JPH0448198B2 - - Google Patents
Info
- Publication number
- JPH0448198B2 JPH0448198B2 JP59168395A JP16839584A JPH0448198B2 JP H0448198 B2 JPH0448198 B2 JP H0448198B2 JP 59168395 A JP59168395 A JP 59168395A JP 16839584 A JP16839584 A JP 16839584A JP H0448198 B2 JPH0448198 B2 JP H0448198B2
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- ion exchange
- filter
- equipment
- purification equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000746 purification Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 238000005342 ion exchange Methods 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 description 16
- 230000008929 regeneration Effects 0.000 description 14
- 238000011069 regeneration method Methods 0.000 description 14
- 239000002699 waste material Substances 0.000 description 13
- 238000010612 desalination reaction Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000011001 backwashing Methods 0.000 description 6
- 239000003456 ion exchange resin Substances 0.000 description 6
- 229920003303 ion-exchange polymer Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は復水浄化設備に係わり、特に原子力発
電所等の給水水質向上の目的で設置される復水浄
化設備に好適なフイルタに関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to condensate purification equipment, and particularly relates to a filter suitable for condensate purification equipment installed for the purpose of improving the quality of water supplied to nuclear power plants, etc. .
従来原子力発電所等の復水浄化設備では、復水
中の不溶解性物質(以下クラツドと称す)及び溶
解性物質(以下イオンと称す)を除去し、水質を
向上する目的で混床式脱塩装置又は過助材型フ
イルタと混床式脱塩装置を組合せた復水浄化設備
が用いられている。しかしながらこれらの装置を
連続的に使用するために不可欠なイオン交換樹脂
の再生や過助材型フイルタの逆洗に伴つて発生
する廃棄物量が多いこと、また使用されるイオン
交換樹脂の耐熱特性により処理水の温度が制約さ
れることから系統の熱サイクルにおける効率が制
約を受ける等の欠点があつた。
Conventionally, in condensate purification equipment at nuclear power plants, etc., mixed bed desalination is used to improve water quality by removing insoluble substances (hereinafter referred to as cladding) and soluble substances (hereinafter referred to as ions) in condensate. Condensate purification equipment is used that combines a device or a super-assistant type filter and a mixed bed desalination device. However, due to the large amount of waste generated due to the regeneration of the ion exchange resin and backwashing of the super-assistant type filter, which are essential for continuous use of these devices, and the heat resistance properties of the ion exchange resin used, There were drawbacks, such as the efficiency of the system's thermal cycle being restricted because the temperature of the treated water was restricted.
また材が2次廃棄物として発生した場合に、
その処理が難しいという問題点があつた。 In addition, if the wood is generated as secondary waste,
The problem was that it was difficult to process.
これらの欠点を克服するため種々の脱塩装置、
フイルタにおいて様々な改良が工夫されており、
特に2次的な廃棄物の発生を抑制する目的で、非
助材型のフイルタがいくつか開発されているが、
クラツドに対する除去性能には優れたものがある
ものの、イオンに対する除去性能に欠けているた
め、単独では水質基準の厳しい原子力発電所等の
復水浄化設備では十分でなく、混床式脱塩装置と
の組合せが必要となるため、結果的に前記の問題
点を完全に克服した設備の提供は不可能であつ
た。 To overcome these drawbacks, various desalination devices,
Various improvements have been devised in the filter,
In particular, some non-auxiliary filters have been developed for the purpose of suppressing the generation of secondary waste.
Although some products have excellent removal performance for crud, they lack removal performance for ions, so they are not sufficient for condensate purification equipment such as nuclear power plants, which have strict water quality standards, and mixed bed desalination equipment and As a result, it has been impossible to provide equipment that completely overcomes the above problems.
本発明の目的は、復水中に含まれるクラツド、
イオンという性状の異なる不純物が除去可能であ
り、かつ設備を連続的に使用するために行う再
生、逆洗操作の際に発生する廃棄物発生量が最小
化できる復水浄化設備を提供することにある。
The object of the present invention is to reduce the amount of crud contained in condensate;
To provide condensate purification equipment that can remove impurities with different properties, such as ions, and that can minimize the amount of waste generated during regeneration and backwashing operations performed for continuous use of the equipment. be.
