[go: up one dir, main page]

JPH0445617B2 - - Google Patents

Info

Publication number
JPH0445617B2
JPH0445617B2 JP5779685A JP5779685A JPH0445617B2 JP H0445617 B2 JPH0445617 B2 JP H0445617B2 JP 5779685 A JP5779685 A JP 5779685A JP 5779685 A JP5779685 A JP 5779685A JP H0445617 B2 JPH0445617 B2 JP H0445617B2
Authority
JP
Japan
Prior art keywords
sheet
waterproof sheet
adhesive
underwater
steel structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5779685A
Other languages
Japanese (ja)
Other versions
JPS61216935A (en
Inventor
Toshio Shinohara
Toshimiki Tsuji
Tooru Taki
Kyobumi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo Co Ltd
Original Assignee
Dai Nippon Toryo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo Co Ltd filed Critical Dai Nippon Toryo Co Ltd
Priority to JP5779685A priority Critical patent/JPS61216935A/en
Publication of JPS61216935A publication Critical patent/JPS61216935A/en
Publication of JPH0445617B2 publication Critical patent/JPH0445617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/06Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against corrosion by soil or water

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、海洋あるいは河川等の水中鉄鋼構造
物の、シートによる表面防食、並びに該シートの
水中及び海中生物付着防止等からなる保護方法に
関するものである。 (従来の技術) 鋼矢板あるいは桟橋鋼杭等の海洋あるいは河川
で使用される構造物において、特に水中あるいは
スプラツシユゾーン部位の長期防食はあえて指摘
するまでもなく極めて重要なことである。 そのため、従来、その種の構造物に水中防食塗
料を塗布したり、あるいは水中接着剤と各種シー
トとの組合せによる複合防食法等の各種材料の使
用法又は工法が提案され、実際に行われている。 しかしながら、水中あるいはスプラツシユゾー
ン等の湿潤面に接着剤を塗布したり、あるいは接
着剤を介してシート等を圧着被覆する場合、水、
海水等の影響により使用接着剤の初期密着性が悪
く、しかも波や水の流れ等のメカニカルな障害に
より、その機能が充分発揮される前に、シート等
のずれ、はがれあるいは流失等が生じ、そため十
分な効果が期待出来なかつた。 ところで、本発明の発明者の一人は、先に、前
記の如き各種問題点を解決するために、接着剤を
塗布した防水シートを水中鉄鋼構造物表面に延展
圧着するとともに、磁力によりシートを附着させ
ることからなる保護方法を提案した。 しかしながら、この方法によつても、水中鉄鋼
構造物の水中部、あるいは水位が日時により潮の
干満により変化する部分等において、前記防水シ
ート表面上に水中又は海中生物が付着し、これら
がシート内にくい込み、終局的には防水シートを
破損してしまい、その結果長期間にわたる十分な
防食機能が期待出来なくなるという問題点が多少
あつた。 (発明が解決しようとする問題点) 本発明は、海洋あるいは河川等の水中鉄鋼構造
物の表面の防食は勿論のこと、水中部分や水面近
辺(すなわち潮の干満部)におけるシートの水中
又は海中生物付着による劣化を防止する、いうな
れば鉄鋼構造物の保護方法を提供しようとするも
のである。 (問題点を解決するための手段) 本発明の目的は、一方の面に銅箔もしくは銅合
金箔を貼着した防水シートの他方の面に空気中で
接着剤を塗布し、これを水中に搬入し、該接着剤
の塗布面を水中鉄鋼構造物の表面に又は水面より
上の湿潤面に接触させ、該水中鉄鋼構造物の表面
に該防水シートを延展し、かつ該シートの内部又
は外部に設けた永久磁石によつて該シートをその
表面に吸い着けることによつて達成される。 以下、本発明を、さらに詳細に説明する。 まず本発明の方法に使用される「防水シート」
としては、例えばクロロスルフオン化ポリエチレ
ン、ポリイソブチレン、塩化ポリエチレン、天然
ゴム、スチレンゴム、ブタジエンゴム、クロロプ
レンゴム、ブチルゴム、ニトリルゴム、アクリル
ゴム、エチレンプロピレンゴム、ウレタンゴム、
シリコーンゴム、フツ素ゴム等可撓性のあるゴム
シートあるいはプラスチツクシート等が用いられ
る。 その厚さは特に限定されない。しかし好ましく
は0.05〜10mm程度にする。又、その形状として
は、連続もしくはタイル状等、どのような形状で
あつてもよく特に限定はしない。 本発明の方法において、「防水シートを永久磁
石により鉄鋼構造物の表面に吸い着ける(保持す
る)」とは、 防水シートにあらかじめ磁性を有する粒子を
混入させておき、該防水シートを鉄鋼構造物表
面にくつつけ、防水シート中の磁性粒子と鉄と
の間に働く磁力によりシートを保持すること、
又は 防水シートを鉄鋼構造物の表面にくつつけた
後、該シート表面に永久磁石を取りつけ、鉄と
磁石の間に働く磁力により防水シートを保持す
ること(接着剤層が効力を発揮しはじめた後は
必要により永久磁石は取りはずしてもよい。) を意味する。 前者、即ち防水シートに磁性をもたせる場合に
は、一般式MO・(Fe2O3oで表わされるフエライ
ト等の磁性を有する微粒子を防水シートに混入せ
しめることで行なう。 前記一般式においてMは2価の金属又は鉛を表
わし、nは一定の整数値である。具体例としては
BaO・6Fe2O3、SrO・6Fe2O3、PbO・6Fe2O3
CaO・2Fe2O3などが挙げられる。 前記磁性を有する微粒子は、平均粒子径約0.1
〜20μm程度のものであり、それは防水シート中
に、30〜95重量%程度含有せしめる。 本発明に於いては、前述の如き素材を用いて常
法により、磁化、シート成形することにより、可
撓性を有する磁性防水シートを得ることが出来
