[go: up one dir, main page]

JPH0446202Y2 - - Google Patents

Info

Publication number
JPH0446202Y2
JPH0446202Y2 JP1985107503U JP10750385U JPH0446202Y2 JP H0446202 Y2 JPH0446202 Y2 JP H0446202Y2 JP 1985107503 U JP1985107503 U JP 1985107503U JP 10750385 U JP10750385 U JP 10750385U JP H0446202 Y2 JPH0446202 Y2 JP H0446202Y2
Authority
JP
Japan
Prior art keywords
moisture
humidity
sensitivity
gas
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985107503U
Other languages
Japanese (ja)
Other versions
JPS6216455U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985107503U priority Critical patent/JPH0446202Y2/ja
Publication of JPS6216455U publication Critical patent/JPS6216455U/ja
Application granted granted Critical
Publication of JPH0446202Y2 publication Critical patent/JPH0446202Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は、水分測定セルに関する。さらに詳
しくは、各種気体、液体、固体試料中に含有され
る水分を高精度、高確度に測定でき、例えば石油
化学工業用のプロセスガスやリサイクルガス、高
圧ボンベ、有機溶剤、石油などの中の水分濃度、
ことに微量の水分濃度を検出するのに好適な水分
測定セルに関する。
[Detailed explanation of the invention] (a) Industrial application field This invention relates to a moisture measuring cell. More specifically, it is possible to measure moisture contained in various gases, liquids, and solid samples with high precision and accuracy. moisture concentration,
In particular, it relates to a moisture measuring cell suitable for detecting minute amounts of moisture concentration.

(ロ) 従来の技術 従来から各種媒体中ことに気体や液体中の水分
濃度を定量する方法として、カールフイツシヤー
法、ガスクロマトグラフイ、水分吸着による抵
抗、電気容量、重量等の物理的変化に基づいて水
分を検知する水分(湿度)センサを用いる方法、
赤外線加熱による重量変化を検知する方法などが
用途に応じて選択され実用されている。
(b) Conventional technology Traditionally, methods for quantifying the concentration of water in various media, especially gases and liquids, include the Karl Fischer method, gas chromatography, and methods for measuring physical changes in resistance, electric capacity, weight, etc. due to water adsorption. A method using a moisture (humidity) sensor to detect moisture based on
Methods such as detecting weight changes due to infrared heating are selected and put into practical use depending on the application.

(ハ) 考案が解決しようとする問題点 これらのうち最も汎用されているのはカールフ
イツシヤー法であるが、かかる方法では、測定時
間が長く(通常、10〜20分)、微量水分測定では
多量(通常、50g以上)の試料(気体の場合は吸
収液)を要し、さらにカールフイツシヤー試薬と
試料中の共存成分と化学反応を起したり吸湿性で
あるため微量水分測定の際に誤差が生じ易く測定
範囲が100μg〜105μg(H2O濃度で10ppm〜
100%wt/vol)に規制されるという問題点があ
つた。
(c) Problems that the invention aims to solve The most widely used of these is the Karl-Fitscher method, but this method requires a long measurement time (usually 10 to 20 minutes) and is difficult to measure in trace amounts of moisture. It requires a large amount of sample (usually 50 g or more) (absorbing liquid in the case of gas), and it also causes chemical reactions with the Karl Fischer reagent and coexisting components in the sample, and is hygroscopic, so it is difficult to use when measuring trace amounts of moisture. Errors tend to occur and the measurement range is 100 μg to 105 μg (H 2 O concentration 10 ppm to
There was a problem that it was regulated to 100% wt/vol).

一方、湿度センサを用いる方法は、上記カール
フイツシヤー法に比して簡便な方法であるが、測
定対象系が限られかつ微量水分に対する感度や耐
久性の点で問題がある。
On the other hand, the method using a humidity sensor is a simpler method than the above-mentioned Karl Fischer method, but the measurement target system is limited and there are problems in terms of sensitivity to trace amounts of moisture and durability.

この点に関し、本考案者らは、0.1μgの水分量
(H2O濃度で1ppm程度)まで検出できる圧電型
(発振周波数検知型)の湿度センサを見出した
(特開昭59−24234号公報)。
Regarding this point, the present inventors discovered a piezoelectric type (oscillation frequency detection type) humidity sensor that can detect up to 0.1 μg of moisture (approximately 1 ppm in H 2 O concentration) (Japanese Patent Laid-Open No. 59-24234). ).

