JPH0449573B2 - - Google Patents
Info
- Publication number
- JPH0449573B2 JPH0449573B2 JP57178563A JP17856382A JPH0449573B2 JP H0449573 B2 JPH0449573 B2 JP H0449573B2 JP 57178563 A JP57178563 A JP 57178563A JP 17856382 A JP17856382 A JP 17856382A JP H0449573 B2 JPH0449573 B2 JP H0449573B2
- Authority
- JP
- Japan
- Prior art keywords
- gel fraction
- polyolefin resin
- crosslinked polyolefin
- particles
- crosslinking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Molding Of Porous Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は、架橋ポリオレフイン系樹脂型内発泡
成形体の製造法に関するものである。
ポリオレフイン系樹脂の型内発泡成形体を製造
する場合、ポリオレフイン系樹脂をそのまま発泡
させて成形することは少なく、粒状の原料樹脂を
まず架橋処理して発泡し易い状態にしてから予備
発泡させ、得られた予備発泡粒子を次いで成形用
型内に充填して加熱成形するのが普通である。し
かしながら、架橋ポリオレフイン系樹脂の型内発
泡成形体の製造は、他の樹脂たとえばポリスチレ
ンの型内発泡成形体の製造ほど容易ではない。ま
ずポリオレフイン系樹脂粒子を架橋させる場合、
所望の架橋度と原料樹脂の特性に応じて、架橋
剤、架橋温度、架橋時間等の架橋条件を厳密に制
御しなければならない。架橋工程の工程管理が不
十分で架橋度が不均一になると、次の予備発泡工
程において種々の不都合を生じる(例えば、発泡
倍率が予備発泡粒子間で大きく相違したり、独立
気泡率が低下したり、更には予備発泡粒子の形状
が不均一になつたりする。)。ところが一方では、
架橋度が均一な架橋ポリオレフイン系樹脂の予備
発泡粒子は型内成形する際の好適温度範囲が非常
に狭いため、成形条件に注意しても成形品の品質
にばらつきを生じ易く、成形工程の歩留りが悪く
なりがちである。
本発明は、予備発泡粒子を経由して架橋ポリオ
レフイン系樹脂の発泡成形体を製造する際の上述
のような相反する課題を克服し、高品質の架橋ポ
リオレフイン系樹脂発泡成形体を容易に、且つ歩
留り良く製造する方法を提供することを目的とす
るものである。
上記目的を達成することに成功した本発明の特
徴とするところは、ポリオレフイン系樹脂を架橋
させたのち粒子状態で発泡させ、得られた架橋ポ
リオレフイン系樹脂予備発泡粒子を成形用型内に
充填し、加熱して再発泡と発泡粒子間の融着を起
こさせることにより成形して架橋ポリオレフイン
系樹脂型内発泡成形体を製造するに当り、架橋度
が異なる少なくとも2種類の架橋ポリオレフイン
系樹脂粒子を後記要件が充足されるように調製し
てそれらを別個に発泡させ、得られた少なくとも
2種類の架橋ポリオレフイン系樹脂予備発泡粒子
を混合して成形することにある。
本発明の製法によれば、素材樹脂の架橋度が異
なる少なくとも2種類の架橋ポリオレフイン系樹
脂の予備発泡粒子を混合して用いることによつて
成形可能な条件の幅が著しく広くなり、その結
果、成形品の寸法精度や物性が向上し、成形工程
における歩留りも良くなる。したがつて、原料樹
脂の架橋処理の段階では十分に処理条件を厳格に
して均一な架橋度の樹脂を得、これを用いて予備
発泡工程を円滑に行うことができる。
本発明の製造法によつて発泡成形体とすること
ができるポリオレフイン系樹脂の具体例として
は、低密度ポリエチレン、直鎖低密度ポリエチレ
ン、高密度ポリエチレン、ポリプロピレン、エチ
レン−プロピレン共重合体、エチレン−α−オレ
フイン共重合体、プロピレン−α−オレフイン共
重合体、エチレン−ブタジエン共重合体、ポリブ
テン等がある。
ポリオレフイン系樹脂の架橋処理は常法に従つ
て行えばよい。たとえば、粒径0.5〜5mm程度の
粒状のものを、ジクミルパーオキサイド等の架橋
剤の存在下に加熱して、所望の架橋度に架橋させ
る。但し本発明においては原料樹脂粒子を少なく
とも2群に分け、各群を別々に処理してそれぞれ
異なる架橋度まで架橋させる。成形段階で発泡粒
子の形で混合する樹脂全体の平均的な架橋度をど
の程度にするかは発泡成形体に要求される緩衝性
等の物性、および使用する樹脂の種類等によつて
決まり、また最も高い架橋度とする群の架橋度を
どの程度にするかを決めるには原料樹脂の限界ゲ
ル分率Gcを考慮しなければならない。但し限界
ゲル分率Gcとは、架橋が進むにつれて(すなわ
ちゲル分率が大きくなるにつれて)発泡し難くな
る架橋ポリオレフイン系樹脂粒子において、それ
を予備発泡させる際に温度を著しく高くしたり発
泡剤をごく多量に用いたりするなどの特殊な条件
を採用しなくても工業的に発泡させることが可能
なもののうち、最も高い架橋度のもののゲル分率
であつて、代表的なポリオレフイン系樹脂につき
この値を示すと、次のとおりである。樹 脂
限界ゲル分率(%)
低密度ポリエチレン 80
直鎖低密度ポリエチレン 60
高密度ポリエチレン 50
ポリプロピレン 50
エチレン−プロピレンランダム共重合体(エチレ
ン成分3wt%) 50
架橋度と相関関係のあるゲル分率によつて架橋
度を表示した場合、本発明において必要なのは、
架橋処理を異ならせる樹脂群の分け方および各群
の架橋処理を次のようにすることである(但し上
記限界ゲル分率Gcの1/2をGbとし、またGcの1/1
00をGaとする。)。
すべての群の原料樹脂を、それらのゲル分率
がGaないしGcになるまで架橋させる。
少なくとも1群の原料樹脂をゲル分率がGa
以上Gb未満になるまで、また他の少なくとも
1群の原料樹脂をゲル分率がGbないしGcにな
るまで、それぞれ架橋させる。
ゲル分率がGa以上Gb未満の架橋ポリオレフ
イン系樹脂群の総重量をW1とし、ゲル分率が
GbないしGcの架橋ポリオレフイン系樹脂群の
総重量をW2とするとき、
0.2≦W1/W2≦6
になるようにする。
ゲル分率がGa以上Gb未満の樹脂群の各ゲル
分率の加重平均値をG1とし、ゲル分率がGbな
いしGcの樹脂群の各ゲル分率の加重平均値を
G2とするとき、G2−G1≧10になるようにする。
架橋度の異なる各群の樹脂粒子は、群ごとに
別々に、それらに好適な発泡条件で発泡させる。
発泡方法は任意であるが、一例を示せば、特公昭
56−1344号の発明による方法、すなわち樹脂粒子
に揮発性溶剤型発泡剤を吸収させ、更に分散媒と
共に密閉容器中で加圧下に加熱したのち容器内よ