る。 本発明においては、更に前記防水シートの一方
の面に金属箔を有しているものを用いる。該金属
箔としては、銅もしくは銅合金から選ばれた少く
とも一種の金属箔が用いられる。 前記銅もしくは銅合金箔は、厚さが0.5μ〜
1000μm程度の薄いシートであり、貼着性や現地
での防水シートの施工性等を考慮した場合、好ま
しくは50〜200μm程度のものが良い。 これらは通常の銅、もしくは銅とニツケル、亜
鉛、アルミニウム、シリコン、マンガン等の金属
との合金からなり、常法により薄いシート状とし
て使用する。 前記銅もしくは銅合金の箔は、例えば適当な接
着剤(エポキシ樹脂系、ポリウレタン樹脂系、ア
クリル樹脂系等)を介して防水シートの一方の面
上にラミネートすることにより本発明の防水シー
トにすることができる。 本発明に方法は、前記の如くして得られた防水
シートの前記被膜が形成されていない他方の面
に、接着剤を塗布するものであるが、使用する接
着剤としては一般に使用されているエポキシ樹脂
系、ウレタン樹脂系、ポリエステル樹脂系、アク
リル樹脂系等の水中硬化型接着剤の使用が好まし
い。 前記の如く、空気中で接着剤を塗布した防水シ
ートを例えば潜水者が水中に持込み、これを水中
鉄鋼構造物の表面又は水面近辺又はやゝ上位の表
面に接着させる。 接着させるに際し防水シートの外面(接着剤の
適用されていない面)を、その表面に沿つて手等
により延ばしひろげる(延展する)。そのように
することによつて構造物表面と接着剤間の水が排
除され、接着剤は「初期接着作用」を示すように
なる。 その際、防水シートに磁性をもたせることによ
り鉄鋼構造物表面に全面的に吸い着ける。又、別
の態様として、防水シートそれ自体に磁性がない
場合には、永久磁石により防水シートの外面を押
えて磁力によつて該鉄鋼構造物表面に吸い着け
る。 前記初期接着がなされた後、防水シートは、時
間がたつに従い接着剤により構造物表面に固着さ
れる。尚、防水シート自身に磁力がある場合には
該磁力によつて固着効果は一層向上する。 かくして、本発明の方法によれば、使用する接
着剤が完全に硬化しその機能を発揮する迄の間
に、波や水流等の外部障害によつて防水シートが
ずれたり、剥離、流失することがなく、また前述
の防水シートの構成から明白な如く、その十分な
防食効果を発揮せしめることが出来るとともに、
水中及び海中生物付着による防水シートの劣化を
防ぐことが出来る。従つて、長期間にわたり鉄鋼
構造物を保護することが可能である。 更に、本発明の方法を、例えば水中における生
簀や魚貝類の養殖場の鋼製棚や支柱に施した場
合、銅もしくは銅合金が本来有する殺菌作用によ
り、魚貝類の病気等を防止する効果も期待され
る。 以下、本発明の詳細を実施例によりさらに具体
的に説明する。 尚、「部」又は「%」は「重量部」又は「重量
%」をもつて示す。 実施例 1 粒子径1〜5μmのバリウムフエライト90%と
塩化ポリエチレン10%を混練し、常法によりシー
ト成形して得た厚さ1mmの磁性シートの一方の面
上にエポキシ樹脂系接着剤を塗布した後、厚さ
50μmの銅箔をラミネートし、防水シートを得
た。ついで前記シートの他の一面に防食用水中接
着剤(エポキシ樹脂系)を塗布した。次に、これ
をウオーターサイドブラストにより素地調整し
た、桟橋の鋼製橋脚、飛沫・干満部および海中部
に巻きつけた。その際素地と接着剤間の気泡や海
水がなくなるよう手で十分圧着を行なつた。これ
を放置し、12ケ月後にテスト及び観察を行つた。
その結果は、第1表に示した。 実施例 2 前記実施例1と同様な磁性シートの一方の面に
エポキシ樹脂系接着剤を塗布した後、厚さ100μ
mの銅合金(銅−ニツケル)箔をラミネートし、
防水シートを得た。ついで実施例1と同様に施工
し、12ケ月後にテスト及び観察を行つた。その結
果は第1表に示した。 実施例 3 金属箔ラミネート材として厚さ200μmの銅箔
を使用する以外は実施例1と全く同様にし防水シ
ートの作製、施工を行い、12ケ月後にテスト及
び、観察を行つた。 その結果は第1表に示した。 比較例 磁気を帯びない一般のゴムシート(厚さ0.6mm)
に銅又は銅合金箔をラミネートせず、あとは実施
例1と同様にして施工した。 12ケ月後のテスト及び観察結果を第1表に示し
た。
(Industrial Application Field) The present invention relates to a method for protecting the surface of underwater steel structures in the ocean, rivers, etc. by using a sheet, and preventing the sheet from adhering to underwater and marine organisms. (Prior Art) In structures used in the ocean or rivers, such as steel sheet piles or pier steel piles, it goes without saying that long-term corrosion protection, especially in underwater or splash zone areas, is extremely important. For this reason, methods for using various materials or construction methods have been proposed, such as applying underwater anti-corrosion paint to such structures, or composite anti-corrosion methods using underwater adhesives and various sheets. There is. However, when applying an adhesive to a wet surface such as underwater or a splash zone, or when applying adhesive to a sheet etc. using an adhesive, water,