しかしながら、かかる湿度センサは水分に対し
て安定で優れた感度を有するが、有機溶媒につい
ても感応性を有するため、共存物質として有機溶
媒を含む試料ガスを対象とした場合に測定精度や
確度が低下し易く、ことに微量分析の際に問題で
あつた。
However, although such humidity sensors are stable and have excellent sensitivity to moisture, they are also sensitive to organic solvents, resulting in reduced measurement accuracy and accuracy when using sample gases that contain organic solvents as coexisting substances. This was particularly problematic during trace analysis.

この考案は、かかる状況に鑑みなされたもので
あり、ことに有機溶媒を共存する気体試料や気化
試料中の微量水分を高精度、高確度に測定できる
水分測定セルを提供しようとするものである。
This invention was developed in view of the above situation, and is intended to provide a moisture measurement cell that can measure trace amounts of moisture in gaseous samples or vaporized samples that coexist with organic solvents with high precision and accuracy. .

(ニ) 問題点を解決するための手段及び作用 かくしてこの考案によれば、ガス導入口及び排
出口を備え、水分についての感度は異なるが有機
溶媒についての感度が実質的に同一の二つの湿度
センサを内蔵してなり、これらの両湿度センサの
出力差に基づいて導入ガス中の水分濃度を決定し
うる差動演算部を具備してなる水分測定セルが提
供される。
(d) Means and action for solving the problem Thus, according to this invention, two humidity systems are provided that are equipped with a gas inlet and a gas outlet, and have different sensitivities to moisture but substantially the same sensitivity to organic solvents. A moisture measuring cell is provided which includes a built-in sensor and includes a differential calculation section that can determine the moisture concentration in the introduced gas based on the difference in output between these two humidity sensors.

この考案の最も特徴とする点は、一つのセル内
に上記のごとき異なる特性を有する二つの湿度セ
ンサを内蔵させた点にある。このセル内に有機溶
媒を含むガスが導入されるとそれぞれの湿度セン
サでは、含有水分及び含有有機溶媒に対応する出
力が得られるが、有機溶媒についての出力は同一
であるので、これらに出力差は真の水分濃度に対
応することとなる。従つてこの減算によつて含有
有機溶媒による測定値への影響を除去することが
でき、適当な濃度変換フアクタを用いたり検量線
等により導入ガス中の水分濃度やガス化前の各種
試料中の水分量などを高精度、高確度に検出する
ことが可能となる。
The most distinctive feature of this invention is that two humidity sensors having different characteristics as described above are built into one cell. When a gas containing an organic solvent is introduced into this cell, each humidity sensor produces an output corresponding to the contained moisture and the contained organic solvent, but since the output for the organic solvent is the same, there is a difference in the output between them. corresponds to the true water concentration. Therefore, by this subtraction, it is possible to remove the influence of the contained organic solvent on the measured value, and use an appropriate concentration conversion factor or a calibration curve to calculate the moisture concentration in the introduced gas and the concentration of water in various samples before gasification. It becomes possible to detect moisture content with high precision and accuracy.