本発明は上記目的を達成するため、復水を浄化
する復水浄化フイルタとして、多孔性を有する繊
維状又は膜状の熱分解可能な材であつてクラツ
ド除去性能を有する材に、イオン交換基を結合
させイオン交換能力を具備させたフイルタを用い
ることを特徴とする。
In order to achieve the above object, the present invention uses a porous fibrous or membrane-like thermally decomposable material that has an ion exchange base as a condensate purification filter for purifying condensate and has crud removal performance. It is characterized by the use of a filter which is bonded with ion exchange ability.
本発明のフイルタは復水中のクラツドのみなら
ずイオンも除去可能である。 The filter of the present invention can remove not only crud but also ions in condensate.
そして、本発明のフイルタは多孔性を有する繊
維状または膜状の材にイオン交換基を結合させ
ているので、薬品による再生操作が可能であり、
また、イオン交換樹脂に比べ比表面積を大きくで
きることから単位体積当たりのイオン交換能力を
大きくでき、その結果イオン交換樹脂に比べ再生
操作の頻度を少なくすることができ再生操作にお
ける廃棄物発生量を小さくすることができる。な
お、イオン交換基は、樹脂にイオン交換基を結合
させる方法と同様な処理操作で、多孔性を有する
繊維状または膜状の材に結合させることができ
る。 Since the filter of the present invention has an ion exchange group bonded to a porous fibrous or membrane material, it can be regenerated using chemicals.
In addition, since the specific surface area can be increased compared to ion exchange resins, the ion exchange capacity per unit volume can be increased.As a result, the frequency of regeneration operations can be reduced compared to ion exchange resins, and the amount of waste generated during regeneration operations can be reduced. can do. Note that the ion exchange group can be bonded to a porous fibrous or membrane-like material using a treatment similar to the method for bonding the ion exchange group to a resin.
また、本発明のフイルタは非助材型であるので
逆洗操作の際、発生する廃棄物の量を大巾に少な
くすることができる。 Furthermore, since the filter of the present invention does not use auxiliary materials, the amount of waste generated during backwashing operations can be greatly reduced.
また、本発明のフイルタは熱分解可能な材よ
り構成されるので、フイルタが廃棄物として処分
されるときには焼却処理等によつて大巾に減容処
理することが可能となる。 Furthermore, since the filter of the present invention is made of a thermally decomposable material, when the filter is disposed of as waste, it can be significantly reduced in volume by incineration or the like.
以下、本発明の一実施例を第1図により説明す
る。第1図は標準的なBWRプラントの概略系統
構成において本発明による復水浄化設備を採用し
た場合の1例を示すものである。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows an example of a case where the condensate purification equipment according to the present invention is adopted in the schematic system configuration of a standard BWR plant.
原子1によつて発生された蒸気は高圧タービ
ン2及び低圧タービン3を駆動した後、復水器4
において冷却される。冷却された復水は復水ポン
プ5により移送され空気抽出器6を経て、本発明
にて紹介した復水浄化設備7に供給される。復水
浄化設備7において、復水中に原子炉1以降にて
含有されたクラツド、イオンが除去され、浄化さ
れた復水は低圧給水加熱器8及び高圧給水加熱器
9を経て再び原子炉1に供給される。 The steam generated by the atom 1 drives the high pressure turbine 2 and the low pressure turbine 3, and then passes through the condenser 4.
It is cooled at The cooled condensate is transferred by a condensate pump 5, passes through an air extractor 6, and is supplied to the condensate purification equipment 7 introduced in the present invention. In the condensate purification equipment 7, crud and ions contained in the condensate after the reactor 1 are removed, and the purified condensate is returned to the reactor 1 via the low-pressure feedwater heater 8 and the high-pressure feedwater heater 9. Supplied.