The initial adhesion of the adhesive used is poor due to the influence of seawater, etc., and mechanical obstacles such as waves and water currents may cause sheets to shift, peel, or be washed away before they can fully demonstrate their functions. Therefore, sufficient effects could not be expected. By the way, in order to solve the various problems mentioned above, one of the inventors of the present invention previously developed a method in which a waterproof sheet coated with an adhesive was stretched and crimped onto the surface of an underwater steel structure, and the sheet was attached using magnetic force. We proposed a protection method that consists of However, even with this method, underwater or marine organisms may adhere to the surface of the tarpaulin sheet in the underwater part of the underwater steel structure or in areas where the water level changes depending on the day and time due to the ebb and flow of the tide. There were some problems in that the tarpaulin sheet could become wedged in and eventually be damaged, and as a result, it could no longer be expected to have sufficient anti-corrosion properties over a long period of time. (Problems to be Solved by the Invention) The present invention is useful not only for preventing corrosion on the surface of underwater steel structures in the ocean or rivers, but also for preventing corrosion of sheets in underwater parts or near the water surface (i.e., at low and low tides). The aim is to provide a method of protecting steel structures, which prevents deterioration due to biofouling. (Means for Solving the Problems) The object of the present invention is to apply an adhesive in air to the other side of a waterproof sheet with copper foil or copper alloy foil pasted on one side, and then immerse it in water. The adhesive-coated surface is brought into contact with the surface of the underwater steel structure or the wet surface above the water surface, and the waterproof sheet is spread on the surface of the underwater steel structure, and the inside or outside of the sheet is This is accomplished by attracting the sheet to its surface by means of permanent magnets located on the surface. The present invention will be explained in more detail below. First, the "waterproof sheet" used in the method of the present invention
Examples include chlorosulfonated polyethylene, polyisobutylene, chlorinated polyethylene, natural rubber, styrene rubber, butadiene rubber, chloroprene rubber, butyl rubber, nitrile rubber, acrylic rubber, ethylene propylene rubber, urethane rubber,
A flexible rubber sheet such as silicone rubber or fluorine rubber, or a plastic sheet is used. Its thickness is not particularly limited. However, it is preferably about 0.05 to 10 mm. Further, the shape thereof is not particularly limited and may be any shape such as continuous or tiled. In the method of the present invention, "attracting (holding) the waterproof sheet to the surface of the steel structure with a permanent magnet" means that magnetic particles are mixed in the waterproof sheet in advance, and the waterproof sheet is attached to the surface of the steel structure. The sheet is held by the magnetic force acting between the magnetic particles in the tarpaulin sheet and the iron by attaching it to the surface.
