JPH0448851B2 - - Google Patents
Info
- Publication number
- JPH0448851B2 JPH0448851B2 JP15989183A JP15989183A JPH0448851B2 JP H0448851 B2 JPH0448851 B2 JP H0448851B2 JP 15989183 A JP15989183 A JP 15989183A JP 15989183 A JP15989183 A JP 15989183A JP H0448851 B2 JPH0448851 B2 JP H0448851B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- temperature
- steel plate
- water
- width direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
本発明は、熱間圧延された高温鋼板をその上下
面から水冷却する方法の改良に関する。
この種の冷却方法は、技術的に難易度が高く、
解決すべきテーマが多く、当業界において各方面
から種々の研究、開発がなされ、又、実用に供さ
れているものもある。
即ち、板厚方向、表面〜中心〜裏面で、冷速が
一様ではないため、座屈波、反り等の変形が起り
やすいこと。
板幅が広いため、上面に大量の板上水が溜り、
流出するため、上下面及び幅方向の冷却均一性が
くずれやすく、座屈波、反り等の変形が生じやす
いこと。
圧延鋼板は、温度、サイズ、形状(プレートク
ラウン等)、表面性状が均一でなく、冷却のバラ
ツキが生じやすいこと。
等々の解決すべきテーマが多いものである。
ところで、高温鋼板のオンライン制御冷却にお
いて、従来技術の現状を第1図a,bを参照して
説明すると、第1図aは、板幅方向の冷却水分布
をつけずに、冷却した場合を示しており、これで
は室温時の鋼板形状は図示の通り、耳部が変形す
るのである。
この冷却歪防止対策として、第1図bで示す如
く、板幅方向の冷却水分布を、板端側の方が少な
い分布をつけることによつて、冷却開始温度、即
ち、冷却前の鋼板幅方向温度分布が約800℃から、
冷却停止温度、即ち、冷却後の鋼板幅方向温度分
布、約550℃までの冷却では大きな冷却歪が発生
しないものとなる。
ところで、冷却停止温度をより低くすると、第
2図に示す如く冷却歪が大きくなり、製品として
不良となるばかりでなく、ホツトレベラにかける
ことができないというような操業トラブルとなる
のである。
一方、材質側から見ると、第3図で示す如く、
機械的性質と冷却停止温度の関係がある。
即ち、冷却停止温度を下げると、降伏応力
(YS)、引張応力(TS)の向上となるのであり、
また、従来と同一強度レベルの鋼板に対しては
Ceqの低下が可能であり、添加成分の減少につな
がり、溶接性向上となる等メリツトが大きいこと
になる。
即ち、Ceqを低下させ、かつ、冷却停止温度を
低くすることで、機械的性質を満足する材料が製
造できることになる。
なお、第3図の成分表は次の通りである。
The present invention relates to an improvement in a method for water cooling a hot rolled high temperature steel plate from its upper and lower surfaces. This type of cooling method is technically difficult;
There are many themes to be solved, and various research and developments have been carried out from various fields in this industry, and some have been put into practical use. That is, since the cooling rate is not uniform in the thickness direction from the front surface to the center to the back surface, deformations such as buckling waves and warping are likely to occur. Because the board is wide, a large amount of water collects on the top surface,
Because of the outflow, the cooling uniformity in the upper and lower surfaces and in the width direction is likely to be disrupted, and deformations such as buckling waves and warping are likely to occur. Rolled steel plates are not uniform in temperature, size, shape (plate crown, etc.), and surface texture, and are prone to variations in cooling. There are many topics that need to be resolved. By the way, in online controlled cooling of high-temperature steel plates, the current state of the prior art will be explained with reference to Figures 1a and 1b. Figure 1a shows the case where cooling is performed without providing cooling water distribution in the width direction of the plate. As shown in the figure, the shape of the steel plate at room temperature is deformed at the edges. As a measure to prevent this cooling distortion, as shown in Fig. 1b, the cooling water distribution in the sheet width direction is made so that the distribution is smaller on the sheet edge side. Directional temperature distribution from about 800℃,
When cooling to the cooling stop temperature, that is, the temperature distribution in the width direction of the steel sheet after cooling, of approximately 550°C, no large cooling strain occurs. By the way, if the cooling stop temperature is lowered, cooling distortion becomes large as shown in FIG. 2, which not only results in a defective product but also causes operational troubles such as the inability to apply a hot leveler. On the other hand, from the material side, as shown in Figure 3,
There is a relationship between mechanical properties and cooling stop temperature. In other words, lowering the cooling stop temperature improves yield stress (YS) and tensile stress (TS).
In addition, for steel plates with the same strength level as conventional ones,
It is possible to lower Ceq, which leads to a reduction in additive components, which has great benefits such as improved weldability. That is, by lowering Ceq and lowering the cooling stop temperature, a material that satisfies mechanical properties can be manufactured. The ingredient list in FIG. 3 is as follows.