本発明による復水浄化設備7は先に述べたよう
に、従来の混床式脱塩装置等に比べより高温下に
おいても安定した性能が得られるため、復水浄化
設備7を第1図に示す系統中の位置でなく、第1
図中に示す低圧給水加熱器8と高圧給水加熱器9
の間に置くことも可能である。 As mentioned above, the condensate purification equipment 7 according to the present invention can obtain stable performance even at higher temperatures than the conventional mixed bed desalination equipment, etc. Therefore, the condensate purification equipment 7 is shown in FIG. The first position, not the position in the indicated lineage.
Low-pressure feed water heater 8 and high-pressure feed water heater 9 shown in the figure
It is also possible to place it in between.
第2図は本発明による復水浄化設備の系統構成
を示すものである。イオンクラツドフイルタ3の
復水入口4より入つた復水は材10を通過し、
ここにおいてその中に含有するクラツド、イオン
を除去された後、復水出口5より排出される。イ
オンクラツドフイルタ3は使用されるに従い、そ
の内で構成される材10にクラツド及びイオン
を蓄積していく。主にクラツドによる物理的な
材10の差圧上昇は差圧計8により監視され、一
方主にイオンによる化学的な材10のイオン交
換能力低下は復水出口5の下流に設けられた電導
度計9により監視される。材10の長期使用に
おける性能安定性を確保するため、差圧計8又は
電導度計9のいずれかが各々所定の値に迄上昇し
た場合、材10の再生又は逆洗の操作を実施す
る。再生操作は再生用酸タンク1及び再生用荷性
タンク2よりイオンクラツドフイルタ3に酸及び
アルカリを別々に注入し、これにより材10の
イオン交換能力を活性化させることで行なえる。
一方逆洗操作は加圧タンク11に蓄圧された加圧
空気をイオンクラツドフイルタ3に供給し、材
10に対し通常運転時の採水と逆方向の流れを作
ることにより実施可能である。 FIG. 2 shows the system configuration of the condensate purification equipment according to the present invention. Condensate entering from the condensate inlet 4 of the ion clad filter 3 passes through the material 10,
Here, after the cruds and ions contained therein are removed, the condensate is discharged from the condensate outlet 5. As the ion cladding filter 3 is used, cladding and ions accumulate in the material 10 formed therein. The increase in the physical differential pressure of the material 10, mainly due to crud, is monitored by a differential pressure gauge 8, while the decrease in the ion exchange capacity of the material 10, mainly due to ions, is monitored by a conductivity meter installed downstream of the condensate outlet 5. Monitored by 9. In order to ensure performance stability of the material 10 during long-term use, when either the differential pressure gauge 8 or the conductivity meter 9 rises to a predetermined value, the material 10 is regenerated or backwashed. The regeneration operation can be carried out by separately injecting acid and alkali into the ion-clad filter 3 from the regeneration acid tank 1 and the regeneration loading tank 2, thereby activating the ion exchange ability of the material 10.
On the other hand, the backwashing operation can be carried out by supplying pressurized air stored in the pressurized tank 11 to the ion clad filter 3 and creating a flow in the material 10 in the opposite direction to the water sampling during normal operation.
再成又は逆洗の操作により発生した廃液は、廃
液受タンク6に収集され、移送ポンプ7によりさ
らに下流の処理設備へと移送される。 The waste liquid generated by the regeneration or backwashing operation is collected in a waste liquid receiving tank 6, and is further transferred to a downstream processing facility by a transfer pump 7.
上述の実施例によれば次ぎの効果を有する。 The above embodiment has the following effects.
本発明で紹介した材の持つ特微から、多孔性
という物理的性質によるクラツドに対する高除去
性能に合せ、材に付ちしたイオン交換能力とい
う化学的性質によりイオンに対しても高い除去性
能を得ることが可能であり、単独の装置によりク
ラツド、イオンのいずれに対しても満足すべき性
能が得られる。 Due to the characteristics of the material introduced in this invention, in addition to high removal performance against crud due to the physical property of porosity, it also has high removal performance against ions due to the chemical property of ion exchange ability attached to the material. It is possible to obtain satisfactory performance for both cladding and ions using a single device.
