JPH0447711B2 - - Google Patents
Info
- Publication number
- JPH0447711B2 JPH0447711B2 JP58196111A JP19611183A JPH0447711B2 JP H0447711 B2 JPH0447711 B2 JP H0447711B2 JP 58196111 A JP58196111 A JP 58196111A JP 19611183 A JP19611183 A JP 19611183A JP H0447711 B2 JPH0447711 B2 JP H0447711B2
- Authority
- JP
- Japan
- Prior art keywords
- nylon
- weight
- relative viscosity
- glass fiber
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003365 glass fiber Substances 0.000 claims description 24
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 21
- 229920006122 polyamide resin Polymers 0.000 claims description 12
- 239000004953 Aliphatic polyamide Substances 0.000 claims description 11
- 229920003231 aliphatic polyamide Polymers 0.000 claims description 11
- 239000011342 resin composition Substances 0.000 claims description 9
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 claims description 5
- 239000000203 mixture Substances 0.000 description 16
- 239000004952 Polyamide Substances 0.000 description 10
- 230000006353 environmental stress Effects 0.000 description 10
- 229920002647 polyamide Polymers 0.000 description 10
- 238000005336 cracking Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 229920000572 Nylon 6/12 Polymers 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明はガラス繊維強化ポリアミド樹脂組成物
に関する。さらに詳しくは金属ハロゲン化物によ
る環境応力亀裂が少なく、かつ優れた機械的性質
を有するガラス繊維強化ポリアミド樹脂組成物に
関する。
ポリアミドにガラス繊維を配合したガラス繊維
強化ナイロンは、その強靱性、電気特性、耐熱性
を生かして、自動車や電気製品の部品として巾広
く利用されている。しかし、汎用的に用いられて
いるポリアミド、例えばε−カプロラクタムの開
環重合で得られるナイロン6やヘキサメチレンジ
アミンとアジピン酸の重縮合反応で得られるナイ
ロン66などでは金属ハロゲン化物によつて環境応
力亀裂が生じるという重大な欠点がある。特に道
路凍結防止剤として用いられる塩化カルシウム、
金属亜鉛等により、環境応力亀裂を生じ、自動車
部品分野での利用が制約されている。
この環境応力亀裂を改善するため、研究がなさ
れており、ナイロン66に高級脂肪酸ポリアミドを
配合することが効果的であることが知られてい
る。(特開昭57−80448,57−168940)。
本発明者らは、更にこの問題を改善すべく鋭意
検討した結果、ナイロン66〔A〕に高級脂肪族ポ
リアミド〔B〕を配合するに際し〔A〕と〔B〕
の分子量(相対溶液粘度)を特定し、さらにガラ
ス繊維で強化することで、驚くべきことに、この
改善に大きな効果を発揮することを見出した。
又、当該組成物は層状体を為していることが倍
率14倍の顕微鏡写真で確認されており、本発明は
の層状体を、当該環境応力亀裂改善に効果あらし
めるものにしたものである。
すなわち、本発明は、ナイロン66〔A〕30〜60
重量部と、(CH2/NHCO)が6〜11の高級脂肪
族ポリアミド〔B〕70〜40重量部とからなり、か
つ〔A〕の相対粘度が4.0〜5.0であり、〔A〕と
〔B〕の相対粘度比(〔A〕の相対粘度/〔B〕の
相対粘度)が1.50〜2.50であるポリアミド樹脂組
成物90〜40重量%と、ガラス繊維10〜60重量%と
からなるガラス繊維強化ポリアミド樹脂組成物に
関するものである。
本発明のガラス繊維強化ポリアミド樹脂組成物
は、2種の脂肪族ポリアミドよりなる樹脂に、ガ
ラス繊維を配合したものであるが、本発明で用い
る脂肪族ポリアミドの種別は、ポリマー主鎖中の
メチレン基数とアミド基数の比(CH2/NHCO)
で行うことができる。
ナイロン66〔A〕は、(CH2/NHCO)が5で
あるポリアミドである。
高級脂肪族ポリアミド〔B〕は、(CH2/
NHCO)が6〜11であるポリアミドであり、か
かるポリアミドとしては、ナイロン11、ナイロン
12、ナイロン69、ナイロン610、ナイロン612、ナ
イロン613等またはそれらの混合物、共重合体が
あげられる。
〔B〕においてその比が12以上の場合は、〔A〕
と〔B〕との相溶性が損われ、組成物の性質が損
われる。
本発明において使用するナイロン66〔A〕と高
級脂肪族ポリアミド〔B〕の相対粘度比は1.50〜
2.50である。1.50未満では、金属ハロゲン化物に
よる環境応力亀裂に対する抵抗性改善への寄与が
不充分であり、2.50を越えると押出し、成形加工
性が悪く実用的でない。又、ナイロン66〔A〕の
相対粘度は4.0〜5.0のものである。
ここでいう相対粘度とは、JISK−6810に基づ
いて測定した相対粘度をいう。
本発明のポリアミド樹脂組成物は、ナイロン66
〔A〕と高級脂肪族ポリアミド〔B〕の粘度比が
1.50〜2.50となるよう選ばれ、ナイロン66〔A〕
30〜60重量部とポリアミド〔B〕70〜40重量部か
らなるものである。
組成物中の脂肪族ポリアミド〔B〕の量が40重
量部より少ないと、金属ハロゲン化物による環境
応力亀裂に対しての改善が充分でなく、又、70重