Or, after attaching a waterproof sheet to the surface of a steel structure, a permanent magnet is attached to the surface of the sheet, and the waterproof sheet is held by the magnetic force acting between the iron and the magnet (until the adhesive layer begins to take effect). Afterwards, the permanent magnet may be removed if necessary.) In the former case, that is, to impart magnetism to the waterproof sheet, magnetic particles such as ferrite represented by the general formula MO.(Fe 2 O 3 ) o are mixed into the waterproof sheet. In the general formula, M represents a divalent metal or lead, and n is a constant integer value. A specific example is
BaO・6Fe 2 O 3 , SrO・6Fe 2 O 3 , PbO・6Fe 2 O 3 ,
Examples include CaO・2Fe 2 O 3 . The magnetic fine particles have an average particle diameter of about 0.1
It has a diameter of about 20 μm, and is contained in the waterproof sheet in an amount of about 30 to 95% by weight. In the present invention, a flexible magnetic waterproof sheet can be obtained by magnetizing and forming a sheet using the above-mentioned materials in a conventional manner. In the present invention, the waterproof sheet further has a metal foil on one side. As the metal foil, at least one type of metal foil selected from copper or copper alloy is used. The copper or copper alloy foil has a thickness of 0.5μ~
It is a thin sheet of about 1000 μm, and preferably about 50 to 200 μm in consideration of adhesion and on-site workability of the waterproof sheet. These are made of ordinary copper or an alloy of copper and a metal such as nickel, zinc, aluminum, silicon, or manganese, and are used in the form of a thin sheet by a conventional method. The copper or copper alloy foil is laminated onto one side of the waterproof sheet using, for example, a suitable adhesive (epoxy resin, polyurethane resin, acrylic resin, etc.) to form the waterproof sheet of the present invention. be able to. In the method of the present invention, an adhesive is applied to the other surface of the waterproof sheet obtained as described above, on which the coating is not formed. It is preferable to use underwater curable adhesives such as epoxy resin, urethane resin, polyester resin, and acrylic resin. As described above, a diver, for example, brings a waterproof sheet coated with an adhesive in the air into the water and adheres it to the surface of an underwater steel structure, or to a surface near or slightly above the water surface. When adhering, the outer surface of the waterproof sheet (the surface to which no adhesive is applied) is stretched (spread) along the surface by hand or the like. By doing so, water between the structure surface and the adhesive is eliminated and the adhesive becomes "incipient adhesive." At that time, by making the waterproof sheet magnetic, it can be completely attached to the surface of the steel structure. Alternatively, if the waterproof sheet itself does not have magnetism, a permanent magnet presses the outer surface of the waterproof sheet and the waterproof sheet is attracted to the surface of the steel structure by magnetic force. After the initial adhesion is performed, the