[go: up one dir, main page]

JPH044553A - Manufacture of radiation detector - Google Patents

Manufacture of radiation detector

Info

Publication number
JPH044553A
JPH044553A JP10545990A JP10545990A JPH044553A JP H044553 A JPH044553 A JP H044553A JP 10545990 A JP10545990 A JP 10545990A JP 10545990 A JP10545990 A JP 10545990A JP H044553 A JPH044553 A JP H044553A
Authority
JP
Japan
Prior art keywords
electrode
thick film
space
film printing
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10545990A
Other languages
Japanese (ja)
Other versions
JP2661769B2 (en
Inventor
Yoshibumi Takeshita
竹下 義文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2105459A priority Critical patent/JP2661769B2/en
Publication of JPH044553A publication Critical patent/JPH044553A/en
Application granted granted Critical
Publication of JP2661769B2 publication Critical patent/JP2661769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To prevent drop of signal quality due to inhomogeneity of ionized space and deterioration of the anti-vibration performance and accomplish shortening of the construction term, suppression of the production costs, and stabilization of the quality by forming an anode electrode and a cathode electrode either by the thick film printing means or by photo-lighographic means. CONSTITUTION:An anode electrode 22 and a cathode electrode 23 are formed on an insulative plate 21 and 24, respectively, using either the thick film printing technique or photo-lighographic technique. A space for electrode is filled with ionized gas 25, example of which is inert gas such as neon, argon, and xenon. The inter-electrode distance is held by pinching with an insulation or a rib structure of low melting point glass which is formed alike by the thick film printing technique or photo-lithographic technique. Therefore, the inter-electrode distance and ionization space can be controlled with high precision. This prevents drop of signal quality due to inhomogeneity of the ionized space and deterioration of the anti-vibration performance, shortens the construction term, suppresses the production cost, and stabilizes the quality of the products.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、放射線検出器の製造方法に関し、さらに詳
しくいうと、アノード電極とカソード電極がXYマトリ
クス形状に配置されている放射線検出器の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a radiation detector, and more specifically, to a method for manufacturing a radiation detector in which an anode electrode and a cathode electrode are arranged in an XY matrix shape. It is about the method.

[従来の技術] 第4図、第5図は、例えばノース・ホーランドパブリッ
シング カンパニー(NORT)I−)10LLAND
PUBLIS)IING Co、)発行「原子核機器お
よび方法(NUCLEARINSTRUMENTS A
ND MET)IODs )第141巻(1977)P
、505〜509」に記載された従来のアノード電極と
、カソード電極がxYマトリクス形状に配置され放射線
の2次元分布の検出を可能とした放射線検出器である。
[Prior Art] Figures 4 and 5 show, for example, North Holland Publishing Company (NORT) I-) 10LLAND.
Nuclear Instruments and Methods (NUCLEARINSTRUMENTS A) published by PUBLIS IING Co.
ND MET) IODs) Volume 141 (1977) P
, 505-509'' is a radiation detector in which an anode electrode and a cathode electrode are arranged in an xY matrix shape, making it possible to detect a two-dimensional distribution of radiation.

この放射線検出器は、絶縁体のフレーム(1)によって
XYマトリクス形状のアノード電極(2)と、カソード
電極(3)が絶縁保持され、これを絶縁板(4)および
(5)で挟み、気密封着されている。この放射線検出器
内空間には、ネオン、アルゴン、キセノン等の不活性ガ
ス(6)が電離ガスとして封入されている。
In this radiation detector, an XY matrix-shaped anode electrode (2) and a cathode electrode (3) are insulated and held by an insulating frame (1), and these are sandwiched between insulating plates (4) and (5). It is sealed. An inert gas (6) such as neon, argon, or xenon is sealed as an ionized gas in the radiation detector interior space.

以上の構成になる放射線検出器の2次元分布の検゛出の
動作原理に関しては、中性子検出もX線やγ線の電離放
射線の検出も同じなので、以下では主にX線やγ線の電
離放射線の検出について説明する。X線や、γ線が検出
器の電極を構成する金属または電離用ガス(6)に当た
ると、光電効果、コンプトン効果、電子対生成のいずれ
かの過程により高エネルギーの電子を放出する。この高
エネルギーの電子が電離用ガス(6)を電離してイオン
対を作る。このイオン対は、イオン対の生成された領域
に対応するXYマトリクスの交点に配置されたアノード
電極(2)と、カンード電i (3)との間に印加され
た電圧に伴う電界により、正イオンはカソード電極(3
)に、電子は7ノード電極(2)に集められ、これが外
部測定回路を流れる信号電流として測定される。
Regarding the operating principle of detecting a two-dimensional distribution of the radiation detector configured as above, the principle of operation for detecting ionizing radiation of X-rays and γ-rays is the same for neutron detection and detection of ionizing radiation such as X-rays and γ-rays. Radiation detection will be explained. When X-rays or γ-rays hit the metal or ionizing gas (6) constituting the detector electrode, high-energy electrons are emitted by one of the processes of photoelectric effect, Compton effect, and electron pair generation. These high-energy electrons ionize the ionizing gas (6) to form ion pairs. This ion pair is generated positively by the electric field associated with the voltage applied between the anode electrode (2) placed at the intersection of the XY matrix corresponding to the region where the ion pair is generated and the candid electrode i (3). Ions are transferred to the cathode electrode (3
), electrons are collected at the seven-node electrode (2), which is measured as a signal current flowing through an external measurement circuit.

[発明が解決しようとする課題] 以上のような従来の放射線検出器は、構造が複雑で、そ
のためほとんどの製造工程を人手に頼っていたため、生
産性が上がらず、生産コストが高くなるといった問題や
、各電極を空間中に配置するため、電離空間の不均一性
による信号の質の低下および耐振動性能が劣る等の問題
があった。
[Problems to be solved by the invention] Conventional radiation detectors as described above have a complicated structure, and most of the manufacturing process relies on manual labor, resulting in problems such as low productivity and high production costs. Moreover, since each electrode is arranged in a space, there are problems such as deterioration of signal quality due to non-uniformity of ionization space and poor vibration resistance performance.

この発明は上記のような問題点を解消するためになされ
たもので、低生産コストと、安定した特性を有する放射
線検出器の製造方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a method for manufacturing a radiation detector having low production costs and stable characteristics.

[課題を解決するための手段] この発明に係る放射線検出器の製造方法は、近年各種の
電子デバイスの製造に用いられて発達した厚膜印刷技術
またはフォトリソグラフィ技術を用いて主要構造である
XYマトリクス形状のアノード電極とカソード電極を形
成する。
[Means for Solving the Problems] A method for manufacturing a radiation detector according to the present invention uses thick film printing technology or photolithography technology that has been developed in recent years to be used in the manufacture of various electronic devices. A matrix-shaped anode electrode and cathode electrode are formed.

「作 用] この発明においては 主要構造であるXYマトリクス形
状のアノード電極とカソード電極を厚膜印刷技術または
フォトリソグラフィ技術を用いて形成することにより、
また電離空間が、リブ構造で仕切られることにより、@
極間距離および電離空間が高い精度で制御され、従来あ
った電離空間の不均一性による信号の質の低下、及び耐
振動性能が劣る等の問題が解消され、同時に位置分解能
も向上する6 [実施例] 以下、この発明の一実施例を第1図、第2図を参照して
説明する1図において絶縁板(21)と(24)はそれ
ぞれ前記の第4図、第5図の絶縁板(4)、(5)に対
応する。アノード電極(22)、カソード電極(23)
はそれぞれ前記の第4図、第5図のアノード電極(2)
とカソード電極(3)に対応し、アノード電極(22)
は絶縁板(21)上に、カソード電極(23)は絶縁板
(24)上に、それぞれ厚膜印刷技術またはフォトリソ
グラフィ技術を用いて形成される。電極用空間には電離
ガス(25)が充填されており、電離ガスとしては従来
と同じくネオン、アルゴン、キセノン等の不活性ガスを
用いる。電離間距離は同じく厚膜印刷技術またはフォト
リソグラフィ技術を用いて形成された低融点ガラスのリ
ブ構造(26)や絶縁物を挟むことで保持される。低融
点ガラスはまた本放射線検出器の気密封着にも使われる
"Function" In this invention, by forming the anode electrode and cathode electrode in the XY matrix shape, which are the main structures, using thick film printing technology or photolithography technology,
In addition, the ionized space is partitioned by a rib structure, so that @
The distance between the poles and the ionization space are controlled with high precision, eliminating the conventional problems such as deterioration of signal quality due to non-uniformity of the ionization space and poor vibration resistance performance, and at the same time improving the position resolution6 [ Embodiment] Hereinafter, an embodiment of the present invention will be explained with reference to FIGS. 1 and 2. In FIG. Corresponds to plates (4) and (5). Anode electrode (22), cathode electrode (23)
are the anode electrodes (2) in FIGS. 4 and 5, respectively.
corresponds to the cathode electrode (3) and the anode electrode (22)
are formed on the insulating plate (21), and the cathode electrode (23) is formed on the insulating plate (24) using thick film printing technology or photolithography technology, respectively. The electrode space is filled with an ionized gas (25), and an inert gas such as neon, argon, or xenon is used as the ionized gas in the conventional case. The ionization distance is maintained by sandwiching an insulating material and a rib structure (26) of low melting point glass, which is also formed using thick film printing technology or photolithography technology. Low-melting glass is also used for the hermetic sealing of the radiation detector.