【表】
斯様に、Ceqを低下させ、かつ、冷却停止温度
を低くすることは有効ではあるけれども、前述の
如く冷却歪発生という問題があり、冷却停止温度
を550℃以下に低下するには限界がある。
即ち、厚板工場を考えた場合、約500℃で冷却
を停止し、ホツトレベラで矯正すれば、平坦度良
好な鋼板が製造できるが、それ以下の停止温度に
て冷却を停止した場合、従来技術にあつては以下
の理由で製造が不可能である。
たとえば、300℃のときには、ホツトレベラ
前で鋼板は変形しており、強力な矯正が必要で
あるとともに、たとえ、平坦に矯正が可能であ
つても、鋼板に大きな不均一温度分布が生じて
いるため、鋼板を室温まで冷却したとき、形状
不良となる。
室温近くまで冷却した場合、鋼板温度分布は
均一に近いが、冷却過程に生じた変形は大き
く、かつ、鋼板強度が高くなるため矯正が十分
できず形状不良となる。
第4図、第5図を参照して従来例を今一度説明
すると、第4図において、Aは幅方向水量分布で
あり、注水分布はエツジ側の方が水量が少ない分
布とされている。Bは幅方向温度分布であり、約
800℃→約550℃→約300℃→100℃→室温で示され
ており、Cは鋼板形状を示し、Dはホツトレベラ
である。
即ち、第4図において、幅方向水量分布Aで、
冷却開始温度約800℃から約550℃にて冷却停止温
度とすることにより、第4図にて示す如くホツト
レベラDにかけ、空冷すれば室温における鋼板形
状は正常となるが、これでは、冷却停止温度が差
程低いものでないため、機械的性質、Cenの点で
十分満足するものとはいえない。
而して、幅方向水量分布Aのままで約800℃の
冷却開始温度、約550℃での冷却停止温度、約300
℃での冷却停止温度にすれば、ホツトレベラにか
ける前で変形が生じこれを矯正できたとしても空
冷すると変形するのであり、又、ホツトレベルで
は矯正できないものとなるのである。
この原因は、鋼板に注水した冷却水の冷却と、
冷却後の水が鋼板上を流れていくときの冷却を求
めてみると、第5図の関係が明らかとなり、又、
この結果は、第4図にて示す如く約500℃以下の
冷却では、幅方向の注水分布をつけていることが
逆に幅方向温度分布の不均一を招くことになるか
らである。
ところで、鋼板幅方向の温度分布許容値につい
て第14図を参照して考察すると、横軸は鋼板幅
であり、縦軸は幅方向温度差(鋼板巾中心と鋼板
両端との温度差)との関係が示されてなり、板幅
が小さければ幅方向温度差が大であつても鋼板の
平坦度は良好であるけれども、板幅が大きければ
幅方向温度差が小さくても座屈変形が発生するこ
とがわかる。
本発明は上記のような現象、知見に鑑み、Ceq
を低下し、かつ、冷却停止温度を低くしても冷却
歪の発生が少ない高温鋼板の冷却方法を提供しよ
うとするものである。
即ち、本発明にあつては、熱間圧延された高温
鋼板をその上下面から水冷却する方法において、
高温鋼板を水冷却する過程で、冷却開始温度と
冷却停止温度との範囲を複数の温度域に区分し、
各区分の温度域に対応して鋼板幅方向の冷却水注
水パターンを変更しつつ冷却することを特徴とす
るのである。
以下、本発明に係る高温鋼板の冷却方法につき
図面を参照して詳述する。
第6図は本発明実施例の模式図を示しており、
該第6図で明らかな如く、幅方向水量分布Aにお
ける注水パターンを、本例ではパターン、パタ
ーン、パターンに変更しつつ冷却するものが
例示されている。
即ち、パターンは第4図で示した従来例と同
様であるが、幅方向温度分布が約550℃の冷却開
始温度から約300℃の冷却停止温度にあつては、
パターンと異なりパターンの如くエツジの水
量分布をやゝ高くしたのであり、又、パターン
ではほとんど幅方向水量分布を同一にしたもので
ある。
本発明の冷却方法の概要は前述の通りであり、
その制御方式は後述するが、本発明に使用する装
置に関して第7図から第10図を参照して説明す
る。
第7図において、1は被冷却鋼板であり、矢示
方向に通板される過程において、一斉注水により
冷却される。
2はテーブルローラであり、通板方向所定間隔
ごとに列設されており、該ローラ2間には下部ス
プレーノズル7を有する下部冷却用ヘツダ4が設
けられている。
3は上部冷却用ヘツダであり、上部ヘアピンノ
ズル6を有し、被冷却鋼板1の上面に冷却水を注
入するものであり、鋼板1の幅方向に並設されて
いる。5は上部冷却用補助ヘツダであり、ヘアピ
ンノズル8を有する。
即ち、本発明にあつては、鋼板上面から注水す
る場合が影響力が大きく重要であることから、下
部冷却装置は従来例と同じ構成であるも、上部冷
却装置は第8図の如く構成されている。
即ち、第8図において、通板方向に沿つて設け
られた左右一対の上部ヘツダ固定台9に通板方向
に直交して上部冷却用ヘツダ3をUボルト等の締
結具10により固定架設するとともに、上部冷却
用ヘツダ3間に上部補助ヘツダ固定台11にUボ
ルト等の締結具12により補助ヘツダ5を固定架
設している。
即ち、フレキシブル配管13を介して第10図
で示す上部供給水配管14に連通された上部冷却
用ヘツダ3と上部冷却用補助ヘツダ5を通板方向
交互をなして架設しているのであり、第10図示
す給水系統図で明らかな如く、三方切換弁15,
16,17によつて、特に、三方切換弁15,1
6によつて、第9図で示す如く注水パターンを本
例ではパターン、パターンに変更可能として
いるのである。
なお、第9図において、aは上部ヘツダセン
タ、bは上部補助ヘツダセンタを示し、〇印は上
部ヘアピンノズル位置、△印は上部補助ヘアピン
ノズル位置、黒塗り〇印は上部ヘアピンノズル不
使用を示している。
即ち、第11図で示す如く、被冷却鋼板1をそ
の上下面から一斉に注水する冷却装置17に通板
させて冷却するに、冷却開始温度と冷却停止温度
との範囲を複数の温度域に区分し、各区分の温度
域に対応して鋼板幅方向の冷却水注入パターンを
変更しつつ冷却するに、第11図で示す機能概要
図と第12図のフローチヤートを基に説明する。
冷却装置17の入側と出側にはそれぞれ温度計
18,19が設けられ、入側には鋼板トラツキン