waterproof sheet is fixed to the surface of the structure by an adhesive over time. Incidentally, when the waterproof sheet itself has magnetic force, the fixing effect is further improved by the magnetic force. Thus, according to the method of the present invention, the waterproof sheet will not shift, peel off, or be washed away due to external disturbances such as waves or water flow until the adhesive used is completely cured and exhibits its function. As is clear from the structure of the waterproof sheet described above, it is possible to exhibit sufficient anticorrosion effect, and
It is possible to prevent deterioration of the tarpaulin sheet due to adhesion of underwater and marine organisms. Therefore, it is possible to protect steel structures for a long period of time. Furthermore, when the method of the present invention is applied to, for example, steel shelves or supports of underwater fish pens or fish and shellfish farms, it is also effective in preventing diseases of fish and shellfish due to the inherent bactericidal action of copper or copper alloys. Be expected. Hereinafter, the details of the present invention will be explained in more detail with reference to Examples. Note that "parts" or "%" are expressed as "parts by weight" or "% by weight." Example 1 An epoxy resin adhesive was applied on one side of a 1 mm thick magnetic sheet obtained by kneading 90% barium ferrite with a particle size of 1 to 5 μm and 10% polyethylene chloride and forming it into a sheet using a conventional method. After that, the thickness
A waterproof sheet was obtained by laminating a 50 μm copper foil. Then, an anticorrosive underwater adhesive (epoxy resin type) was applied to the other side of the sheet. Next, this was wrapped around the steel piers of the pier, the splash/tidal area, and the underwater area, which had been prepared by waterside blasting. At that time, sufficient pressure was applied by hand to eliminate air bubbles and seawater between the substrate and the adhesive. This was left as it was, and tests and observations were conducted after 12 months.
The results are shown in Table 1. Example 2 After applying an epoxy resin adhesive to one side of the same magnetic sheet as in Example 1 above, a magnetic sheet with a thickness of 100 μm was applied.
Laminated with m copper alloy (copper-nickel) foil,
Got a tarpaulin. Construction was then carried out in the same manner as in Example 1, and tests and observations were conducted 12 months later. The results are shown in Table 1. Example 3 A waterproof sheet was prepared and installed in the same manner as in Example 1, except that a 200 μm thick copper foil was used as the metal foil laminate material, and tests and observations were conducted 12 months later. The results are shown in Table 1. Comparative example: Non-magnetic general rubber sheet (thickness 0.6mm)
The work was carried out in the same manner as in Example 1, except that copper or copper alloy foil was not laminated on the surface. The test and observation results after 12 months are shown in Table 1.

【表】【table】

【表】 * エルコメーター社製アドヒージヨンテスターにて
測定。
前記比較試験結果表より、本発明の方法によれ
ば、水中又は海中生物付着による磁性シートの破
損等を防止出来ることが明らかである。またその
結果、より長期間にわたり水中鉄鋼構造物の保護
が可能であることが明瞭である。
[Table] * Measured using an Elcometer adhesion tester.
From the above comparative test results table, it is clear that according to the method of the present invention, damage to the magnetic sheet due to adhesion of underwater or marine organisms can be prevented. It is also clear that as a result, it is possible to protect underwater steel structures for a longer period of time.

Claims (1)

【特許請求の範囲】 1 一方の面に銅箔もしくは銅合金箔を貼着した
防水シートの他方の面に、空気中で接着剤を塗布
し、次に該接着剤の塗布面を水中鉄鋼構造物の表
面に又は水面より上の鉄鋼構造物の湿潤面に接触
させ、該鉄鋼構造物の表面に該防水シートを延展
し、かつ該シートの内部又は外部に設けた永久磁
石によつて該シートをその表面に吸い着けること
を特徴とする鉄鋼構造物の保護方法。 2 防水シートは、磁性粒子を含有している特許
請求の範囲第1項記載の鉄鋼構造物の保護方法。
[Claims] 1. Apply an adhesive in the air to the other side of a waterproof sheet with copper foil or copper alloy foil pasted on one side, and then apply the adhesive to the underwater steel structure. The waterproof sheet is brought into contact with the surface of an object or the wet surface of a steel structure above the water surface, the waterproof sheet is spread over the surface of the steel structure, and the sheet is heated by a permanent magnet provided inside or outside of the sheet. A method for protecting steel structures, characterized by adhering them to their surfaces. 2. The method for protecting a steel structure according to claim 1, wherein the waterproof sheet contains magnetic particles.
JP5779685A 1985-03-22 1985-03-22 Steel structure protection law Granted JPS61216935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5779685A JPS61216935A (en) 1985-03-22 1985-03-22 Steel structure protection law

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5779685A JPS61216935A (en) 1985-03-22 1985-03-22 Steel structure protection law

Publications (2)

Publication Number Publication Date
JPS61216935A JPS61216935A (en) 1986-09-26
JPH0445617B2 true JPH0445617B2 (en) 1992-07-27

Family

ID=13065854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5779685A Granted JPS61216935A (en) 1985-03-22 1985-03-22 Steel structure protection law

Country Status (1)

Country Link
JP (1) JPS61216935A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994891B2 (en) * 2004-06-14 2006-02-07 Murray Ginsberg Method for producing an epoxy composition
CN105415841A (en) * 2015-12-24 2016-03-23 浙江明士达新材料有限公司 High-strength soft protective band for steel structure
CN111560920A (en) * 2020-05-18 2020-08-21 中国水利水电第四工程局有限公司 Construction method of water-stop copper plate

Also Published As

Publication number Publication date
JPS61216935A (en) 1986-09-26

Similar Documents

Publication Publication Date Title
DE602004014978D1 (en) ANTIFOULING APPLICATION FOR SHIP BOXES AND METHOD FOR APPLYING THEREOF
JPH0445617B2 (en)
WO1999025929A1 (en) Method for preventing deterioration of submarine structure and ultrasonic vibration unit used for the method
JPS60209505A (en) Adhesive material for preventing adhesion of organism
JP3349119B2 (en) Long-term corrosion protection for offshore steel structures
JPH10157002A (en) Composite material of zinc and magnet-contained rubber or plastics
JPS61260001A (en) Antifouling plate
GB1570842A (en) Marking device
JPS5829916A (en) Corrosion prevention construction method for marine steel structures
JP3555878B2 (en) How to use antifouling paint, tape or sheet
JPS61216934A (en) How to protect steel structures
JP2680113B2 (en) Multi-layer coated steel pipe pile
JP2001152475A (en) Covering corrosion-proof transparent cover
JPS6316074A (en) Method for painting iron plate
JPS60112906A (en) Underwater structure
JP3400159B2 (en) Heavy corrosion protection coated steel
JPS61215041A (en) How to protect steel structures
CN106592782A (en) Water and corrosion preventing treatment method for building
JPS6043532A (en) Anticorrosive work for marine structure
JPH0725047U (en) Protective cover for anticorrosion and antifouling of steel structures
JPS59156893A (en) Method of preventing corrosion and contamination of outside plating of ship body or the like
JPS6113698A (en) Method of producing radio wave absorber
JPH042737B2 (en)
JPS59157160A (en) Method for protecting exterior plate such as ship hull from corrosion and fouling
JPS57143368A (en) Forming of antifouling layer to structure surface