このようにして厚膜印刷技術またはフォトリソグラフィ
技術を用いて放射線検出器の主要構造であるXYマトリ
クス形状のアノード電極(22)とカソード(23)を
形成した放射線検出器は、従来最も製作期間の長く手作
業に頼ってきた電極部の組み立て工程をアノード電極(
22)、カソード電極(23)を厚膜印刷技術またはフ
ォトリソグラフィ技術を用いて絶縁板に各個に形成した
のち、2枚の絶縁板(21)(24)同士を位置合わせ
し、封着する工程に置き換えることによって、工期、コ
スト、品質の安定の面で大幅な改善が達成される。
Radiation detectors in which the main structure of the radiation detector, the anode electrode (22) and cathode (23) in the XY matrix shape, are formed using thick film printing technology or photolithography technology in this way, require the longest manufacturing period. The assembly process of the electrode part, which has long relied on manual labor, has now been replaced by an anode electrode (
22) After forming cathode electrodes (23) individually on insulating plates using thick film printing technology or photolithography technology, aligning and sealing two insulating plates (21) and (24) together. By replacing it with , significant improvements can be achieved in terms of construction period, cost, and quality stability.

なお、上記実施例では、X線やγ線の電離放射線に感度
を有する放射線検出器について示したが、他の実施例と
して第3図に示すように、同構造の放射線検出器のカソ
ード電極(23)表面にポロン10同位体を濃縮したL
asg(27)をコートすれば、中性子感度を持たすこ
とが可能である。また2枚の絶縁板(21)(24)同
士の位置合わせを容易にするため絶縁板の少なくとも一
方を透明な、例えばガラス板としてもよい。
In the above embodiment, a radiation detector sensitive to ionizing radiation such as X-rays and γ-rays was shown, but as shown in FIG. 23) L with enriched poron-10 isotope on the surface
If coated with asg(27), it is possible to have neutron sensitivity. Further, in order to facilitate alignment between the two insulating plates (21) and (24), at least one of the insulating plates may be a transparent plate, for example, a glass plate.

[発明の効果] 以上のように、この発明によれば、厚膜印刷技術または
フォトリソグラフィ技術を用いて主要構造であるXYマ
トリクス形状のアノード電極とカソード電極を形成する
ことにより、工期、コスト、品質の安定の面で大幅な改
善が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, by forming the anode electrode and cathode electrode in the XY matrix shape, which are the main structures, using thick film printing technology or photolithography technology, the construction period, cost, and This has the effect of significantly improving quality stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を説明するための要部破断
斜視図、第2図は同じく横断面図、第3図は他の実施例
を説明するための横断面図、第4図は従来の放射線検出
器の部分破断斜視図、第5図は同じく横断面図である。 (21)・・絶縁板、(22)・・アノード電極、(2
3)・・カソード電極、(24)・・絶縁板、(25)
・・電離ガス、(26)−−リブ、(27) ・・La
Bg。 なお、各図中、同一符号は同−又は相当部分を示す。 代  理  人     曾  我  道  魚節1図 第2図 2づ 第3図
Fig. 1 is a cutaway perspective view of essential parts for explaining one embodiment of the present invention, Fig. 2 is a cross-sectional view of the same, Fig. 3 is a transverse cross-sectional view for explaining another embodiment, and Fig. 4 5 is a partially cutaway perspective view of a conventional radiation detector, and FIG. 5 is a cross-sectional view of the same. (21)...Insulating plate, (22)...Anode electrode, (2
3)...Cathode electrode, (24)...Insulating plate, (25)
・・Ionized gas, (26)--rib, (27) ・・La
Bg. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Zeng Wa Dao Figure 1, Figure 2, Figure 2, Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)放電空間を隔ててXYマトリクス形状に配置され
たアノード電極およびカソード電極と、この両電極を保
持すると共に絶縁と放電空間の気密性を維持する絶縁板
とからなり、上記放電空間に電離ガスを充填した平板型
の放射線検出器の製造方法において、上記アノード電極
および上記カソード電極を、厚膜印刷手段およびフォト
リソグラフィ手段のいずれかにより形成することを特徴
とする放射線検出器の製造方法。
(1) Consists of an anode electrode and a cathode electrode arranged in an XY matrix shape with a discharge space separated from each other, and an insulating plate that holds both electrodes and maintains insulation and airtightness of the discharge space. A method for manufacturing a gas-filled flat plate type radiation detector, characterized in that the anode electrode and the cathode electrode are formed by either thick film printing means or photolithography means.
JP2105459A 1990-04-23 1990-04-23 Radiation detector Expired - Lifetime JP2661769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105459A JP2661769B2 (en) 1990-04-23 1990-04-23 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105459A JP2661769B2 (en) 1990-04-23 1990-04-23 Radiation detector

Publications (2)

Publication Number Publication Date
JPH044553A true JPH044553A (en) 1992-01-09
JP2661769B2 JP2661769B2 (en) 1997-10-08

Family

ID=14408167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105459A Expired - Lifetime JP2661769B2 (en) 1990-04-23 1990-04-23 Radiation detector

Country Status (1)

Country Link
JP (1) JP2661769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032510A (en) * 2006-07-28 2008-02-14 Toshiba Corp Radioactivity measuring instrument and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169077A (en) * 1982-03-31 1983-10-05 Shimadzu Corp Scintillation camera
JPS60112069U (en) * 1983-12-31 1985-07-29 株式会社島津製作所 radiation detector
JPS6383759U (en) * 1986-11-21 1988-06-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169077A (en) * 1982-03-31 1983-10-05 Shimadzu Corp Scintillation camera
JPS60112069U (en) * 1983-12-31 1985-07-29 株式会社島津製作所 radiation detector
JPS6383759U (en) * 1986-11-21 1988-06-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032510A (en) * 2006-07-28 2008-02-14 Toshiba Corp Radioactivity measuring instrument and method

Also Published As

Publication number Publication date
JP2661769B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US6437513B1 (en) Ionization chamber for ion beams and method for monitoring the intensity of an ion beam
Oed Properties of micro-strip gas chambers (MSGC) and recent developments
EP0198659B1 (en) Kinestatic charge detection using synchronous displacement of detecting device
Marino et al. Charge transfer between positive cesium ions and cesium atoms
JPH044553A (en) Manufacture of radiation detector
JPH0335634B2 (en)
CA1214287A (en) Ion chamber with a flat sensitivity response characteristic
JP2003207573A (en) Ionization radiation detector and manufacturing method of detector
JP2723391B2 (en) Charged particle beam monitor
US3193724A (en) Ionization manometer
US2852694A (en) Ionization chamber
US2485516A (en) Shallow plane proportional counter
US2595622A (en) Fission indicator
US3030538A (en) Ionisation chamber
Harvey et al. A coincidence time-of-flight mass spectrometer
US2834899A (en) Radioactive resistor
JP3589766B2 (en) Proportional counter
Richards Ionization in Liquids due to Alpha Particles
US3570000A (en) Gas-filled cold-cathode indicator display tube
JPS6021813Y2 (en) Ionization chamber type X-ray detector
JPH0554850A (en) Radiation detector
JPS63190299A (en) plasma equipment
JPH03245449A (en) Discharge stabilizing penning discharge electrode
JPH0311543A (en) Radiation detector
JPS646709B2 (en)