グセンサ20が設けられ、鋼板トラツキング機能
21、注水水量計算、冷却時間計算機能22によ
り、注水指令、注水ストツプ指令23を冷却装置
17に与えるようにされており、更に、注水水量
分布変更機能24、温度実績値の見込み25等が
可能とされている。
而して、第12図を参照して冷却開始と冷却終
了までのフローチヤートを説明する。
第12図においてAブロツクは実績の冷却開始
温度TscT、目標冷却停止温度TFcTo、板厚t、
板幅、板長さ等のデータの見込みのブロツクであ
る。
Bは目標冷却速度CRTを計算するブロツクであ
り、これは実験、経験的に鋼種、板厚等に応じて
設定される。
Cは冷却時間τtの計算ブロツクであり、これ
は、次の計算で求められる。
τt=TscT−TFcTo/CRT
Dは必要水量密度wの計算ブロツクであり、該
wは次式で計算される。
w=〔CRT/A・f(T)〕1/n
ここで、CRT〔℃/s〕、w〔m3/min.m2〕であ
り、A・nはそれぞれ係数である。
Eは必要総水量wTの計算、通板速度Vの計算
ブロツクであり、wTは次式で計算される。
wT=w×lw×ll×η
lw;冷却ゾーン幅、ll;冷却ゾーン長さ、η;
上部等の注水分布を考慮した補正値。
又、Vは次式で計算される。
V=ll+lcT+lcB−l/τt
lcT;鋼板トツプ(先端)はみ出し量、
lcB;鋼板ボトム(後端)はみ出し量
l;鋼板長さ
以上により符号Fの注水タイミングブロツクに
指令を出し、注水タイミングがYEsのときは、第
10図に示した上部、下部のメインヘツダの三方
切換弁15,17に開の指令をブロツクGに出
し、NoのときはDelay(遅らす)のである。
そして、以上により注水パターンがなされる
のであるが、符号Hの如く注水パターン変更指令
有のときは、Iの注水パターン変更までの時間
T1を計算するブロツク、Jの注水時間の積算の
ブロツク、Kの注水パターンの変更時間の有無判
断ブロツク、Lの上部補助ヘツダ三方弁開指令の
ブロツク、Mは冷却終了有無の判断、Nは上下部
メインヘツダおよび上部補助ヘツダ三方弁の閉指
令ブロツク、Oの鋼板を冷却装置外への搬送指令
ブロツク、Pは冷却後の鋼板温度実績値取込みブ
ロツクを経て、終了になるのである。
而して、τ1の計算は次式でなされる。
τ1=TscT−Tchi/CRTchi
なお、注水パターン変更時の鋼板温度をTchi
とし、これまでの平均冷却速度をCRTchiとすれ
ば
CRTchi=CRTo.f(Tchi)
となる。
但し、前記IはEの後で実施してもよい。
また、Lにおいて、本例では三方弁を使用して
いるが、補助ヘツダからの注水は僅かであること
からON−OFF形のバタ弁等であつてもよい。
第7図から第11図は上部冷却装置として補助
ヘツダを付帯させたものを例示したが、第13図
で示す如く上部冷却装置が上下2段構造のヘアピ
ン形ノズルを有し、かつ、上段と下段とで幅方向
の注水パターンを2種類有し、前述したTchiに
より冷却温度範囲を区分し、上段と下段のヘツダ
を使い分けるようにしてもよい。
この場合の制御フローチヤートは第12図にお
けるGが上下部パターンIの三方弁開指令とな
り、同じくLがパターンヘツダ三方弁開指令と
パターンヘツダ三方弁の開指令となり、Nが上
下使用三方弁閉指令となるのであり、その他は第
12図の図示例と同じである。
また、第15図、第16図は鋼板冷却水の注水
パターンの変更例であり、いずれも冷却開始温度
800℃から冷却停止温度300℃を2つの範囲に区分
した例であつて、第15図は板幅中心部の水量密
度を一定とし、板幅両端の水量密度をパターン
、パターンにおいて変化させた場合の3例を
示しており、又、第16図は板幅中心部の水量密
度を変更した場合のパターンとパターンの3
例を示している。なお、図中のパターンでは水
量密度を大きくするような例を示しているが、パ
ターンで小さくしてもよい。
そして、第17図で示す如く冷却開始温度800
℃で冷却停止温度300℃にひとつのパターンで冷
却した従来例にあつては、前述したように、冷却
停止温度が500゜〜550℃付近において、鋼板平均
変形量が顕著に大きくなるのに対し、第15図に
おけるA−1の場合の本発明実施例にあつては冷
却停止温度が200℃以下という低い場合であつて
も、冷却歪発生は著しく少なくなるのであり、こ
のことは、Ceqを低下させ機械的性質を満足した
にも拘らず、冷却歪を防止した高温鋼板の冷却方
法といえるのである。
なお、上述した例の場合は、冷却開始温度が、
800℃附近で、冷却停止温度300℃附近まで2つの
区分にわけた場合として例示したが、冷却開始温
度が800℃附近で冷却停止温度100℃附近までを例
えば3つの区分にわけて、各区分の温度域に対応
して鋼板幅方向の冷却水注水パターンを変更させ
てもよい。また、冷却開始温度は800℃附近とは
限らず、一般的にはAr3変態点近傍以上であれば
よく、また、冷却停止温度も約550℃以下であれ
ばよい。
即ち、前述例にあつては、パターンは従来例
と同じようにしているが、冷却開始温度800℃近
傍から冷却停止温度500℃〜550℃の範囲において
も、複数の温度域に区分し、各区分に対応して鋼
板幅方向の冷却水注水パターンを変更してもよ
く、この場合は特に、50mm以上の厚鋼板のときに
有効である。
次に、本発明の実施例を従来例との対比の上で
説明する。
<従来例>
鋼板サイズ(mm)…11.8×3190×14.800
冷却開始温度(℃)…750
冷却停止温度(℃)…350
冷却水水量(m3/min・m2)…0.26
<本発明の実施例>
鋼板サイズ(mm)…10.3×3210×14.800
冷却開始温度(℃)…770
パターン変更温度(℃)…520
冷却停止温度(℃)…330
冷却水水量…0.26m3/min・m2
前述の従来例と本発明実施例との冷却停止温度
分布は第18図a,bで示す通りであり、従来例
では第18図aで示す分布で板幅方向に温度分布
が不均等であるのに対し、本発明の実施例にあつ
ては、第18図bで示す如く板幅方向の温度分布
は均等になるのである。
従つて、参考写真1で示す如く従来例であつて
は実操業において、鋼板は耳部が波板形状に変形
しているのに対し、本発明の実施例にあつては実
操業において鋼板は良好な平坦度を示す冷却が施
されていることが理解できる。
以上、要するに本発明にあつては、高温鋼板の
冷却にあたつて、高温鋼板を水冷却する過程で、
冷却開始温度と冷却停止温度との範囲を複数の温
度域に区分し、各区分の温度域に対応して鋼板幅
方向の冷却水注水パターンを変更しつつ冷却する
ものであるから、冷却停止温度を低くしたとして
も、冷却歪の発生は少なくできるのであり、冷却
停止温度を低くできることはCeqの低下を添加成
分の減少による溶接性の改善という利点を発揮す
るとともに、降伏応力、引張応力等の機械的性質
を顕著に向上することができる。[Table] Although it is effective to lower the Ceq and the cooling stop temperature in this way, there is the problem of cooling distortion as mentioned above, and it is difficult to lower the cooling stop temperature to 550℃ or less. There is a limit. In other words, in a plate factory, if cooling is stopped at about 500°C and straightened with a hot leveler, steel plates with good flatness can be produced, but if cooling is stopped at a lower temperature than that, conventional technology In this case, manufacturing is impossible for the following reasons. For example, at 300℃, the steel plate is deformed in front of the hot leveler, requiring strong straightening, and even if straightening is possible, there is a large uneven temperature distribution in the steel plate. , when the steel plate is cooled to room temperature, it becomes defective in shape. When the steel sheet is cooled to near room temperature, the temperature distribution of the steel sheet is nearly uniform, but the deformation that occurs during the cooling process is large, and the strength of the steel sheet increases, so that it cannot be straightened sufficiently and the shape becomes defective. The conventional example will be explained once again with reference to FIGS. 4 and 5. In FIG. 4, A is the water volume distribution in the width direction, and the water injection distribution is such that the water volume is smaller on the edge side. B is the temperature distribution in the width direction, approximately
800°C → about 550°C → about 300°C → 100°C → room temperature, C indicates the shape of the steel plate, and D indicates the hot leveler. That is, in FIG. 4, in the width direction water amount distribution A,
By setting the cooling stop temperature from the cooling start temperature of about 800°C to about 550°C, the shape of the steel plate at room temperature will be normal if it is applied to the hot leveler D and air cooled as shown in Figure 4, but in this case, the cooling stop temperature is not that low, so it cannot be said that the mechanical properties and Cen are fully satisfied. Therefore, with the water flow distribution A in the width direction, the cooling start temperature is about 800℃, the cooling stop temperature is about 550℃, and the cooling temperature is about 300℃.