りも低圧の雰囲気に放出して発泡させる方法があ
る。発泡倍率をどのていどにするかは製造しよう
とする発泡成形体の種類によつて決まることであ
り、特に限定されるわけではないが、ふつう3〜
80倍が適当である、特に好ましいのは、5〜60倍
である。架橋度を異ならせた原料樹脂間で、発泡
倍率はなるべく揃えることが望ましいが、厳格な
同一性が要求されるわけではない。
発泡処理を終つて得られた架橋ポリオレフイン
系樹脂予備発泡粒子は、必要に応じて、次の混合
成形まで、常法に従い窒素、空気等の加圧ガス中
に保存して熟成させる。
予備発泡粒子を金型内で成形する工程は、上述
のような架橋度を異にする2種以上の架橋ポリオ
レフイン系樹脂予備発泡粒子の混合物を用いて行
うほかは、通常の予備発泡粒子の型内成形と全く
同様にして行えばよい。すなわち、金型、加熱媒
体の種類および温度等に特殊なものは必要としな
い。むしろ、さきに述べたように、本発明におい
ては2種以上の架橋ポリオレフイン系樹脂予備発
泡粒子の混合物を用いることに基づき成形可能温
度範囲が広いから、成形工程の管理は従来の架橋
ポリオレフイン系樹脂予備発泡粒子の成形の場合
よりもはるかに容易である。
以上のような本発明は、架橋ポリオレフイン系
樹脂からなる包装材料、緩衝材、断熱材、浮揚
材、食品その他の物品の容器など、あらゆる発泡
成形体の製造を容易にし、製品品質の向上と生産
性の向上をも可能にする実施効果の顕著なもので
ある。
以下、実施例および比較例を示して本発明を説
明する。なおゲル分率その他の特性値の測定法は
次のとおりである。
ゲル分率:ソツクスレー抽出器を用いて試料を熱
キシレンで6時間処理したのち、未溶解分を秤
量し、次式により算出する。
ゲル分率(%)=未溶解分重量×100/試料重量
成形性:次の基準により判定
○ 良品を成形可能な蒸気圧の幅が0.5Kg/cm2
を超える
△ 同上圧力幅が0.2Kg/cm2を超える0.5Kg/cm2
以下
× 同上圧力幅が0.2Kg/cm2以下
外観:次の基準により判定
○ 表面が平滑
△ 凹凸やひずみが認められる。
× 凹凸やひずみが著しい。
寸法精度:次の基準により判定
○ 対金型寸法変化率が3%未満
△ 同上変化率が3%以上5%未満
× 同上変化率が5%以上
融着性(発泡粒子同士の融着性;曲げ強さを支
配):次の基準により判定
○ 90度折り曲げても割れない
△ 90度折り曲げると部分的に割れる
× 90度折り曲げると割れる
実施例1〜6、比較例1〜8
密度0.923g/cm3、メルトインデツクス1.5g/
10分、限界ゲル分率80%の低密度ポリエチレン粒
子をA〜Fの6群に分け、各群樹脂をジクミルパ
ーオキサイド(その使用量は対樹脂0.1〜2.0重量
%の範囲内で群ごとに異ならせた)で処理し、ゲ
ル分率が0.5〜80%の架橋低密度ポリエチレン粒
子とした。次いで架橋樹脂粒子100部(重量部、
以下同じ)、ジクロロジフルオロメタン15〜35部、
微粒子状酸化アルミニウム0.5部、水300部をオー
トクレーブに仕込んで加熱し、100〜140℃でオー
トクレーブ底部の排出口を開放して内容物を大気
中に放出する方法により、各群の架橋ポリエチレ
ンを別々に発泡させて、発泡倍率が約20倍で架橋
度を異にする架橋ポリエチレン予備発泡粒子(表
1)を得た。
表 1記 号
ゲル分率(%)
A 0.6
B 5.6
C 17.0
D 38.5
E 53.0
F 76.7
上記6群の予備発泡粒子を、それぞれ単独で、
または2群ずつ混合して(混合比1:1)、300mm
×300mm×30mmの金型に充填し、0.8〜2Kg/cm2G
の水蒸気で加熱することにより成形した。その結
果を表2に示す。
なお、比較例7および比較例8はゲル分率が
Ga〜Gbの発泡粒子だけの併用例である。
実施例7〜12、比較例9〜13
密度0.935g/cm3、メルトインデツクス4.5g/
10分、限界ゲル分率60%の直鎖状低密度ポリエチ
レン粒子をG〜Kの5群に分け、各群樹脂をジク
ミルパーオキサイド(その使用量は対樹脂0.1〜
2重量%の範囲内で群ごとに異ならせた)で処理
し、ゲル分率が0.5〜50%の架橋直鎖状低密度ポ
リエチレン粒子とした。次いで架橋樹脂粒子100
部、ジクロロジフルオロメタン15〜35部、微粒子
状酸化アルミニウム0.5部、水300部をオートクレ
ーブに仕込んで加熱し、110〜145℃でオートクレ
ーブ底部の排出口を開放して内容物を大気中に放
出する方法により、各群の架橋ポリエチレンを
別々に発泡させて、発泡倍率が約20倍で架橋度を
異にする架橋ポリエチレン予備発泡粒子(表3)
を得た。
The present invention relates to a method for producing a crosslinked polyolefin resin in-mold foam molded article. When producing in-mold foam molded products of polyolefin resin, the polyolefin resin is rarely foamed and molded as is, but the granular raw material resin is first crosslinked to make it easy to foam, and then pre-foamed. The pre-expanded particles are then typically filled into a mold and heated to form them. However, the production of in-mold foam molded products of crosslinked polyolefin resins is not as easy as the production of in-mold foam molded products of other resins, such as polystyrene. First, when crosslinking polyolefin resin particles,
Crosslinking conditions such as crosslinking agent, crosslinking temperature, and crosslinking time must be strictly controlled depending on the desired degree of crosslinking and the characteristics of the raw resin. If the degree of crosslinking becomes uneven due to insufficient process control in the crosslinking process, various problems will occur in the next pre-foaming process (for example, the expansion ratio may vary greatly between pre-foamed particles, or the closed cell ratio may decrease). (or even the shape of the pre-expanded particles may become non-uniform). However, on the other hand,