また、これまでの復水浄化設備で用いられてい
る混床式脱塩装置と比較した場合、先に述べた
材の多孔性という物理的性質がイオン交換能力と
いう化学的性質に極めて効果的に作用するため、
装置のイオン交換能力が使用中に飽和に達した際
に行なう再生操作において、必要とする酸及びア
ルカリの量が、装置の使用経歴における等価のイ
オン負荷に換算して、1/10以下で十分である。
このため長期的に見ると再生に必要な薬品の量を
著しく低減することが可能となり、同時に2次的
に発生する再生廃液も比例して低減される。特に
原子力発電所の復水浄化設備から発生する再生廃
液は放射能を有しており、その処理には多大な手
間がかかることから、本発明による再生廃液低減
の効果は極めて大きいものが期待される。 In addition, when compared with the mixed bed desalination equipment used in conventional condensate purification equipment, the physical property of the material's porosity mentioned above has an extremely effective chemical property of ion exchange capacity. In order to act,
In the regeneration operation performed when the ion exchange capacity of the device reaches saturation during use, it is sufficient that the amount of acid and alkali required is 1/10 or less of the equivalent ion load over the history of use of the device. It is.
Therefore, in the long run, it becomes possible to significantly reduce the amount of chemicals required for regeneration, and at the same time, the amount of secondary regeneration waste liquid is also reduced proportionally. In particular, recycled waste fluid generated from condensate purification equipment at nuclear power plants has radioactivity and requires a great deal of effort to process, so the present invention is expected to have an extremely large effect in reducing recycled waste fluid. Ru.
また先に述べた本発明の主要構成部材である改
良型材は、そのイオン交換能力の基である素材
中に固定したイオン交換基の熱的安定性において
従来のイオン交換樹脂のそれと比べて優れてお
り、この特長から従来のイオン交換樹脂を用いて
いる混床式脱塩装置や粉末樹脂を過助材として
用いたフイルタに比べ、より高温の条件下におい
ても性能を発揮することができる。この特長から
例えば原子力発電所の復水浄化設備において、こ
れ迄の混床式脱塩装置に代わり本発明にて紹介す
る設備を設置する場合、復水器出口から低圧ター
ビン熱交換器迄をこれ迄よりも高い温度とするこ
とが可能となり、プラント全体の熱効率が向上で
きるという大きな効果が得られることになる。 Furthermore, the improved molded material, which is the main component of the present invention, is superior to that of conventional ion exchange resins in terms of thermal stability of the ion exchange group fixed in the material, which is the basis of its ion exchange ability. Due to this feature, it can demonstrate performance even under higher temperature conditions compared to conventional mixed bed desalination equipment that uses ion exchange resins or filters that use powdered resin as a supporting material. Because of this feature, for example, when installing the equipment introduced in this invention in place of the conventional mixed bed desalination equipment in the condensate purification equipment of a nuclear power plant, this equipment can be used to install the equipment introduced in this invention from the condenser outlet to the low pressure turbine heat exchanger. It becomes possible to set the temperature to a higher temperature than before, which has the great effect of improving the thermal efficiency of the entire plant.
また、従来の原子力発電所でより高い水質の維
持を目的として、フイルタと混床式脱塩装置を組
み合わせた様な復水浄化設備に比べ、本発明によ
れば1種類の装置により目的が達成されるため、
配置スペースの縮小、経済性向上が期待できる。 Additionally, compared to conventional condensate purification equipment that combines filters and mixed bed desalination equipment for the purpose of maintaining higher water quality in nuclear power plants, the present invention achieves the objective with a single type of equipment. In order to be
It is expected to reduce the installation space and improve economic efficiency.