この考案における二種の湿度センサは圧電素子
上にプラズマ重合膜をベースとする感湿膜を形成
させたものが好ましい。かかる湿度センサに上記
のごとき二種の特性を付与させる方法としては、
該プラズマ重合膜内に導入させる親水性基の量を
制御する方法が適している。プラズマ重合膜の表
面を化学処理することによつてアンモニウム基や
スルホネート基等の親水性基を導入することによ
り感湿膜が得られるが、この化学処理時間を調整
することによつて上記二つの特性をもつ二つの湿
度センサを得ることが可能である。ことに、圧電
素子板上に一対の電極を蒸着形成し、これを疎水
性有機化合物の蒸気下でプラズマ重合に付して、
これらの電極間又は少なくとも一つの電極上に高
分子膜を形成し、次いで有機アミノ化合物の蒸気
下でプラズマ重合に付して上記高分子膜上にアミ
ノ基含有高分子膜を形成させた後、ハロゲン化ア
ルキル蒸気中に保持して上記アミノ基含有高分子
膜中のアミノ基をアンモニウム塩型の親水性基に
変換する方法で湿度センサを製造し、この際のハ
ロゲン化アルキルによる処理時間を制御すること
により、有機溶媒に対して同一感度で水分に対し
て感度の異なる二種類の湿度センサを簡便に得ら
れる事実も見出された。かかる感湿膜は疎水性有
機化合物のプラズマ重合高分子層からなる内部層
と、その上に形成された有機アモノ化合物のプラ
ズマ重合によるアミノ基含有高分子層からなる表
面層とで基本構成され、かつ上記表面層のアミノ
基含有高分子層にはアミノ基の変換によるアンモ
ニウム塩型の親水性基が導入されてなるものであ
り、センサとしての応答性、耐久性などからも好
ましいものである。
The two types of humidity sensors in this invention preferably have a humidity sensitive film based on a plasma polymerized film formed on a piezoelectric element. A method for imparting the above two types of characteristics to such a humidity sensor is as follows:
A method of controlling the amount of hydrophilic groups introduced into the plasma polymerized membrane is suitable. A moisture-sensitive film can be obtained by chemically treating the surface of a plasma-polymerized film to introduce hydrophilic groups such as ammonium groups and sulfonate groups, but by adjusting the chemical treatment time, the above two effects can be achieved. It is possible to obtain two humidity sensors with characteristics. In particular, a pair of electrodes is formed on a piezoelectric element plate by vapor deposition, and this is subjected to plasma polymerization under the vapor of a hydrophobic organic compound.
After forming a polymer film between these electrodes or on at least one electrode, and then subjecting it to plasma polymerization under the vapor of an organic amino compound to form an amino group-containing polymer film on the polymer film, A humidity sensor is manufactured by a method in which the amino groups in the amino group-containing polymer membrane are converted into ammonium salt-type hydrophilic groups by holding the film in alkyl halide vapor, and the treatment time with the alkyl halide is controlled at this time. It was also discovered that by doing so, it is possible to easily obtain two types of humidity sensors that have the same sensitivity to organic solvents and different sensitivities to moisture. Such a moisture-sensitive film basically consists of an inner layer made of a plasma-polymerized polymer layer of a hydrophobic organic compound, and a surface layer formed thereon of an amino group-containing polymer layer formed by plasma polymerization of an organic ammonium compound. In addition, the amino group-containing polymer layer of the surface layer has an ammonium salt type hydrophilic group introduced by converting an amino group, and is preferable from the viewpoint of responsiveness and durability as a sensor.

上記疎水性有機化合物としては、親水性基を有
していない種々の有機化合物が挙げられ、例えば
スチレン、ジビニルベンゼン等のビニル芳香族系
化合物やベンゼン、トルエン等の芳香族及びエチ
レン、プロピレン等の不飽和炭化水素等が挙げら
れる。これらは2種以上用いてもよい。また多層
構造とすることもできる。これらのうちプラズマ
重合が容易なスチレンを用いるのが好ましい。
Examples of the above-mentioned hydrophobic organic compounds include various organic compounds that do not have a hydrophilic group, such as vinyl aromatic compounds such as styrene and divinylbenzene, aromatic compounds such as benzene and toluene, and aromatic compounds such as ethylene and propylene. Examples include unsaturated hydrocarbons. Two or more types of these may be used. It can also have a multilayer structure. Among these, it is preferable to use styrene, which is easily plasma polymerized.

上記有機アミノ化合物としては、ジアリルアミ
ン、ジアミルアミン、ジエチルアリルアミン、
N,N,N′,N′−テトラメチルヘキサンジアミ
ン等の少なくとも一つの直鎖状置換基を有するア
ミンやアニリン、ピリジン、フエネチルアミン等
の環状もしくは芳香族アミンが挙げられ、これ以
外にもトリエチルアミン、エチレンジアミン、ジ
エチレントリアミン、トリエチレンテトラミン等
が挙げられる。これらは2種以上組合せてもよ
い。これらのうちテトラメチルヘキサンジアミン
及びジエチルアリルアミン等の直鎖状置換基を有
する第3級アミンを用いるのが好ましい。
The organic amino compounds mentioned above include diallylamine, diamylamine, diethylallylamine,
Examples include amines having at least one linear substituent such as N,N,N',N'-tetramethylhexanediamine, and cyclic or aromatic amines such as aniline, pyridine, and phenethylamine; in addition to these, triethylamine, Examples include ethylenediamine, diethylenetriamine, triethylenetetramine, and the like. Two or more types of these may be combined. Among these, it is preferable to use tertiary amines having linear substituents such as tetramethylhexanediamine and diethylallylamine.