量部を越えると、ナイロン66〔A〕の有する機械
的性質を低下させる。
本発明に使用されるガラス繊維は、通常のガラ
ス繊維の形状には特に制限はなく、配合する段階
では長繊維タイプから短繊維タイプのものまで任
意の形状のものが使用可能である。
ガラス繊維の配合割合は強化樹脂の用途によつ
て任意に選べるが、通常は最終的に得られるガラ
ス繊維強化ポリアミド樹脂組成物に対してガラス
繊維として、10〜60重量%、好ましくは25〜45重
量%の範囲である。
ガラス繊維の配合量が10重量%より少ないとき
は機械的性質の充分な改善効果が得られない。ま
たガラス繊維の配合量が60重量%を越える場合に
は、組成物の溶融時流動性が低下し、押出し、射
出成形が悪くなる。
本発明の組成物は、ナイロン66〔A〕及び高級
脂肪族ポリアミド〔B〕及びガラス繊維をドライ
ブレンドした後、常用の単軸または二軸押出機の
ような押出機で溶融ブレンドすることによつて得
られる。また別の方法として、〔A〕とガラス繊
維を、〔B〕とガラス繊維をそれぞれ溶融混合し、
通常の方法でペレツト化したものを射出成形でブ
レンドすることでも得られる。
以上本発明のポリアミド樹脂組成物について詳
述したが、本発明の目的を損わない範囲におい
て、これら組成物にさらに他の樹脂ポリマー、無
機充填剤、着色剤、酸化劣化防止剤、熱安定剤、
紫外線吸収剤、帯電防止剤、滑剤、可塑剤、難燃
剤などを目的に応じて添加することができる。
このように、本発明は極めて特長的である。即
ち、先に公開された文献(特開昭57−80448,特
開昭57−168940)には、ナイロン66〔A〕に高級
脂肪族ポリアミド〔B〕を配合することが示され
ているが、〔A〕,〔B〕の分子量(相対粘度)に
ついては言及されていない。これに対して、本発
明は、〔A〕,〔B〕の分子量が、さらには〔A〕
と〔B〕の相対粘度比が環境応力亀裂に効果大な
ることを見いだしたものであり、全く新規な発明
である。
次に本発明を実施例により具体的に説明する。
実施例 1
相対粘度ηrが4.78であるナイロン66の60重量部
に、相対粘度ηrが2.18,2.76,であるナイロン
610の40重量部を、第1表に示す組み合わせにて
配合し、さらに市販のガラス短繊維(3mm長チヨ
ツプドストランドタイプ)50重量部を加え、タン
ブラ型混合機にてブレンドした。当混合物を50mm
φ単軸押出機にて溶融混練し、ポリアミド組成物
を得た。得られたガラス繊維強化ポリアミド組成
物を射出成形機を用いて物性測定用試験片に成形
し、耐環境応力亀裂性を調べた。その結果を第1
表に示した。
比較例 1
相対粘度ηrが2.79,2.85,3.80,4.78,5.20のナ
イロン66,相対粘度ηrが2.76,2.18,1.70のナ
イロン610を第1表に示す組み合わせで配合し
た以外は実施例1と同様の方法でガラス繊維強化
ポリアミド組成物を得、耐環境応力亀裂性を調べ
た。その結果を第1表に示す。
The present invention relates to glass fiber reinforced polyamide resin compositions. More specifically, the present invention relates to a glass fiber-reinforced polyamide resin composition that has few environmental stress cracks caused by metal halides and has excellent mechanical properties. Glass fiber-reinforced nylon, which is a blend of polyamide and glass fiber, is widely used as parts of automobiles and electrical products due to its toughness, electrical properties, and heat resistance. However, commonly used polyamides, such as nylon 6 obtained by ring-opening polymerization of ε-caprolactam and nylon 66 obtained by polycondensation reaction of hexamethylene diamine and adipic acid, are susceptible to environmental stress due to metal halides. It has the serious disadvantage of cracking. Calcium chloride, especially used as a road deicing agent,
Metallic zinc, etc., causes environmental stress cracks, which limits its use in the automotive parts field. Research has been conducted to improve this environmental stress cracking, and it is known that blending higher fatty acid polyamide with nylon 66 is effective. (Japanese Patent Publication No. 57-80448, 57-168940). As a result of intensive studies to further improve this problem, the present inventors found that when blending higher aliphatic polyamide [B] with nylon 66 [A], [A] and [B]
By specifying the molecular weight (relative solution viscosity) of the material and further reinforcing it with glass fibers, we surprisingly found that this improvement was greatly effective. Furthermore, it has been confirmed in a micrograph at a magnification of 14 times that the composition has a layered structure, and the present invention makes the layered structure effective in improving the environmental stress cracking. . That is, the present invention uses nylon 66 [A] 30-60