If the cooling stop temperature is set at .degree. C., deformation will occur before being applied to the hot leveler, and even if this can be corrected, it will be deformed when air cooled, and it will not be possible to correct it at the hot level. The cause of this is the cooling of the cooling water poured into the steel plate,
When we calculate the cooling effect when water flows over the steel plate after cooling, the relationship shown in Figure 5 becomes clear, and
This result is because, as shown in FIG. 4, when cooling at temperatures below about 500° C., providing water injection distribution in the width direction will conversely lead to non-uniformity in the temperature distribution in the width direction. By the way, when considering the allowable temperature distribution in the width direction of the steel plate with reference to Fig. 14, the horizontal axis is the steel plate width, and the vertical axis is the temperature difference in the width direction (temperature difference between the center of the steel plate width and both ends of the steel plate). The relationship is shown; if the plate width is small, the flatness of the steel plate is good even if the temperature difference in the width direction is large, but if the plate width is large, buckling deformation occurs even if the temperature difference in the width direction is small. I understand that. In view of the above-mentioned phenomena and knowledge, the present invention is based on Ceq
It is an object of the present invention to provide a method for cooling a high-temperature steel sheet, which reduces the cooling strain and generates less cooling strain even when the cooling stop temperature is lowered. That is, in the present invention, in the method of water-cooling a hot-rolled high-temperature steel plate from its upper and lower surfaces, in the process of water-cooling the high-temperature steel plate, the range of the cooling start temperature and the cooling stop temperature is adjusted to a plurality of temperatures. divided into areas,
The feature is that cooling is performed while changing the cooling water injection pattern in the width direction of the steel sheet in accordance with the temperature range of each section. Hereinafter, the method for cooling a high temperature steel plate according to the present invention will be described in detail with reference to the drawings. FIG. 6 shows a schematic diagram of an embodiment of the present invention,
As is clear from FIG. 6, in this example, cooling is performed while changing the water injection pattern in the widthwise water amount distribution A to pattern, pattern, pattern. That is, the pattern is the same as the conventional example shown in FIG. 4, but when the temperature distribution in the width direction is from the cooling start temperature of about 550°C to the cooling stop temperature of about 300°C,
Unlike the pattern, the water amount distribution at the edge is slightly higher than the pattern, and the water amount distribution in the width direction is almost the same in the pattern. The outline of the cooling method of the present invention is as described above,
Although the control method will be described later, the apparatus used in the present invention will be explained with reference to FIGS. 7 to 10. In FIG. 7, reference numeral 1 denotes a steel plate to be cooled, which is cooled by water injection all at once during the process of passing the steel plate in the direction of the arrow. Table rollers 2 are arranged in rows at predetermined intervals in the sheet passing direction, and a lower cooling header 4 having a lower spray nozzle 7 is provided between the rollers 2. Reference numeral 3 denotes an upper cooling header, which has an upper hairpin nozzle 6 and injects cooling water into the upper surface of the steel plate 1 to be cooled, and is arranged in parallel in the width direction of the steel plate 1. 5 is an auxiliary header for upper cooling, and has a hairpin nozzle 8. That is, in the present invention, since the influence is large and important when water is injected from the upper surface of the steel plate, the lower cooling device has the same configuration as the conventional example, but the upper cooling device is configured as shown in Fig. 8. ing. That is, in FIG. 8, the upper cooling header 3 is fixedly installed on a pair of left and right upper header fixing bases 9 provided along the sheet passing direction, perpendicular to the sheet passing direction, using fasteners 10 such as U-bolts. An auxiliary header 5 is fixedly installed on an upper auxiliary header fixing base 11 between the upper cooling headers 3 using fasteners 12 such as U-bolts. That is, the upper cooling header 3 and the upper cooling auxiliary header 5, which are connected to the upper supply water pipe 14 shown in FIG. 10 through the flexible pipe 13, are installed alternately in the plate passing direction. As is clear from the water supply system diagram shown in Figure 10, the three-way switching valve 15,
16, 17, in particular the three-way switching valve 15, 1