上記アモノ基含有高分子膜中のアミン基の化学
処理はハロゲン化アルキルの蒸気中に保持させて
行なうのが好ましい。この際のハロゲン化アルキ
ルとしては、モノハロゲン化低級アルキルを用い
るのが適当であり、その具体例としては、塩化メ
チル、塩化エチル、ヨウ化メチル、臭化メチル等
が挙げられる。かようなハロゲン化アルキル蒸気
との接触によりアミノ基含有高分子膜中に存在す
るアミノ基がアルキル化されて第4級アンモニウ
ム塩、第3アミン塩、第2アミン塩等のアンモニ
ウム塩型の親水性基に変換される。この接触は、
加温下で行なうことによつて反応を促進できる
が、常温で反応させてもよい。ハロゲン化アルキ
ル蒸気は常圧下約1/分程度の流量でアミノ基
含有高分子膜を形成したセンサーに接触するよう
に調整するのが好ましい。
It is preferable that the chemical treatment of the amine groups in the above-mentioned amine group-containing polymer film is carried out by keeping the amine groups in the vapor of alkyl halide. As the alkyl halide in this case, it is appropriate to use lower alkyl monohalides, specific examples of which include methyl chloride, ethyl chloride, methyl iodide, methyl bromide, and the like. By contact with such alkyl halide vapor, the amino groups present in the amino group-containing polymer membrane are alkylated to form hydrophilic ammonium salts such as quaternary ammonium salts, tertiary amine salts, and secondary amine salts. converted into a sexual group. This contact is
Although the reaction can be accelerated by carrying out the reaction under heating, the reaction may be carried out at room temperature. It is preferable to adjust the halogenated alkyl vapor so that it contacts the sensor formed with the amino group-containing polymer film at a flow rate of about 1/min under normal pressure.

上記化学処理の時間による水分及び有機溶媒の
応答性の変化を第2図に示した。なお、使用した
各湿度センサは後述する実施例と同様にして作製
したものである。このように化学処理時間を調整
することによりまず水分に対する感度が変化して
いることが分る。これはプラズマ重合膜の表層に
導入される親水性基の量が増加する点に基づいて
いる。化学処理を2日以上行なつても感度が変化
していないのは導入される親水性基の量が飽和し
ていることを意味する。一方、有機溶媒に対する
感度は6時間以上化学処理しても変化は見られな
い。つまり、水分官能基(親水性基)の量に関係
なく感度は一定しており、水と有機溶媒の感湿膜
に対する吸着機構は全く異なるものと考えられ
る。従つて、かかる化学処理時間を変えることに
より有機溶媒に対して同一感度であり水に対して
低感度と高感度の二種の湿度センサが簡便に作製
できることとなる。
FIG. 2 shows changes in the responsiveness of water and organic solvents depending on the time of the chemical treatment. It should be noted that each humidity sensor used was manufactured in the same manner as in the examples described later. It can be seen that by adjusting the chemical treatment time in this way, the sensitivity to moisture changes. This is based on the fact that the amount of hydrophilic groups introduced into the surface layer of the plasma polymerized membrane increases. The fact that the sensitivity does not change even after chemical treatment is performed for two days or more means that the amount of introduced hydrophilic groups is saturated. On the other hand, no change in sensitivity to organic solvents was observed even after chemical treatment for 6 hours or more. In other words, the sensitivity is constant regardless of the amount of water functional groups (hydrophilic groups), and it is thought that the adsorption mechanisms of water and organic solvent to the moisture-sensitive film are completely different. Therefore, by changing the chemical treatment time, two types of humidity sensors having the same sensitivity to organic solvents and one with low sensitivity and one with high sensitivity to water can be easily produced.

一般に、水晶振動板の物理特性はつぎのように
表現される。
Generally, the physical characteristics of a crystal diaphragm are expressed as follows.

ここで、ΔfH2O、ΔfOを水分および有機溶媒
による周波数変化、ΔMH2O、ΔMOを水分およ
び有機溶媒の水晶板上の質量変化、fを共振周波
数、Arを水晶板の表面積、Pを圧電結晶密度、
Nを周波数定数とすると、次の関係が成立する。
Here, ΔfH 2 O, ΔfO are frequency changes due to moisture and organic solvent, ΔMH 2 O, ΔMO are mass changes on the quartz plate due to moisture and organic solvent, f is resonance frequency, Ar is surface area of quartz plate, P is piezoelectric crystal density,
When N is a frequency constant, the following relationship holds true.

ΔfH2O/f=−f・ΔMH2O/Ar・P・N ΔfO/f=−f・ΔMO/Ar・P・N ここで、 K=−f2/Ar・P・N とおき、Δfを水分および有機溶媒合計の周波数
変化とすると次式を得る。
ΔfH 2 O/f=-f・ΔMH 2 O/Ar・P・N ΔfO/f=-f・ΔMO/Ar・P・N Here, K=−f 2 /Ar・P・N and Δf Letting be the frequency change of the total water and organic solvent, the following equation is obtained.

Δf=ΔfH2O+ΔfO =K・ΔMH2O+K・ΔMO 本考案になる2つのセンサーa,bについて
も、同様の関係式が成立するが、両者を区別する
ためa,bを付記する。
Δf=ΔfH 2 O+ΔfO =K·ΔMH 2 O+K·ΔMO A similar relational expression holds for the two sensors a and b of the present invention, but a and b are added to distinguish between the two.

Δfa=ΔfaH2O+ΔfaO Δfb=ΔfbH2O+ΔfbO ここで、センサーa,bの周波数変化の差であ
る両センサの出力差ΔΔfは次式で表される。
Δf a = Δf a H 2 O+Δf a O Δf b = Δf b H 2 O+Δf b O Here, the output difference ΔΔf between both sensors, which is the difference in frequency change between sensors a and b, is expressed by the following equation.

ΔΔf=Δfa−Δfb =ΔfaH2O+ΔfaO−(ΔfbH2O+ΔfbO) 本考案のセンサは水分に対しは低感度(センサ
a)、高感度(センサb)と差があるが、有機溶
媒に対しては同一感度のものを適用するので、第
2項(有機溶媒の項)は消去できる。
ΔΔf=Δf a −Δf b =Δf a H 2 O+Δf a O−(Δf b H 2 O+Δf b O) The sensor of this invention has a low sensitivity (sensor a) and a high sensitivity (sensor b) for moisture. However, since the same sensitivity is applied to organic solvents, the second term (organic solvent term) can be eliminated.

ΔfaO−ΔfbO≒0 結局、両センサの出力差ΔΔfは次のように簡単
に表せる。
Δf a O−Δf b O≒0 In the end, the output difference ΔΔf between both sensors can be easily expressed as follows.

ΔΔf=ΔfaH2O−ΔfbH2O となり、結果的に両センサの出力差を検知するこ
とにより、共存有機溶媒の影響を除去することが
でき、この出力差に基づいて検量線や濃度換算フ
アクタを設定しておくことにより、水分について
の高精度・高確度の測定を行なうことができる。
なお、両センサの水分応答性の差ができるだけ大
きなものを選択するのが精度の点で好ましい。
ΔΔf=Δf a H 2 O−Δf b H 2 O As a result, by detecting the output difference between both sensors, the influence of the coexisting organic solvent can be removed, and based on this output difference, the calibration curve and By setting the concentration conversion factor, moisture can be measured with high precision and accuracy.
In addition, from the viewpoint of accuracy, it is preferable to select a sensor in which the difference in moisture responsiveness between the two sensors is as large as possible.

また、かかる二種のセンサは、応答性の点で、
ガス導入方向に対してその感湿面が平行となるよ
うに内蔵することが好ましい。
In addition, these two types of sensors have the following characteristics in terms of responsiveness:
It is preferable to incorporate the device so that its moisture-sensitive surface is parallel to the direction of gas introduction.

(ホ) 実施例 第1図に示す1は、この考案の水分測定セルを
用いた湿度測定装置を示す。図において湿度測定
装置1は、キヤリアガス(窒素ガス)供給路3、
液体試料気化室(4;約250℃、内容積2ml)及
び水分測定セル2をこの順に管路接続してなる。
キヤリアガス供給路3にはモレキユラーシーブを
充填してなる乾燥器31が備えられここでキヤリ
アガス中の水分は除去される。また、気化室4に
はインジエクシヨンポート41が付設されこれを
通じてシリンジ4からの液体試料が気化室4内に
注入されそこでガス化されキヤリアガスで水分測
定セル2へと移送される。
(e) Example Reference numeral 1 shown in FIG. 1 shows a humidity measuring device using the moisture measuring cell of this invention. In the figure, the humidity measuring device 1 includes a carrier gas (nitrogen gas) supply path 3,
A liquid sample vaporization chamber (4; approximately 250°C, internal volume: 2 ml) and a moisture measuring cell 2 are connected in this order through a pipe.
The carrier gas supply path 3 is equipped with a dryer 31 filled with a molecular sieve, in which water in the carrier gas is removed. Further, the vaporization chamber 4 is provided with an injection port 41 through which a liquid sample from the syringe 4 is injected into the vaporization chamber 4, where it is gasified and transferred to the moisture measuring cell 2 using a carrier gas.

水分測定セル2は、周面にガス導入口21及び
ガス排出口22を対向して備えた円筒状容器(直
径18mm×高さ12mm)からなり、その内部には円板
状の二種の湿度センサa及びbが、ガスの導入方
向(矢印)に平行になるように間隔約8mmで並設
されている。湿度センサaは、9.022MHzの円板
状水晶発振子6の両面に金電極を形成しその上に
スチレンモノマー下でプラズマ重合(1torr下、
1KHz)を、続いてN,N,N′,N′−テトラメチ
ルヘキサンジアミン下でプラズマ重合(0.7torr
下、1KHz)を行なつて約0.7μmのプラズマ重合
膜を形成させ、さらにその表面を塩化メチルガス
で6時間接触させてアンモニウム基を導入させた
感湿膜5を有する発振周波数検知型の湿度センサ
である。かかるセンサの水及び有機溶媒について
の感度は第2図aのごとくである(図中、黒丸は
水0.5μ対する感度;白丸は無水プロパノール
10μに対する感度を示す)。一方、湿度センサ
bは塩化メチルガス化学処理時間を48時間に変え
る以外、センサaと同様な条件で作製したもので
その感度は第2図bのごとくである。
The moisture measurement cell 2 consists of a cylindrical container (diameter 18 mm x height 12 mm) equipped with a gas inlet 21 and a gas outlet 22 facing each other on the circumference, and inside the container there are two disc-shaped humidity chambers. Sensors a and b are arranged parallel to the gas introduction direction (arrow) with an interval of about 8 mm. Humidity sensor a consists of gold electrodes formed on both sides of a 9.022 MHz disc-shaped crystal oscillator 6, and then plasma polymerized under styrene monomer (under 1 torr).
1KHz) followed by plasma polymerization (0.7 torr) under N,N,N',N'-tetramethylhexanediamine.
An oscillation frequency detection type humidity sensor that has a moisture sensitive film 5 in which a plasma polymerized film of approximately 0.7 μm is formed by performing a plasma-polymerized film of about 0.7 μm (see below, 1 KHz), and the surface thereof is further brought into contact with methyl chloride gas for 6 hours to introduce ammonium groups. It is. The sensitivity of this sensor to water and organic solvents is shown in Figure 2a (in the figure, black circles indicate sensitivity to 0.5 μm of water; white circles indicate sensitivity to anhydrous propanol).
(indicates sensitivity to 10μ). On the other hand, humidity sensor b was manufactured under the same conditions as sensor a, except that the chemical treatment time with methyl chloride gas was changed to 48 hours, and its sensitivity is as shown in FIG. 2b.

上記両センサa,bの出力差に基づいて差動演
算部23で導入ガス中の水分濃度の算出が行なわ
れる。すなわち、両センサa,bの周波数変化は
周波数測定器231,231′及び差動アンプ2
32によつてその差分だけが周波数/電圧変換器
233に出力されレコーダ24に記録され、この
強度に基づいて水分濃度が決定される。この際、
周波数変化の差分は前記のごとく有機溶媒の影響
を受けない実質的に水分のみによるものとなる。
Based on the output difference between the two sensors a and b, the differential calculation section 23 calculates the moisture concentration in the introduced gas. That is, the frequency changes of both sensors a and b are measured by the frequency measuring devices 231, 231' and the differential amplifier 2.
32, only the difference is output to the frequency/voltage converter 233 and recorded on the recorder 24, and the water concentration is determined based on this intensity. On this occasion,
As mentioned above, the difference in frequency change is substantially caused only by water, which is not affected by the organic solvent.

かかる装置において、実際に有機溶媒(プロパ
ノール)10μ中の水分を測定した際に得られる
ピークを第3図に示し、さらに第4図にこの装置
を用いて得られた検量線を例示した。
FIG. 3 shows the peaks obtained when water in 10 μm of an organic solvent (propanol) was actually measured using this device, and FIG. 4 shows an example of a calibration curve obtained using this device.

このように上記の水分測定セルを用いることに
より、導入ガス中に共存するプロパノールの影響
を受けることなく水分の濃度を高精度、高確度に
測定できることが分る。なお、他の有機溶媒(ア
セトン、エタノール、トリクレン)についても同
様であつた。
It can be seen that by using the moisture measuring cell described above, the concentration of moisture can be measured with high precision and accuracy without being affected by propanol coexisting in the introduced gas. The same was true for other organic solvents (acetone, ethanol, trichlene).

(ヘ) 効果 この考案の水分測定セルによれば、有機溶媒の
共存する各種試料中、場合によつては有機溶媒中
の水分濃度や量を選択的に検出することができ
る。ことに従来、共存有機溶媒の存在により制限
されていた湿度センサによる定量限界を改善する
ものであり、微量水分(ppmオーダ)の測定、管
理用として有用である。
(F) Effects According to the moisture measuring cell of this invention, it is possible to selectively detect the concentration and amount of moisture in various samples in which organic solvents coexist, and in some cases, in organic solvents. In particular, it improves the quantification limit of conventional humidity sensors, which was limited by the presence of coexisting organic solvents, and is useful for measuring and managing trace amounts of moisture (ppm order).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の水分測定セルを用いた湿
度測定装置を例示する構成説明図、第2図は、こ
の考案に用いる湿度センサの感度を説明するため
のグラフ、第3図及び第4図はそれぞれこの考案
の水分測定セルによる水分応答性を説明するため
のグラフである。 a,b……湿度センサ、2……水分測定セル、
5……感湿膜、6……水晶発振子、21……ガス
導入口、22……ガス排出口、23……差動演算
部、24……レコーダ。
FIG. 1 is a configuration explanatory diagram illustrating a humidity measuring device using the moisture measuring cell of this invention, FIG. 2 is a graph for explaining the sensitivity of the humidity sensor used in this invention, and FIGS. Each figure is a graph for explaining the moisture responsiveness of the moisture measuring cell of this invention. a, b...humidity sensor, 2...moisture measurement cell,
5...Moisture sensitive film, 6...Crystal oscillator, 21...Gas inlet, 22...Gas outlet, 23...Differential calculation section, 24...Recorder.

Claims (1)

【実用新案登録請求の範囲】 1 ガス導入口及び排出口を備え、かつハロゲン
化アルキルによる処理時間の制御により有機溶
媒に対して同一感度で水分に対して感度の異な
る二種類のプラズマ重合感湿膜を形成してなる
湿度センサを内蔵し、これらの両湿度センサの
出力差に基づいて導入ガス中の水分濃度を決定
しうる差動演算部を具備してなる水分測定セ
ル。 2 二つの湿度センサが、ガスの導入方向に対し
てその感湿面が平行となるように内蔵されてな
る実用新案登録請求の範囲第1項記載の水分測
定セル。
[Claims for Utility Model Registration] 1. Two types of plasma polymerization moisture sensitive devices equipped with a gas inlet and an outlet and having the same sensitivity to organic solvents and different sensitivities to moisture by controlling the treatment time with an alkyl halide. A moisture measuring cell comprising a built-in humidity sensor formed by forming a membrane and a differential calculation section capable of determining the moisture concentration in introduced gas based on the difference in output between these two humidity sensors. 2. The moisture measuring cell according to claim 1, which is a registered utility model, and includes two humidity sensors built in so that their humidity sensing surfaces are parallel to the gas introduction direction.
JP1985107503U 1985-07-12 1985-07-12 Expired JPH0446202Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985107503U JPH0446202Y2 (en) 1985-07-12 1985-07-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985107503U JPH0446202Y2 (en) 1985-07-12 1985-07-12