and 70 to 40 parts by weight of higher aliphatic polyamide [B] having (CH 2 /NHCO) of 6 to 11, and the relative viscosity of [A] is 4.0 to 5.0, and [A] and [ Glass fibers consisting of 90 to 40% by weight of a polyamide resin composition having a relative viscosity ratio of B] (relative viscosity of [A]/relative viscosity of [B]) of 1.50 to 2.50 and 10 to 60% by weight of glass fibers. The present invention relates to a reinforced polyamide resin composition. The glass fiber reinforced polyamide resin composition of the present invention is a resin composed of two types of aliphatic polyamides mixed with glass fibers, and the type of aliphatic polyamide used in the present invention is Ratio of number of groups to number of amide groups (CH 2 /NHCO)
It can be done with Nylon 66 [A] is a polyamide in which (CH 2 /NHCO) is 5. Higher aliphatic polyamide [B] is (CH 2 /
NHCO) is 6 to 11, such polyamides include nylon 11, nylon
12, nylon 69, nylon 610, nylon 612, nylon 613, or mixtures and copolymers thereof. If the ratio in [B] is 12 or more, [A]
The compatibility between and [B] is impaired, and the properties of the composition are impaired. The relative viscosity ratio of nylon 66 [A] and higher aliphatic polyamide [B] used in the present invention is 1.50 to
It is 2.50. If it is less than 1.50, the contribution of the metal halide to improving resistance to environmental stress cracking is insufficient, and if it exceeds 2.50, extrusion and moldability are poor and it is not practical. Further, the relative viscosity of nylon 66 [A] is 4.0 to 5.0. The relative viscosity here refers to the relative viscosity measured based on JISK-6810. The polyamide resin composition of the present invention is made of nylon 66
The viscosity ratio of [A] and higher aliphatic polyamide [B] is
Selected to be 1.50 to 2.50, nylon 66 [A]
It consists of 30 to 60 parts by weight and 70 to 40 parts by weight of polyamide [B]. If the amount of aliphatic polyamide [B] in the composition is less than 40 parts by weight, the improvement against environmental stress cracking caused by metal halides will not be sufficient; if it exceeds 70 parts by weight, nylon 66 [A] ) decreases the mechanical properties of The shape of the glass fiber used in the present invention is not particularly limited, and any shape from long fiber type to short fiber type can be used at the blending stage. The blending ratio of glass fiber can be arbitrarily selected depending on the use of the reinforced resin, but it is usually 10 to 60% by weight, preferably 25 to 45% by weight of glass fiber, based on the final glass fiber reinforced polyamide resin composition. % by weight. When the amount of glass fiber blended is less than 