Pre-expanded particles of cross-linked polyolefin resin with a uniform degree of cross-linking have a very narrow suitable temperature range when molded in a mold, so even if you pay close attention to the molding conditions, the quality of the molded product tends to vary, which reduces the yield of the molding process. tends to get worse. The present invention overcomes the above-mentioned conflicting issues when producing a foam molded article of crosslinked polyolefin resin via pre-expanded particles, and easily produces a high quality crosslinked polyolefin resin foam molded article. The purpose is to provide a manufacturing method with high yield. The present invention, which has succeeded in achieving the above object, is characterized by crosslinking a polyolefin resin, then foaming it in the form of particles, and filling the resulting crosslinked polyolefin resin pre-expanded particles into a mold. When producing a crosslinked polyolefin resin in-mold foam molded article by heating to cause re-foaming and fusion between the expanded particles, at least two types of crosslinked polyolefin resin particles having different degrees of crosslinking are used. The purpose is to prepare the particles so as to satisfy the requirements described below, foam them separately, and then mix and mold the resulting pre-expanded particles of at least two types of crosslinked polyolefin resin. According to the manufacturing method of the present invention, by mixing and using pre-expanded particles of at least two types of crosslinked polyolefin resins with different degrees of crosslinking of the material resins, the range of conditions under which molding can be performed is significantly expanded, and as a result, The dimensional accuracy and physical properties of the molded product are improved, and the yield in the molding process is also improved. Therefore, at the stage of crosslinking the raw material resin, the treatment conditions can be made sufficiently strict to obtain a resin with a uniform degree of crosslinking, and this can be used to smoothly carry out the preliminary foaming process. Specific examples of polyolefin resins that can be made into foam molded products by the production method of the present invention include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene- Examples include α-olefin copolymer, propylene-α-olefin copolymer, ethylene-butadiene copolymer, polybutene, and the like. The crosslinking treatment of the polyolefin resin may be carried out according to a conventional method. For example, particles having a particle size of about 0.5 to 5 mm are heated in the presence of a crosslinking agent such as dicumyl peroxide to achieve a desired degree of crosslinking. However, in the present invention, the raw resin particles are divided into at least two groups, and each group is treated separately to be crosslinked to different degrees of crosslinking. The average degree of crosslinking of the entire resin mixed in the form of foam particles during the molding stage is determined by the physical properties such as cushioning properties required of the foam molded product, and the type of resin used. Furthermore, in order to determine the degree of crosslinking of the group with the highest degree of crosslinking, the critical gel fraction Gc of the raw resin must be considered. However, the critical gel fraction Gc refers to crosslinked polyolefin resin particles that become difficult to foam as crosslinking progresses (that is, as the gel fraction increases), and when pre-foaming the particles, the temperature is raised significantly or a foaming agent is used. Among those that can be industrially foamed without using special conditions such as using a very large amount, this is the gel fraction with the highest degree of crosslinking, and this is the gel fraction for typical polyolefin resins. The values are as follows. Resin limit gel fraction (%) Low density polyethylene 80 Linear low density polyethylene 60 High density polyethylene 50 Polypropylene 50 Ethylene-propylene random copolymer (ethylene component 3wt%) 50 Gel fraction correlated with degree of crosslinking Therefore, when expressing the degree of crosslinking, what is required in the present invention is
The method of dividing resin groups with different crosslinking treatments and the crosslinking treatment of each group is as follows (however, 1/2 of the above limit gel fraction Gc is Gb, and 1/1 of Gc
Let 00 be Ga. ). All groups of raw resins are crosslinked until their gel fractions are Ga or Gc. At least one group of raw material resins has a gel fraction of Ga.
The gel fraction of at least one other group of raw resins is crosslinked until the gel fraction reaches Gb or Gc. The total weight of the crosslinked polyolefin resin group with a gel fraction of Ga or more and less than Gb is W 1 , and the gel fraction is
When the total weight of the Gb to Gc crosslinked polyolefin resin group is W 2 , it is made such that 0.2≦W 1 /W 2 ≦6. Let the weighted average value of each gel fraction of the resin group with a gel fraction of Ga or more and less than Gb be G 1 , and the weighted average value of each gel fraction of the resin group with a gel fraction of Gb or Gc.
When G 2 is set, make sure that G 2 −G 1 ≧10. Each group of resin particles having a different degree of crosslinking is foamed separately for each group under suitable foaming conditions.
The foaming method is arbitrary, but one example is
The method according to the invention of No. 56-1344, that is, the resin particles are made to absorb a volatile solvent-based blowing agent, and then heated together with a dispersion medium under pressure in a closed container, and then released into an atmosphere at a lower pressure than the inside of the container to cause foaming. There is a way. The expansion ratio to be determined depends on the type of foam molded product to be manufactured, and is usually between 3 and 3, although it is not particularly limited.
80 times is suitable, and particularly preferred is 5 to 60 times. Although it is desirable that the foaming ratios be as uniform as possible between raw resins having different degrees of crosslinking, strict consistency is not required. The pre-expanded crosslinked polyolefin resin particles obtained after the foaming treatment are stored and aged in a pressurized gas such as nitrogen or air according to a conventional method until the next mixing molding, if necessary. The step of molding the pre-expanded particles in a mold is carried out using a mixture of two or more types of cross-linked polyolefin resin pre-expanded particles having different degrees of cross-linking as described above. This can be done in exactly the same way as internal molding. That is, no special mold, type of heating medium, temperature, etc. are required. Rather, as mentioned earlier, in the present invention, the moldable temperature range is wide based on the use of a mixture of two or more types of crosslinked polyolefin resin pre-expanded particles. It is much easier than in the case of forming pre-expanded particles. The present invention as described above facilitates the production of all kinds of foam molded products, such as packaging materials, cushioning materials, insulation materials, flotation materials, containers for food and other articles, made of cross-linked polyolefin resin, and improves product quality and production. The implementation effect is remarkable as it also makes it possible to improve performance. The present invention will be described below with reference to Examples and Comparative Examples. The method for measuring the gel fraction and other characteristic values is as follows. Gel fraction: After treating a sample with hot xylene for 6 hours using a Soxhlet extractor, the undissolved content is weighed and calculated using the following formula. Gel fraction (%) = undissolved weight x 100/sample weight Formability: Determined according to the following criteria ○ The range of vapor pressure that can mold a good product is 0.5Kg/cm 2
Exceeds △ Same pressure width exceeds 0.2Kg/cm 2 0.5Kg/cm 2
× Same as above Pressure width is 0.2Kg/cm 2 or less Appearance: Judgment based on the following criteria ○ Surface is smooth △ Unevenness or distortion is observed. × Significant unevenness and distortion. Dimensional accuracy: Judgment based on the following criteria: ○ Dimensional change rate with respect to the mold is less than 3% △ Dimensional change rate as above is 3% or more and less than 5% × Same as above change rate is 5% or more Fusibility (fusion ability between foamed particles; (controlling bending strength): Judgment based on the following criteria: ○ Does not break even when bent 90 degrees △ Partially cracks when bent 90 degrees × Breaks when bent 90 degrees Examples 1 to 6, Comparative Examples 1 to 8 Density 0.923 g/ cm 3 , melt index 1.5g/
After 10 minutes, low-density polyethylene particles with a critical gel fraction of 80% were divided into 6 groups A to F, and each group was treated with dicumyl peroxide (the amount used was within the range of 0.1 to 2.0% by weight based on the resin) for each group. (varying amounts) to obtain crosslinked low-density polyethylene particles with a gel fraction of 0.5 to 80%. Next, 100 parts of crosslinked resin particles (parts by weight,
(same below), 15 to 35 parts of dichlorodifluoromethane,
Each group of cross-linked polyethylene is separately prepared by charging 0.5 parts of finely divided aluminum oxide and 300 parts of water into an autoclave, heating it, and opening the outlet at the bottom of the autoclave at 100 to 140°C to release the contents into the atmosphere. Pre-expanded crosslinked polyethylene particles (Table 1) having an expansion ratio of about 20 times and different degrees of crosslinking were obtained. Table 1 Symbol Gel fraction (%) A 0.6 B 5.6 C 17.0 D 38.5 E 53.0 F 76.7 Each of the above six groups of pre-expanded particles was individually
Or mix 2 groups at a time (mixing ratio 1:1), 300mm
Filled into a ×300mm ×30mm mold, 0.8~2Kg/cm 2 G
It was molded by heating with water vapor. The results are shown in Table 2. In addition, in Comparative Example 7 and Comparative Example 8, the gel fraction was
This is an example of a combination of only Ga to Gb foam particles. Examples 7 to 12, Comparative Examples 9 to 13 Density 0.935 g/cm 3 , Melt index 4.5 g/
After 10 minutes, linear low-density polyethylene particles with a critical gel fraction of 60% were divided into 5 groups G to K, and the resin in each group was treated with dicumyl peroxide (the amount used was 0.1 to 0.1 to the resin).
(varied for each group within the range of 2% by weight) to obtain crosslinked linear low-density polyethylene particles with a gel fraction of 0.5 to 50%. Next, crosslinked resin particles 100
15 to 35 parts of dichlorodifluoromethane, 0.5 parts of finely divided aluminum oxide, and 300 parts of water are charged into an autoclave and heated, and at 110 to 145°C, the outlet at the bottom of the autoclave is opened and the contents are released into the atmosphere. By separately foaming each group of cross-linked polyethylene, pre-expanded cross-linked polyethylene particles with an expansion ratio of about 20 times and different degrees of cross-linking (Table 3)
I got it.
【表】
表 3記 号
ゲル分率(%)
G 0.5
H 6.5
I 18.3
J 32.2
K 50.0
上記5群の予備発泡粒子を、それぞれ単独で、
又は2群ずつ混合して(特に注記したもの以外は
混合比1:1)、300mm×300mm×30mmの金型に充
填し、0.8〜2Kg/cm2Gの水蒸気で加熱すること
により成形した。その結果を表4に示す。[Table] Table 3 Symbol Gel fraction (%) G 0.5 H 6.5 I 18.3 J 32.2 K 50.0 Each of the above five groups of pre-expanded particles was individually
Alternatively, two groups were mixed (mixing ratio 1:1 unless otherwise noted), filled into a 300 mm x 300 mm x 30 mm mold, and molded by heating with steam at 0.8 to 2 Kg/cm 2 G. The results are shown in Table 4.
Claims (1)
状態で発泡させ、得られた架橋ポリオレフイン系
樹脂予備発泡粒子を成形用型内に充填し、加熱し
て再発泡と発泡粒子間の融着を起こさせることに
より成形して架橋ポリオレフイン系樹脂型内発泡
成形体を製造するに当り、下記要件を充足する少
なくとも2種類の架橋ポリオレフイン系樹脂粒子
を調製してそれらを別個に発泡させ、得られた少
なくとも2種類の架橋ポリオレフイン系樹脂予備
発泡粒子を混合して成形することを特徴とする発
泡成形体の製造法: 原料樹脂の限界ゲル分率をGcとし、Gcの1/2
をGbとし、且つGcの1/100をGaとするとき、す
べての架橋ポリオレフイン系樹脂のゲル分率は
GaないしGcの範囲内にあり、少なくとも1種類
の架橋ポリオレフイン系樹脂のゲル分率はGa以
上Gb未満であり、他の少なくとも1種類の架橋
ポリオレフイン系樹脂のゲル分率はGbないしGc
であり、ゲル分率がGa以上Gb未満の架橋ポリオ
レフイン系樹脂群の総重量をW1としゲル分率が
GbないしGcの架橋ポリオレフイン系樹脂群の総
重量をW2とするとき0.2≦W1/W2≦6であり、
且つゲル分率がGa以上Gb未満の架橋ポリオレフ
イン系樹脂群の各ゲル分率の加重平均値をG1と
しゲル分率がGbないしGcの架橋ポリオレフイン
系樹脂群の各ゲル分率の加重平均値をG2とする
ときG2−G1≧10であること。[Claims] 1. After crosslinking the polyolefin resin, it is foamed in the form of particles, and the obtained crosslinked polyolefin resin pre-expanded particles are filled into a mold and heated to cause re-foaming and the gap between the expanded particles. In producing a crosslinked polyolefin resin in-mold foam molded article by molding by causing fusion, prepare at least two types of crosslinked polyolefin resin particles that satisfy the following requirements and foam them separately, A method for producing a foamed molded product characterized by mixing and molding the obtained pre-expanded particles of at least two types of crosslinked polyolefin resin: where the critical gel fraction of the raw material resin is Gc, and 1/2 of Gc
When Gb is Gb and Ga is 1/100 of Gc, the gel fraction of all crosslinked polyolefin resins is
The gel fraction of at least one crosslinked polyolefin resin is in the range of Ga to Gc, and the gel fraction of at least one other crosslinked polyolefin resin is between Gb and Gc.
The total weight of the crosslinked polyolefin resin group with a gel fraction of Ga or more and less than Gb is W 1 , and the gel fraction is
When the total weight of the Gb to Gc crosslinked polyolefin resin group is W 2 , 0.2≦W 1 /W 2 ≦6,
In addition, the weighted average value of each gel fraction of the crosslinked polyolefin resin group with a gel fraction of Ga or more and less than Gb is G1 , and the weighted average value of each gel fraction of the crosslinked polyolefin resin group with a gel fraction of Gb or Gc. When G 2 is G 2 , G 2 −G 1 ≧10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57178563A JPS5968341A (en) | 1982-10-13 | 1982-10-13 | Production of expanded molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57178563A JPS5968341A (en) | 1982-10-13 | 1982-10-13 | Production of expanded molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5968341A JPS5968341A (en) | 1984-04-18 |
JPH0449573B2 true JPH0449573B2 (en) | 1992-08-11 |
Family
ID=16050666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57178563A Granted JPS5968341A (en) | 1982-10-13 | 1982-10-13 | Production of expanded molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5968341A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2892210B2 (en) * | 1992-04-09 | 1999-05-17 | 鐘淵化学工業株式会社 | Lightly crosslinked linear low density polyethylene pre-expanded particles and their preparation |
JP2018065972A (en) * | 2016-10-21 | 2018-04-26 | 旭化成株式会社 | Foam and molding prepared therewith |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5022950A (en) * | 1973-07-04 | 1975-03-12 | ||
JPS5083472A (en) * | 1973-11-26 | 1975-07-05 | ||
JPS55127440A (en) * | 1979-02-22 | 1980-10-02 | Dow Chemical Co | Compression strength improved polyethylene blend foam |
JPS5790027A (en) * | 1980-11-22 | 1982-06-04 | Japan Styrene Paper Co Ltd | Prefoamed polypropylene resin particle and its production |
JPS57143337A (en) * | 1981-03-02 | 1982-09-04 | Furukawa Electric Co Ltd:The | Fusible foam of crosslinked polypropylene |
-
1982
- 1982-10-13 JP JP57178563A patent/JPS5968341A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5022950A (en) * | 1973-07-04 | 1975-03-12 | ||
JPS5083472A (en) * | 1973-11-26 | 1975-07-05 | ||
JPS55127440A (en) * | 1979-02-22 | 1980-10-02 | Dow Chemical Co | Compression strength improved polyethylene blend foam |
JPS5790027A (en) * | 1980-11-22 | 1982-06-04 | Japan Styrene Paper Co Ltd | Prefoamed polypropylene resin particle and its production |
JPS57143337A (en) * | 1981-03-02 | 1982-09-04 | Furukawa Electric Co Ltd:The | Fusible foam of crosslinked polypropylene |
Also Published As
Publication number | Publication date |
---|---|
JPS5968341A (en) | 1984-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0072499B1 (en) | Process for producing foamed and molded article of polypropylene resin | |
US4830798A (en) | Process for production of foamed articles in mold of polypropylene resins | |
EP0415744B1 (en) | Process for the production of expanded particles of a polyolefin resin | |
JPH0739501B2 (en) | Non-crosslinked linear low density polyethylene pre-expanded particles | |
US4698191A (en) | Methods of producing molded products from foamed polypropylene particles | |
JPH0419258B2 (en) | ||
US3963816A (en) | Process for molding expandable thermoplastic material | |
EP0068467A1 (en) | Polypropylene foamed molded articles and process for production thereof | |
JPH0559139B2 (en) | ||
EP0928806B1 (en) | Expanded resin beads | |
JPS6010047B2 (en) | Non-crosslinked linear low density polyethylene pre-expanded particles and method for producing the same | |
JPS6042432A (en) | foam particles | |
JPH0449573B2 (en) | ||
JP3582335B2 (en) | Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same | |
JPS6215238A (en) | Production of styrene-modified expandable olefinic resin particle containing carbon | |
JP2000044717A (en) | Pre-expanded polypropylene resin particle, and production of in-mold foamed molding therefrom | |
JPS60221440A (en) | Production of foamed particles of propylene resin | |
JP2637504B2 (en) | Polypropylene-based resin pre-expanded particles and method for producing the same | |
EP1055700A1 (en) | Expansion-molded product of electrically conductive polypropylene-based resin | |
JPS58215326A (en) | Method for manufacturing polyolefin resin in-mold foam moldings | |
JPS63125538A (en) | Modified expanded high-density polyethylene resin particle | |
JP2892210B2 (en) | Lightly crosslinked linear low density polyethylene pre-expanded particles and their preparation | |
JPS6153338A (en) | Foam-molded article having composite structure and its production | |
JP3504042B2 (en) | Method for producing expanded polypropylene resin particles, and method for molding in a mold using the same | |
EP0337584B1 (en) | Process for the production of expanded particles of a polypropylene resin |