Publications (2)

Publication Number Publication Date
JPS6216455U JPS6216455U (en) 1987-01-31
JPH0446202Y2 true JPH0446202Y2 (en) 1992-10-29

Family

ID=30983845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985107503U Expired JPH0446202Y2 (en) 1985-07-12 1985-07-12

Country Status (1)

Country Link
JP (1) JPH0446202Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513088B2 (en) 2015-01-09 2019-12-24 Dsm Ip Assets B.V. Lightweight laminates and plate-carrier vests and other articles of manufacture therefrom
US11090898B2 (en) 2013-03-13 2021-08-17 Dsm Ip Assets B.V. Engineered composite systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924234A (en) * 1982-07-31 1984-02-07 Shimadzu Corp Humidity sensor and its manufacturing method
CH662421A5 (en) * 1983-07-13 1987-09-30 Suisse Horlogerie Rech Lab PIEZOELECTRIC CONTAMINATION DETECTOR.
JPH0640056B2 (en) * 1984-11-27 1994-05-25 松下電器産業株式会社 Humidity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11090898B2 (en) 2013-03-13 2021-08-17 Dsm Ip Assets B.V. Engineered composite systems
US10513088B2 (en) 2015-01-09 2019-12-24 Dsm Ip Assets B.V. Lightweight laminates and plate-carrier vests and other articles of manufacture therefrom

Also Published As

Publication number Publication date
JPS6216455U (en) 1987-01-31

Similar Documents

Publication Publication Date Title
US5447869A (en) Method of detecting bitter or odorous substances and apparatus therefor
Lin et al. Determination of albumin concentration by MIP-QCM sensor
US4312228A (en) Methods of detection with surface acoustic wave and apparati therefor
US4111036A (en) Piezoelectric probe for detection and measurement of gaseous pollutants
Luong et al. Analytical applications of piezoelectric crystal biosensors
Zhou et al. Reliable CO2 sensors with silicon-based polymers on quartz microbalance transducers
Kamel et al. Solid contact potentiometric sensors based on host-tailored molecularly imprinted polymers for creatine assessment
Guilbault Uses of the piezoelectric crystal detector in analytical chemistry
Cakir A molecularly imprinted nanofilm‐based quartz crystal microbalance sensor for the real‐time detection of pirimicarb
JPS6166160A (en) Humidity sensor and its manufacturing method
Deng et al. Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films
Dalcanale et al. Selective detection of organic compounds by means of cavitand-coated QCM transducers
Zhou et al. Mass sensitive detection of carbon dioxide by amino group-functionalized polymers
Nikolelis et al. Flow injection monitoring and analysis of mixtures of simazine, atrazine, and propazine using filter‐supported bilayer lipid membranes (BLMs)
JPH0446202Y2 (en)
Sugimoto et al. Molecular sensing using plasma polymer thin-film probes
Kuchmenko et al. Peculiarities of microweighing of trace quantities of alkylamines on polymer and solid-state thin films
Sun et al. Studies on interactions between Nafion and organic vapours by quartz crystal microbalance
Mirmohseni et al. Analysis of transient response of single quartz crystal nanobalance for determination of volatile organic compounds
Mirmohseni et al. Application of a quartz crystal nanobalance to the molecularly imprinted recognition of phenylalanine in solution
US20180080902A1 (en) Use of piezoelectric transducers modified with metal oxide-based thin films for direct detection of amine derivatives in liquid media
US20060183165A1 (en) Combination of chemical differentiators and their applications in mass sensing-based chemical sensor systems
GB2208006A (en) Gas sensing device
Kimura et al. Detection of volatile organic compounds by analyses of polymer-coated quartz crystal microbalance sensor arrays
JP3357914B2 (en) Method for detecting low molecular compounds in solution