10% by weight, sufficient improvement in mechanical properties cannot be obtained. Furthermore, if the amount of glass fiber blended exceeds 60% by weight, the melt fluidity of the composition decreases, making extrusion and injection molding difficult. The composition of the present invention can be prepared by dry blending nylon 66 [A], higher aliphatic polyamide [B] and glass fibers, and then melt blending in an extruder such as a conventional single or twin screw extruder. You can get it. Another method is to melt and mix [A] and glass fiber, and [B] and glass fiber, respectively.
It can also be obtained by blending pelletized pellets using conventional methods and injection molding. Although the polyamide resin composition of the present invention has been described in detail above, other resin polymers, inorganic fillers, colorants, oxidative deterioration inhibitors, and heat stabilizers may be added to these compositions within a range that does not impair the purpose of the present invention. ,
Ultraviolet absorbers, antistatic agents, lubricants, plasticizers, flame retardants, etc. can be added depending on the purpose. In this way, the present invention is extremely distinctive. That is, previously published documents (JP-A-57-80448, JP-A-57-168940) indicate that nylon 66 [A] is blended with higher aliphatic polyamide [B]; There is no mention of the molecular weights (relative viscosities) of [A] and [B]. On the other hand, in the present invention, the molecular weights of [A] and [B] are further reduced to [A]
It has been discovered that the relative viscosity ratio of and [B] has a great effect on environmental stress cracking, and this is a completely new invention. Next, the present invention will be specifically explained using examples. Example 1 60 parts by weight of nylon 66 with a relative viscosity ηr of 4.78, and nylon with a relative viscosity ηr of 2.18, 2.76,
40 parts by weight of 610 were blended in the combinations shown in Table 1, and 50 parts by weight of commercially available short glass fibers (3 mm long chopped strand type) were added and blended in a tumbler type mixer. 50mm of this mixture
The mixture was melt-kneaded using a φ single-screw extruder to obtain a polyamide composition. The obtained glass fiber reinforced polyamide composition was molded into a test piece for measuring physical properties using an injection molding machine, and its resistance to environmental stress cracking was examined. The result is the first
Shown in the table. Comparative Example 1 Same as Example 1 except that nylon 66 with relative viscosity ηr of 2.79, 2.85, 3.80, 4.78, 5.20 and nylon 610 with relative viscosity ηr of 2.76, 2.18, 1.70 were blended in the combinations shown in Table 1. A glass fiber reinforced polyamide composition was obtained by this method and its environmental stress cracking resistance was investigated. The results are shown in Table 1.
【表】
実施例 2
相対粘度ηrが4.01であるナイロン66に、相対粘
度ηrが2.00のナイロン662を、ナイロン66/ナイ
ロン612の重量比で35/65,50/50の割合に混合
し、該混合ポリアミド樹脂100重量部に対し、実
施例1と同じガラス繊維を表2に示す割合で配合
した。得られた混合物を実施例1と同じ方法によ
り、ガラス繊維強化ポリアミド組成物としたの
ち、試験片を成形、諸物性を測定した。その結果
を第2表に示す。
比較例 2
実施例2と同じナイロン66とナイロン612を、
ナイロン66/ナイロン612の重量比で5/95,
15/85,25/75,70/30,85/15,95/5の割合
に混合し、当混合ポリアミド樹脂100重量部に対
し実施例2と同じガラス繊維を50重量部配合し、
実施例2と同様に諸物性を測定した。
その結果を第2表に示す。
比較例 3
実施例2と同じナイロン66とナイロン612を、
ナイロン66/ナイロン612の重量比で60/40の割
合に混合し、当混合ポリアミド樹脂100重量部に
対し、実施例1と同じガラス繊維を、5及び200
重量部配合し、実施例2と同様に諸物性を測定し
た。
その結果を第2表に示す。[Table] Example 2 Nylon 66 with a relative viscosity ηr of 4.01 and nylon 662 with a relative viscosity ηr of 2.00 were mixed at a weight ratio of nylon 66/nylon 612 of 35/65 and 50/50. The same glass fibers as in Example 1 were blended with 100 parts by weight of the mixed polyamide resin in the proportions shown in Table 2. The obtained mixture was made into a glass fiber reinforced polyamide composition by the same method as in Example 1, and then a test piece was molded and various physical properties were measured. The results are shown in Table 2. Comparative Example 2 The same nylon 66 and nylon 612 as in Example 2,
Weight ratio of nylon 66/nylon 612 is 5/95,
Mixed in a ratio of 15/85, 25/75, 70/30, 85/15, 95/5, 50 parts by weight of the same glass fiber as in Example 2 was blended with 100 parts by weight of the mixed polyamide resin,
Various physical properties were measured in the same manner as in Example 2. The results are shown in Table 2. Comparative Example 3 The same nylon 66 and nylon 612 as in Example 2 were used.
Nylon 66/nylon 612 was mixed at a weight ratio of 60/40, and 5 and 200 parts of the same glass fiber as in Example 1 were added to 100 parts by weight of the mixed polyamide resin.
Parts by weight were blended, and various physical properties were measured in the same manner as in Example 2. The results are shown in Table 2.
【表】【table】
Claims (1)
NHCO)が6〜11の高級脂肪族ポリアミド〔B〕
70〜40重量部とからなり、かつ〔A〕の相対粘度
が4.0〜5.0であり、〔A〕と〔B〕の相対粘度比
(〔A〕の相対粘度/〔B〕の相対粘度)が1.50〜
2.50であるポリアミド樹脂組成物90〜40重量%
と、ガラス繊維10〜60重量%とからなるガラス繊
維強化ポリアミド樹脂組成物。[Claims] 1. 30 to 60 parts by weight of nylon 66 [A], and (CH 2 /
Higher aliphatic polyamide with NHCO) of 6 to 11 [B]
70 to 40 parts by weight, and the relative viscosity of [A] is 4.0 to 5.0, and the relative viscosity ratio of [A] and [B] (relative viscosity of [A] / relative viscosity of [B]) is 1.50〜
Polyamide resin composition which is 2.50% by weight 90-40%
and 10 to 60% by weight of glass fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19611183A JPS6088067A (en) | 1983-10-21 | 1983-10-21 | Glass fiber-reinforced polyamide resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19611183A JPS6088067A (en) | 1983-10-21 | 1983-10-21 | Glass fiber-reinforced polyamide resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6088067A JPS6088067A (en) | 1985-05-17 |
JPH0447711B2 true JPH0447711B2 (en) | 1992-08-04 |
Family
ID=16352417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19611183A Granted JPS6088067A (en) | 1983-10-21 | 1983-10-21 | Glass fiber-reinforced polyamide resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6088067A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4810747A (en) * | 1988-02-05 | 1989-03-07 | Nl Chemicals, Inc. | Water dispersible polyamide blend |
JPH0224354A (en) * | 1988-07-12 | 1990-01-26 | Tonen Sekiyukagaku Kk | Fiber-reinforced polymer composition |