本発明によれば、復水中に含まれるクラツド、
イオンという性状の異なる不純物が除去可能であ
り、かつ設備を連続的に使用するために行う再
生、逆洗操作の際に発生する廃棄物発生量を最小
化できるという効果がある。
According to the present invention, crud contained in condensate,
It has the effect of being able to remove impurities with different properties, such as ions, and minimizing the amount of waste generated during regeneration and backwashing operations performed to continuously use equipment.
第1図は標準的なBWR型原子力発電所の全体
系統の中における本発明の復水浄化設備の位置付
けを示す系統図であり、第2図は前記復水浄化設
備の系統構成を示すものである。
第1図で、1…原子炉、4…復水器、7…復水
浄化設備。
第2図で、1…再生用酸タンク、2…再生用苛
性タンク、3…イオンクラツドフイルタ。
Figure 1 is a system diagram showing the position of the condensate purification equipment of the present invention in the overall system of a standard BWR type nuclear power plant, and Figure 2 shows the system configuration of the condensate purification equipment. be. In Figure 1, 1... nuclear reactor, 4... condenser, 7... condensate purification equipment. In Fig. 2, 1... acid tank for regeneration, 2... caustic tank for regeneration, 3... ion clad filter.
Claims (1)
孔性を有する繊維状又は膜状の熱分解可能な材
であつてクラツド除去性能を有する材に、イオ
ン交換基を結合させイオン交換能力を具備させた
フイルタを用いることを特徴とする復水浄化設
備。1. As a condensate purification filter for purifying condensate, an ion exchange group is bonded to a porous fibrous or membrane-like thermally decomposable material that has crud removal performance to provide ion exchange ability. A condensate purification equipment characterized by using a filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59168395A JPS6147592A (en) | 1984-08-11 | 1984-08-11 | Condemiless condensate purifying facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59168395A JPS6147592A (en) | 1984-08-11 | 1984-08-11 | Condemiless condensate purifying facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6147592A JPS6147592A (en) | 1986-03-08 |
JPH0448198B2 true JPH0448198B2 (en) | 1992-08-06 |
Family
ID=15867319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59168395A Granted JPS6147592A (en) | 1984-08-11 | 1984-08-11 | Condemiless condensate purifying facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6147592A (en) |
-
1984
- 1984-08-11 JP JP59168395A patent/JPS6147592A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6147592A (en) | 1986-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6032499B2 (en) | How to clean particulate impurities | |
EP0078499B1 (en) | Method and apparatus for purifying liquid | |
JPH0421158B2 (en) | ||
US3700550A (en) | Process for purifying water utilized in a boiling water reactor | |
JPH0448198B2 (en) | ||
JP3614995B2 (en) | Condensate demineralizer | |
JP2892811B2 (en) | Ion exchange resin, condensate desalination tower and condensate purification device using this resin | |
JPH01218611A (en) | Apparatus for purifying feed water | |
JP3226604B2 (en) | Condensate desalination equipment | |
JP2892827B2 (en) | Nuclear power plant desalination equipment | |
JPH0138553B2 (en) | ||
JPS59123585A (en) | Purifying apparatus | |
JPH0437396B2 (en) | ||
JPH06265688A (en) | Reactor water silica condensing reduction device | |
JPH05188184A (en) | Resin regenerating device of condensing and desalting apparatus | |
JPH0422489A (en) | Water treatment method of power plant | |
JPS589095A (en) | Filting and desalting device for atomic power plant | |
JPS6275391A (en) | Condensate filtration desalting device for boiling water type nuclear power facility | |
JPH0138552B2 (en) | ||
JPH08313692A (en) | Recovery method and device for ion exchange resin in demineralizing device | |
JPS58102198A (en) | Boiling water nuclear power plant equipped with condensate collection and storage equipment | |
JPS61100698A (en) | Radioactive waste liquid treatment system of boiling water nuclear power plant | |
JPH02307504A (en) | Ceramic filter | |
JPS6271591A (en) | Condensate desalting device | |
JP2001017983A (en) | Method for reducing iron component in feed water of power plant |