6, the water injection pattern can be changed into patterns in this example as shown in FIG. In Fig. 9, a indicates the upper header center, b indicates the upper auxiliary header center, ○ mark indicates the upper hairpin nozzle position, △ mark indicates the upper auxiliary hairpin nozzle position, and black ○ mark indicates that the upper hairpin nozzle is not used. There is. That is, as shown in FIG. 11, when the steel plate 1 to be cooled is cooled by passing it through a cooling device 17 that injects water all at once from the upper and lower surfaces thereof, the range of the cooling start temperature and the cooling stop temperature is set to a plurality of temperature ranges. How to cool the steel sheet by dividing it into sections and changing the cooling water injection pattern in the width direction of the steel sheet according to the temperature range of each section will be explained based on the functional outline diagram shown in FIG. 11 and the flowchart shown in FIG. 12. Thermometers 18 and 19 are provided on the inlet and outlet sides of the cooling device 17, respectively, and a steel plate tracking sensor 20 is provided on the inlet side, and a steel plate tracking function 21, water injection amount calculation, and cooling time calculation function 22, A water injection command and a water injection stop command 23 are given to the cooling device 17, and furthermore, a water injection amount distribution change function 24, a temperature actual value estimation 25, etc. are possible. A flowchart from the start of cooling to the end of cooling will be explained with reference to FIG. In Fig. 12, block A is the actual cooling start temperature TscT , the target cooling stop temperature TFCTO , the plate thickness t,
This is a block of expected data such as board width and board length. B is a block for calculating the target cooling rate CR T , which is set experimentally and empirically according to the steel type, plate thickness, etc. C is a calculation block for the cooling time τt , which is obtained by the following calculation. τ t =Tsc T −T F c T o/CR T D is a calculation block for the required water density w, and this w is calculated by the following formula. w=[CR T /A·f(T)] 1/n where CR T [°C/s], w [m 3 /min.m 2 ], and A·n are coefficients, respectively. E is a calculation block for calculating the required total amount of water w T and the threading speed V, and w T is calculated by the following formula. w T = w×lw×ll×η lw; Cooling zone width, ll; Cooling zone length, η;
Correction value that takes into account water injection distribution in the upper part, etc. Further, V is calculated using the following formula. V=l l +lc T +lc B -l/τ t lc T ; Amount of protrusion of the top of the steel plate (leading edge), lc B ; Amount of protrusion of the bottom (rear end) of the steel plate l; Length of the steel plate From the above, the water injection timing block with code F is commanded. When the water injection timing is YES, a command to open the three-way switching valves 15 and 17 of the upper and lower main headers shown in Fig. 10 is issued to block G, and when the water injection timing is NO, it is delayed. Then, the water injection pattern is created as described above, but when there is a water injection pattern change command as in symbol H, the time until the water injection pattern change in I is given.
A block for calculating T 1 , a block for integrating the water injection time for J, a block for determining whether or not it is time to change the water injection pattern for K, a block for commanding the opening of the upper auxiliary header three-way valve for L, a block for determining whether or not cooling has ended, and N for determining whether or not cooling has ended. The process ends after a command block for closing the three-way valves of the upper and lower main headers and the upper auxiliary header, a command block for transporting the steel plate O to the outside of the cooling device, and a block for capturing the actual temperature value of the steel plate after cooling P. Therefore, τ 1 is calculated using the following formula. τ 1 = Tsc T −Tchi/CR T chi Note that the steel plate temperature when changing the water injection pattern is Tchi
If the average cooling rate so far is CR T chi, then CR T chi = CR T of (Tchi). However, the above I may be performed after E. Further, in this example, a three-way valve is used for L, but since the amount of water injected from the auxiliary header is small, an ON-OFF type butterfly valve or the like may be used. 7 to 11 illustrate an example in which an auxiliary header is attached as an upper cooling device, but as shown in FIG. There may be two types of water injection patterns in the width direction for the lower stage, the cooling temperature range is divided by the above-mentioned Tchi, and the upper and lower headers can be used differently. In the control flowchart in this case, G in Fig. 12 is the three-way valve opening command for the upper and lower pattern I, L is the pattern header three-way valve opening command and pattern header three-way valve opening command, and N is the upper and lower three-way valve closing command. The rest is the same as the example illustrated in FIG. In addition, Fig. 15 and Fig. 16 show examples of changes in the injection pattern of steel plate cooling water, and both show the cooling start temperature.
This is an example of dividing the cooling stop temperature into two ranges from 800°C to 300°C. Figure 15 shows the case where the water density at the center of the board width is constant, and the water density at both ends of the board width is varied between patterns. Figure 16 shows three examples of patterns and patterns when the water density at the center of the board width is changed.
An example is shown. Note that although the pattern in the figure shows an example in which the water volume density is increased, the pattern may also be used to decrease it. Then, as shown in Fig. 17, the cooling start temperature is 800.
In the conventional example in which the steel plate is cooled in one pattern to the cooling stop temperature of 300°C, as mentioned above, the average amount of deformation of the steel plate becomes significantly large when the cooling stop temperature is around 500° to 550°C. , In the case of A-1 in Fig. 15, the occurrence of cooling strain is significantly reduced even when the cooling stop temperature is as low as 200°C or less. This can be said to be a cooling method for high-temperature steel sheets that prevents cooling distortion even though it satisfies the mechanical properties. In addition, in the case of the above example, the cooling start temperature is
The example was given as a case where the cooling start temperature is divided into two categories from around 800℃ to the cooling stop temperature of around 300℃, but if the cooling start temperature is around 800℃ and the cooling stop temperature is around 100℃, for example, it is divided into three categories, and each category is divided into two categories. The cooling water injection pattern in the width direction of the steel plate may be changed depending on the temperature range. Further, the cooling start temperature is not limited to around 800°C, but generally needs to be around the Ar 3 transformation point or higher, and the cooling stop temperature may also be around 550°C or lower. That is, in the above example, the pattern is the same as the conventional example, but even in the range from the cooling start temperature of around 800°C to the cooling stop temperature of 500°C to 550°C, it is divided into multiple temperature ranges, and each The cooling water injection pattern in the width direction of the steel plate may be changed depending on the classification, and this is particularly effective for steel plates with a thickness of 50 mm or more. Next, an embodiment of the present invention will be described in comparison with a conventional example. <Conventional example> Steel plate size (mm)...11.8 x 3190 x 14.800 Cooling start temperature (°C)...750 Cooling stop temperature (°C)...350 Cooling water amount ( m3 /min・m2 )...0.26 <Implementation of the present invention Example> Steel plate size (mm)…10.3×3210×14.800 Cooling start temperature (°C)…770 Pattern change temperature (°C)…520 Cooling stop temperature (°C)…330 Cooling water amount…0.26m 3 /min・m 2As mentioned above The cooling stop temperature distributions of the conventional example and the embodiment of the present invention are as shown in Fig. 18a and b, and in the conventional example, the temperature distribution is uneven in the width direction of the plate as shown in Fig. 18a. On the other hand, in the embodiment of the present invention, the temperature distribution in the width direction of the plate becomes uniform as shown in FIG. 18b. Therefore, as shown in Reference Photo 1, in the conventional example, the edges of the steel plate are deformed into a corrugated plate shape in actual operation, whereas in the embodiment of the present invention, the steel plate is deformed in actual operation. It can be seen that cooling has been performed, indicating good flatness. In summary, in the present invention, in the process of cooling a high-temperature steel plate with water,
The range of cooling start temperature and cooling stop temperature is divided into multiple temperature ranges, and cooling is performed while changing the cooling water injection pattern in the width direction of the steel sheet corresponding to each temperature range. Even if the cooling temperature is lowered, the occurrence of cooling strain can be reduced, and lowering the cooling stop temperature has the advantage of lowering Ceq and improving weldability by reducing additive components, as well as reducing yield stress, tensile stress, etc. Mechanical properties can be significantly improved.
第1図a,bは従来技術の現状を説明する図、
第2図は冷却停止温度と鋼板の冷却歪の関係を示
す図、第3図は冷却停止温度が材質におよぼす影
響を説明するための図、第4図は従来例の模式
図、第5図は鋼板温度と二次冷却/直接冷却を示
す従来例の説明図、第6図は本発明の実施例を示
す模式図、第7図は本発明に使用する冷却装置一
例の側面図、第8図は第7図における上部冷却装
置の平面図、第9図は本発明における上部ヘアピ
ンノズル使用例とパターン変更のための補助ノズ
ル使用例の説明図、第10図は本発明に使用する
冷却装置への給水系統図、第11図は本発明冷却
方法の機能概要図、第12図は本発明実施例のフ
ローチヤート一例の説明図、第13図は本発明の
第2実施例における上部冷却装置の断面図、第1
4図は鋼板幅方向の温度分布許容値の例を示す説
明図、第15図は板幅中心部の水量密度を一定と
した場合の本発明鋼板冷却水の注水パターン3例
を示す説明図、第16図は板幅中心部の水量密度
を変更した場合の本発明鋼板冷却水の注水パター
ン3例を示す説明図、第17図は第15図におけ
るA−1パターンの結果を示すグラフ図、第18
図a,bは従来例と本発明実施例の冷却停止温度
分布を示し、aは従来例、bは本発明実施例であ
る。
1……被冷却鋼板、3……上部冷却用ヘツダ、
4……下部冷却用ヘツダ、5……上部冷却用補助
ヘツダ、6……上部ヘアピンノズル、7……下部
スプレノズル、8……上部補助用ヘアピンノズ
ル。
Figures 1a and 1b are diagrams explaining the current state of the prior art;
Figure 2 is a diagram showing the relationship between cooling stop temperature and cooling strain of a steel plate, Figure 3 is a diagram to explain the effect of cooling stop temperature on material quality, Figure 4 is a schematic diagram of a conventional example, and Figure 5 is an explanatory diagram of a conventional example showing steel plate temperature and secondary cooling/direct cooling, FIG. 6 is a schematic diagram showing an embodiment of the present invention, FIG. 7 is a side view of an example of a cooling device used in the present invention, and FIG. The figure is a plan view of the upper cooling device in FIG. 7, FIG. 9 is an explanatory diagram of an example of using an upper hairpin nozzle in the present invention and an example of using an auxiliary nozzle for pattern change, and FIG. 10 is a cooling device used in the present invention. FIG. 11 is a functional overview diagram of the cooling method of the present invention, FIG. 12 is an explanatory diagram of an example of a flowchart of an embodiment of the present invention, and FIG. 13 is an upper cooling device in a second embodiment of the present invention. cross-sectional view, 1st
Fig. 4 is an explanatory diagram showing an example of the temperature distribution tolerance in the width direction of the steel plate, and Fig. 15 is an explanatory diagram showing three examples of water injection patterns of the steel plate cooling water of the present invention when the water flow density at the center of the plate width is constant. FIG. 16 is an explanatory diagram showing three examples of injection patterns of the steel sheet cooling water of the present invention when the water flow density at the center of the sheet width is changed, and FIG. 17 is a graph diagram showing the results of pattern A-1 in FIG. 15. 18th
Figures a and b show the cooling stop temperature distributions of the conventional example and the embodiment of the present invention, where a is the conventional example and b is the embodiment of the present invention. 1... Steel plate to be cooled, 3... Upper cooling header,
4... Lower cooling header, 5... Upper cooling auxiliary header, 6... Upper hairpin nozzle, 7... Lower spray nozzle, 8... Upper auxiliary hairpin nozzle.
Claims (1)
冷却する方法において、 高温鋼板を水冷却する過程で、冷却開始温度と
冷却停止温度との範囲を複数の温度域に区分し、
各区分の温度域に対応して鋼板幅方向の冷却水注
水パターンを変更しつつ冷却することを特徴とす
る高温鋼板の冷却方法。[Claims] 1. In a method of water-cooling a hot-rolled high-temperature steel plate from its upper and lower surfaces, in the process of water-cooling the high-temperature steel plate, the range of cooling start temperature and cooling stop temperature is divided into multiple temperature ranges. divided,
A method for cooling a high-temperature steel plate, characterized by cooling the steel plate while changing a cooling water injection pattern in the width direction of the steel plate in accordance with the temperature range of each classification.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15989183A JPS6050122A (en) | 1983-08-30 | 1983-08-30 | Cooling method of high temperature steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15989183A JPS6050122A (en) | 1983-08-30 | 1983-08-30 | Cooling method of high temperature steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050122A JPS6050122A (en) | 1985-03-19 |
JPH0448851B2 true JPH0448851B2 (en) | 1992-08-07 |
Family
ID=15703431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15989183A Granted JPS6050122A (en) | 1983-08-30 | 1983-08-30 | Cooling method of high temperature steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050122A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH064978Y2 (en) * | 1988-01-25 | 1994-02-09 | 株式会社神戸製鋼所 | Hot strip cooling system |
JPH09100601A (en) * | 1996-04-19 | 1997-04-15 | Akio Fujiwara | Building hollow member |
-
1983
- 1983-08-30 JP JP15989183A patent/JPS6050122A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6050122A (en) | 1985-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6347775B2 (en) | ||
TWI286089B (en) | Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate | |
JP4604564B2 (en) | Method and apparatus for controlling cooling of thick steel plate | |
EP1428589B1 (en) | Method and device for cooling steel sheet | |
JPS6314052B2 (en) | ||
KR900002504B1 (en) | Method of correcting warping of two-layer clad metal plate | |
JPH0448851B2 (en) | ||
JP3596460B2 (en) | Heat treatment method for thick steel plate and heat treatment equipment | |
JPS6293010A (en) | Production of hot rolled steel plate | |
JP4525037B2 (en) | Roller straightening method for steel sheet | |
JPH0450368B2 (en) | ||
KR100368213B1 (en) | Method for preventing widthwise bending deformation of plate | |
JPS61219412A (en) | Uniform cooling method of hot steel plate and its apparatus | |
KR101050792B1 (en) | Cooling Control Method Using Dynamic Reset | |
JPH0573809B2 (en) | ||
JPS61135423A (en) | Hot straightening device of two layered clad metal plate | |
JPS6317892B2 (en) | ||
JPH06210339A (en) | Cooling device for high temperature steel sheet | |
KR100941848B1 (en) | Rough rolling method to roll the width of steel sheet | |
KR101372634B1 (en) | Method for manufacturing of hot-rolled steel plate with excellent in flatness | |
KR101089330B1 (en) | Strip cooling method and control method in runout table | |
JP2003071513A (en) | Method for cooling hot rolled steel plate | |
JP2001073041A (en) | Method for controlling temperature of steel sheet and temperature controlling device | |
JPH06254616A (en) | Method and apparatus for cooling thick steel plate with excellent shape | |
JP3496531B2 (en) | Manufacturing method of channel steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |