる光学的アンモニア検出素子に関するもの
である。 〔従来技術とその問題点〕 気中あるいは液体中のアンモニアを連続定量す
る方法として、現在は電位測定の原理によるアン
モニア電極法が一番多く用いられている。 ところが、従来の電気化学式アンモニアセンサ
は、下記のように幾つかの実用上の欠点を有して
ている。 (a) 小型化ができない。 (b) 熱には弱いので殺菌が困難か、又は全くでき
ない。 (c) 電極の特性が電極の表面電位の影響を受けて
指示電位がずれる。 即ち、誤差が生じ易い。 (d) 他の電位測定と同様に液絡部で比較又は参照
電極と指示電極とを接続する必要があるが、こ
の液絡部は電極構造の中で最もデリケートで、
誤差の原因となり易い部分である。 このような電気化学式アンモニアセンサの実用
上の欠点を除くために考えられたものとして、ポ
リビニルピロリドンに溶かしたニンヒドリン溶液
で送光用及び受光用フアイバ端部を被覆した検出
素子(プローブ)を用いる方法が提案されてい
る。 しかし、この方法は、変色度を利用するもの
で、可逆的でないため再利用できないという欠点
と、被覆材料が水溶性のため、気体中でしか使え
ないという欠点がある。 〔問題点を解決するための手段〕 本発明は上記の問題点を解決するためになされ
たもので気中は勿論のこと液中でも使用すること
のできる耐薬品性、耐熱性に富み、小型で安価に
製作し得るものを提供しようとするものである。 即ち、本発明は励起光の照射によつて生じる螢
光の強度がアンモニアガス又はアンモニウムイオ
ンのPH値に応じて変化する特性をもつ螢光物質の
液滴を分散配合したシリコンゴム等の半透過性物
質に、送光用の光フアイバと受光用の光フアイバ
の端部を突入又は対向して設けた光学的アンモニ
ア検出素子である。 本発明の大きな特徴は、感応体として励起光の
照射によつて生じる螢光の強度がアンモニアガス
又はアンモニウムイオンのPH値に応じて変化する
特性をもつ螢光物質の液滴を分散配合した半透過
性物質を使用した点である。 本発明に使用できる螢光物質(PH感応物質)と
しては次のものがある。
[Industrial Field of Application] The present invention is applicable to environmental measurement and management of water pollution, etc.In the management of bioreactors, continuous measurement of ammonia in biochemical samples, hydroponic cultivation management, etc. The present invention relates to an optical ammonia detection element used for continuously quantifying ammonia. [Prior art and its problems] Currently, the ammonia electrode method based on the principle of potential measurement is most commonly used as a method for continuously quantifying ammonia in air or liquid. However, the conventional electrochemical ammonia sensor has several practical drawbacks as described below. (a) Cannot be miniaturized. (b) It is difficult to sterilize or cannot be sterilized at all because it is sensitive to heat. (c) The characteristics of the electrode are affected by the surface potential of the electrode, causing the indicated potential to shift. That is, errors are likely to occur. (d) As with other potential measurements, it is necessary to connect the comparison or reference electrode and the indicator electrode at a liquid junction, but this liquid junction is the most delicate of the electrode structures;
This is a part that is likely to cause errors. A method devised to eliminate such practical drawbacks of electrochemical ammonia sensors is a method using a detection element (probe) in which the ends of the light transmitting and light receiving fibers are coated with a ninhydrin solution dissolved in polyvinylpyrrolidone. is proposed. However, this method utilizes the degree of color change, and has the disadvantage that it cannot be reused because it is not reversible, and that it can only be used in gas because the coating material is water-soluble. [Means for Solving the Problems] The present invention has been made to solve the above problems, and it has excellent chemical resistance and heat resistance, can be used not only in air but also in liquid, and is small in size. The aim is to provide something that can be manufactured at low cost. That is, the present invention provides a translucent material made of silicone rubber or the like in which droplets of a fluorescent material are dispersed and blended with droplets of a fluorescent material that has the characteristic that the intensity of fluorescent light generated by irradiation with excitation light changes depending on the pH value of ammonia gas or ammonium ions. This is an optical ammonia detection element in which the ends of an optical fiber for transmitting light and an optical fiber for receiving light are provided to penetrate or face each other into a magnetic substance. A major feature of the present invention is that a semicontainer containing dispersed droplets of a fluorescent material, which has the characteristic that the intensity of fluorescent light generated by irradiation with excitation light changes depending on the pH value of ammonia gas or ammonium ions, is used as a sensitive material. The point is that a transparent material is used. Fluorescent substances (PH-sensitive substances) that can be used in the present invention include the following.

〔実施例〕〔Example〕

第1図は本発明にかかるアンモニア検出素子を
使用したアンモニア検出装置の一例の概略構成を
示すもので、1は250Wのキセノンランプ2、レ
ンズ3,5及びモノクロメータ(又は干渉フイル
タ)4から成る光源部、6は本発明にかかるアン
モニア検出素子、7はミラー8、レンズ9,1
0,11、フオトダイオード12及び、比較用フ
オトデイテクタ13から成る検出部である。 アンモニア検出素子6は第2図に示す構成のも
ので、PH感応物質61としてアクリジンオレンジ
を、また半透過性物質としてシリコンゴムを用
い、送光及び受光用光フアイバ63,64は夫々
70本の光フアイバを束ね、その端部の外径を6mm
とし、長さ1.5mのものである。 今、アンモニア検出素子6の端部をアンモニア
ガス雰囲気中又はアンモニア含有溶液中に置き、
光源1を点灯すると、励起光Aは送光用光フアイ
バ63を介してPH感応物質61に照射され、PH感
応物質61はアンモニアガス又はアンモニウムイ
オンのPHに応じた螢光Bを発する。 アンモニア濃度に対する螢光強度は第3図に示
すように変化し、検出部7でアンモニア濃度が計
測される。 〔応答性〕 応答性は種々のパラメータの影響を受ける。そ
の第1はPH感応物質61の水滴の大きさである。
水滴が大きくなるにつれ応答がおそくなる。典型
的応答性は2〜5分である。 応答時間に影響を与える第2の因子はPH感応物
質61を包覆する半透過性物質62の厚さであ
る。被覆膜厚が100μmの場合の応答時間は50μm
の場合の約3倍である。またPH感応物質61の濃
度を高くすると応答時間が短くなつている。 〔応答性の回復〕 応答性の回復は水洗いだけでもよいが、0.01N
のHClにさらした後水洗することにより回復は著
しく速められる。この実施例で単繊維光フアイバ
を束ねた送光及び受光用光フアイバを使用した
が、PH感応物質によつては液のPH値によつて可逆
性がない場合があるので、実用上は単繊維の光フ
アイバを使い小型化すると共に使い捨て式とした
方が実用的である。 〔発明の効果〕 本発明によれば次のような効果が得られる。 (1) 気中及び液中で使用できる光学的アンモニア
検出素子が得られる。 (2) 反復使用できる。 (3) 安価に提供できる。 (4) 安価に提供できるので、使い捨て式の光学的
アンモニア検出素子を提供できる。(実用上は
使い捨て式の方が便利である) (5) 半透過性物質としてシリコンゴムを使用した
場合、耐薬品性、耐熱性に富むものを提供でき
る。 (6) 従来の電気化学センサに比し、温度の影響を
殆んど受けないものを提供できる。 (7) 小型化できる。 (8) 電気化学式アンモニアセンサのように参照電
極に相当するものがないので安定した特性が得
られる。
FIG. 1 shows a schematic configuration of an example of an ammonia detection device using an ammonia detection element according to the present invention, and 1 is composed of a 250W xenon lamp 2, lenses 3 and 5, and a monochromator (or interference filter) 4. A light source section, 6 is an ammonia detection element according to the present invention, 7 is a mirror 8, lenses 9, 1
0, 11, a photodiode 12, and a comparison photodetector 13. The ammonia detection element 6 has the configuration shown in FIG. 2, using acridine orange as the PH-sensitive substance 61 and silicone rubber as the semi-transparent substance, and optical fibers 63 and 64 for light transmission and light reception, respectively.
70 optical fibers are bundled and the outer diameter of the end is 6 mm.
It is 1.5m long. Now, place the end of the ammonia detection element 6 in an ammonia gas atmosphere or an ammonia-containing solution,
When the light source 1 is turned on, the excitation light A is irradiated onto the PH sensitive material 61 through the light transmission optical fiber 63, and the PH sensitive material 61 emits fluorescent light B depending on the PH of ammonia gas or ammonium ions. The fluorescence intensity with respect to the ammonia concentration changes as shown in FIG. 3, and the ammonia concentration is measured by the detection section 7. [Responsiveness] Responsiveness is affected by various parameters. The first is the size of the water droplets of the PH sensitive substance 61.
As the water droplet gets larger, the response becomes slower. Typical response time is 2-5 minutes. A second factor that affects response time is the thickness of the semi-permeable material 62 surrounding the PH sensitive material 61. Response time is 50μm when coating thickness is 100μm
This is about three times as large as in the case of . Furthermore, when the concentration of the PH sensitive substance 61 is increased, the response time becomes shorter. [Recovery of responsiveness] Responsiveness can be restored by simply washing with water, but 0.01N
Exposure to HCl followed by rinsing with water significantly speeds up recovery. In this example, optical fibers for transmitting and receiving light made by bundling single optical fibers were used, but some PH-sensitive substances may not be reversible depending on the PH value of the liquid, so in practice it is not easy to use. It is more practical to miniaturize the device by using optical fiber and make it disposable. [Effects of the Invention] According to the present invention, the following effects can be obtained. (1) An optical ammonia detection element that can be used in air and liquid can be obtained. (2) Can be used repeatedly. (3) Can be provided at low cost. (4) Since it can be provided at low cost, a disposable optical ammonia detection element can be provided. (Practically speaking, a disposable type is more convenient.) (5) When silicone rubber is used as a semi-permeable material, it can provide a product with excellent chemical resistance and heat resistance. (6) Compared to conventional electrochemical sensors, it is possible to provide a sensor that is almost unaffected by temperature. (7) Can be made smaller. (8) Unlike electrochemical ammonia sensors, there is no reference electrode, so stable characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概略構成を示す図、
第2図は検出部の拡大断面図、第3図はアンモニ
ア濃度対螢光強度特性図である。 1……光源部、2……キセノンランプ、3,5
……レンズ、4……モノクロメータ、6……アン
モニア検出素子、7……検出部、8……ミラー、
9,10,11……レンズ、12……フオトダイ
オード、13……比較用フオトデイテクタ、61
……PH感応物質、62……半透過性物質、63…
…送光用光フアイバ、64……受光用光フアイ
バ。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention,
FIG. 2 is an enlarged sectional view of the detection section, and FIG. 3 is a graph showing ammonia concentration versus fluorescence intensity characteristics. 1...Light source part, 2...Xenon lamp, 3, 5
... Lens, 4 ... Monochromator, 6 ... Ammonia detection element, 7 ... Detection section, 8 ... Mirror,
9, 10, 11...Lens, 12...Photodiode, 13...Photodetector for comparison, 61
...PH-sensitive substance, 62...Semi-permeable substance, 63...
... Optical fiber for light transmission, 64 ... Optical fiber for light reception.

Claims (1)

【特許請求の範囲】[Claims] 1 励起光の照射によつて生じる螢光の強度がア
ンモニアガス又はアンモニウムイオンのPH値に応
じて変化する特性をもつ螢光物質の液滴を分散配
合したシリコンゴム等の半透過性物質に、送光用
の光フアイバと受光用の光フアイバの端部を突入
又は対向して設けたことを特徴とする光学的アン
モニア検出素子。
1. A semi-transparent material such as silicone rubber containing dispersed droplets of a fluorescent material that has the characteristic that the intensity of fluorescent light generated by excitation light irradiation changes depending on the pH value of ammonia gas or ammonium ions, An optical ammonia detection element characterized in that the ends of a light transmitting optical fiber and a light receiving optical fiber are provided so as to protrude or face each other.
JP61162025A 1986-07-11 1986-07-11 Optical ammonia detection element Granted JPS6318251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162025A JPS6318251A (en) 1986-07-11 1986-07-11 Optical ammonia detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162025A JPS6318251A (en) 1986-07-11 1986-07-11 Optical ammonia detection element

Publications (2)

Publication Number Publication Date
JPS6318251A JPS6318251A (en) 1988-01-26
JPH0449906B2 true JPH0449906B2 (en) 1992-08-12

Family

ID=15746639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162025A Granted JPS6318251A (en) 1986-07-11 1986-07-11 Optical ammonia detection element

Country Status (1)

Country Link
JP (1) JPS6318251A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529701B2 (en) * 2010-09-28 2014-06-25 三菱重工業株式会社 Gas analyzer, mercury removal system, and mercury removal method
CN110455767A (en) * 2019-09-06 2019-11-15 四川轻化工大学 Portable visual rapid fluorescence detection device for blood ammonia and preparation and use methods thereof

Also Published As

Publication number Publication date
JPS6318251A (en) 1988-01-26

Similar Documents

Publication Publication Date Title
US5672515A (en) Simultaneous dual excitation/single emission fluorescent sensing method for PH and pCO2
US5640470A (en) Fiber-optic detectors with terpolymeric analyte-permeable matrix coating
US5853669A (en) Sensor membrane for indicating the PH of a sample, the fabrication and use thereof
Weigl et al. New hydrophobic materials for optical carbon dioxide sensors based on ion pairing
Çaglar et al. Ammonia-sensitive fibre optic probe utilising an immobilised spectrophotometric indicator
WO1991003730A1 (en) Flow optrode
Dybko et al. Fiber optic probe for monitoring of drinking water
AU738290B2 (en) Method and apparatus for determining characteristics of a sample in the presence of ambient light
Grant et al. Development of sol–gel-based fiber optic nitrogen dioxide gas sensors
Smardzewski Multi-element optical waveguide sensor: General concept and design
JPH0135294B2 (en)
Petrea et al. Fiber-optic time-resolved fluorimetry for immunoassays
JPH0449906B2 (en)
JPH06511083A (en) Sensor membrane for displaying the pH of a sample, its production and its use
US7239766B2 (en) Optical sensing elements for nitrogen dioxide (NO2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements
JPH01263537A (en) Fiber-shaped sensor and evaluating device thereof
Baldini Critical review of pH sensing with optical fibers
JPH10281979A (en) Light measuring device and method of preventing its contamination
Goswami et al. Fiber optic chemical sensors (FOCS): An answer to the need for small, specific monitors
Goswami et al. A fiber optic chemical sensor for carbon dioxide dissolved in sea water
Hao et al. A pH sensor constructed with two types of optical fibers: the configuration and the initial results
US5583051A (en) Use of a fiber optic probe for organic species determination
EP0731916A1 (en) Ultrasensitive competitive immunoassays using optical waveguides
JP2560222Y2 (en) Concentration measurement module
Sloan et al. A fibre‐optic calcium ion sensor using a calcein derivative