JPS63289063A (en) * | 1988-04-13 | 1988-11-25 | Toray Ind Inc | Automobile cylinder head cover |
JPS63304052A (en) * | 1988-04-13 | 1988-12-12 | Toray Ind Inc | Cooling fan for automobile |
JPS63308064A (en) * | 1988-04-13 | 1988-12-15 | Toray Ind Inc | Top and base of automotive radiator |
JPS63304053A (en) * | 1988-04-13 | 1988-12-12 | Toray Ind Inc | Part for exhaust gas system for automobile |
JPS63295664A (en) * | 1988-04-13 | 1988-12-02 | Toray Ind Inc | Tube for automobile pipe |
JPS63289064A (en) * | 1988-04-13 | 1988-11-25 | Toray Ind Inc | Automobile oil pan |
ES2472457T3 (en) * | 2010-03-30 | 2014-07-01 | Basf Se | Use of polyamides that are resistant to corrosion and stress cracking |
FR2980207B1 (en) * | 2011-09-21 | 2013-08-30 | Rhodia Operations | COMPOSITION COMPRISING POLYAMIDE 66 AND POLYAMIDE 610 |
US10676616B2 (en) | 2016-12-01 | 2020-06-09 | Toyobo Co., Ltd. | Polyamide resin composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780448A (en) * | 1980-11-10 | 1982-05-20 | Asahi Chem Ind Co Ltd | Glass fiber-reinforced polyamide resin composition |
JPS57168940A (en) * | 1981-04-13 | 1982-10-18 | Toray Ind Inc | Underhood component for automobile use |
JPS57212252A (en) * | 1981-06-25 | 1982-12-27 | Ube Ind Ltd | Polyamide composition resistant to calcium chloride |
-
1983
- 1983-10-21 JP JP19611183A patent/JPS6088067A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780448A (en) * | 1980-11-10 | 1982-05-20 | Asahi Chem Ind Co Ltd | Glass fiber-reinforced polyamide resin composition |
JPS57168940A (en) * | 1981-04-13 | 1982-10-18 | Toray Ind Inc | Underhood component for automobile use |
JPS57212252A (en) * | 1981-06-25 | 1982-12-27 | Ube Ind Ltd | Polyamide composition resistant to calcium chloride |
Also Published As
Publication number | Publication date |
---|---|
JPS6088067A (en) | 1985-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH047361A (en) | Polyarylene sulfide resin composition | |
US7179855B2 (en) | Polyamide molding compositions containing prepolymeric polyamides, a method for the preparation thereof and the use thereof | |
JPS62946B2 (en) | ||
EP0052944B1 (en) | Molding blends | |
JPH0447711B2 (en) | ||
JPS6140263B2 (en) | ||
EP0339745B1 (en) | Polyketone polymer composition | |
JPS6140262B2 (en) | ||
EP0044141B1 (en) | Filled compositions of thermoplastic polyamide and polyester | |
GB2058101A (en) | Thermoplastic nylon moulding resins | |
CA1069636A (en) | Thermoplastic nylon-phenoxy resin reinforced molding compositions | |
JPS61207436A (en) | Readily flowable hydophobic thermoplastic polyamide | |
KR102452073B1 (en) | Glass fiber reinforced polyamide resin composition, method for preparing thereof and molding product comprising the same | |
JPH051304B2 (en) | ||
JPH0826213B2 (en) | Resin composition | |
US4391936A (en) | Molding blends | |
US5153275A (en) | Polyamide compositions comprising poly(amide-ether) block copolymers featuring improved impact strength and improved film properties | |
JPH0613641B2 (en) | Glass fiber reinforced polyamide resin composition | |
JPS63137955A (en) | Polyamide resin for molding | |
JPH0543797A (en) | Reinforced polyamide-polyolefin resin composition | |
JPH06207103A (en) | Heat-resistant polyarylene sulfide resin composition | |
JPS6364469B2 (en) | ||
JP2690775B2 (en) | Polyamide resin composition | |
JPH06322264A (en) | Resin composition for bicycle wheel | |
JP3962095B2 (en) | Polyester resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |