JPH044519A - Compound superconducting stranded wire and manufacture thereof - Google Patents
Compound superconducting stranded wire and manufacture thereofInfo
- Publication number
- JPH044519A JPH044519A JP2104657A JP10465790A JPH044519A JP H044519 A JPH044519 A JP H044519A JP 2104657 A JP2104657 A JP 2104657A JP 10465790 A JP10465790 A JP 10465790A JP H044519 A JPH044519 A JP H044519A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- conductor
- wire
- wires
- stabilizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title description 10
- 150000001875 compounds Chemical class 0.000 title description 7
- 239000004020 conductor Substances 0.000 abstract description 67
- 238000009792 diffusion process Methods 0.000 abstract description 16
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 8
- 238000002844 melting Methods 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 230000008018 melting Effects 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 230000000087 stabilizing effect Effects 0.000 description 27
- 238000011065 in-situ storage Methods 0.000 description 22
- 239000002131 composite material Substances 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 20
- 239000011247 coating layer Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 8
- 230000002265 prevention Effects 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 235000003823 Petasites japonicus Nutrition 0.000 description 1
- 240000003296 Petasites japonicus Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は超電導発電機などの超電導応用機器に用いら
れる化合物系超電導撚線およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a compound-based superconducting stranded wire used in superconducting applied equipment such as a superconducting generator, and a method for manufacturing the same.
「従来の技術」
超電導線においては量子磁束線の運動などに起因して発
熱を生じる場合があり、このような場合に超電導線に部
分的に常電導の芽が発生し、超電導線の全体が常電導状
態に転位するおそれがある。``Prior art'' In superconducting wires, heat may be generated due to the movement of quantum magnetic flux lines, etc. In such cases, buds of normal conductivity occur partially in the superconducting wire, and the entire superconducting wire becomes There is a risk of transition to a normally conducting state.
そこで従来、このような磁気的不安定性および常電導転
位などを防止して超電導線を安定化するために、以下に
記載する技術が採用されている。Therefore, in order to stabilize superconducting wires by preventing such magnetic instability and normal conductive dislocations, the techniques described below have been employed.
■超電導体をCuなどの良導電性の安定化母材の内部に
埋設する。特に、安定化母材を高純度の銅から形成する
。■ Embed the superconductor inside a stable base material with good conductivity such as Cu. In particular, the stabilizing matrix is formed from high purity copper.
■超電導体を数μ〜数十μmの径のフィラメント状に極
細化する。(2) Ultra-fine superconductors into filament shapes with diameters of several micrometers to several tens of micrometers.
■多心線をツイスト加工する。■Twisting multi-core wires.
■編組や成彩撚線の構造を採用する。■Use braided or stranded wire structures.
■金属間化合物系の超電導体は極めて硬く、脆いので、
機械歪が加わると超電導特性が劣化する傾向があり、こ
のため超電導線に補強材を添設して機械歪が加わること
を阻止する。■Intermetallic compound superconductors are extremely hard and brittle, so
When mechanical strain is applied, superconducting properties tend to deteriorate, so reinforcing materials are attached to superconducting wires to prevent mechanical strain from being applied.
以上のような背景から、従来、交流用の超電導線の一構
造−例として、N b−T i線等の線材を撚線化する
方法などが採用されているが、N bi S nなどの
化合物系の超電導線材は機械歪に弱い欠点があり、直に
撚線化することは困難であるために、交流用などとして
好適な構造の超電導撚線を製造するための技術開発が進
ぬられている。From the above background, conventionally, as an example of the structure of AC superconducting wire, a method of stranding wires such as Nb-Ti wires has been adopted, but Compound-based superconducting wires have the disadvantage of being susceptible to mechanical strain, and it is difficult to strand them directly. Therefore, technological development has not progressed to produce superconducting stranded wires with a structure suitable for AC applications. ing.
このような背景において、N bs S n系の超電導
撚線を製造する方法の一例として、第3図ないし第6図
を基に以下に説明する方法が知られている。In this background, the method described below based on FIGS. 3 to 6 is known as an example of a method for manufacturing N bs S n-based superconducting stranded wires.
第3図に示すようにCuまたはCu合金からなる基地の
内部にNbの極細フィラメントを多数分散してなる素線
lを作製し、次いてこの素線1の外面に第4図に示すよ
うに純Snの被覆層2を形成して複合!3を作製する。As shown in FIG. 3, a strand 1 is prepared by dispersing a large number of Nb ultra-fine filaments inside a base made of Cu or Cu alloy, and then the outer surface of this strand 1 is coated with strands as shown in FIG. 4. Composite by forming pure Sn coating layer 2! 3.
次にこの複合線3を第5図に示すように複数本集合して
集合線4を得、この集合線4を複数本揃え、撚線加工し
て第6図に示す撚線5を得る。Next, a plurality of composite wires 3 are assembled as shown in FIG. 5 to obtain a composite wire 4, and a plurality of composite wires 4 are aligned and twisted to obtain a twisted wire 5 as shown in FIG. 6.
そして、この撚線5に拡散熱処理を施し、被覆層2のS
nを素線lの内部に拡散させてNbフィラメントと反応
させることでN bs S n超電導フィラメントを生
成させることができ、Nb、Sn超電導撚線を得ること
ができる。Then, this stranded wire 5 is subjected to diffusion heat treatment, and the S of the coating layer 2 is
By diffusing n into the inside of the wire l and reacting with the Nb filament, an N bs S n superconducting filament can be generated, and a Nb, Sn superconducting strand can be obtained.
「発明が解決しようとする問題点」
ところが、前記の製造方法においては、複合線3・・か
らなる集合線4を撚線化する場合、複合線301本1本
に強い圧縮加圧力が作用するので、Snからなる被覆層
2どうしが擦れあい、被覆層2の厚さが不均一となった
り、剥離を生じることがあった。このように被覆層2が
不均一になると、拡散熱処理時において、素線lの一内
部側にSnが不均一に拡散する現象が起こる結果、Nb
、Snの生成状態が不均一になって超電導特性の劣化を
引き起こす問題があった。"Problems to be Solved by the Invention" However, in the above manufacturing method, when the composite wires 3 are twisted together, a strong compressive force acts on each of the composite wires 301. Therefore, the coating layers 2 made of Sn may rub against each other, resulting in uneven thickness or peeling of the coating layers 2. If the coating layer 2 becomes non-uniform in this way, a phenomenon occurs in which Sn is non-uniformly diffused to the inner side of the strand l during the diffusion heat treatment, resulting in the Nb
, there was a problem that the formation state of Sn became non-uniform, causing deterioration of superconducting properties.
また、第6図に示す撚線5に拡散熱処理を施した場合、
複合線3の外周部に残留した溶融Snによって、隣接す
る集合線4どうしが固着されてしまうことがある。Furthermore, when the stranded wire 5 shown in FIG. 6 is subjected to diffusion heat treatment,
Molten Sn remaining on the outer periphery of the composite wire 3 may cause adjacent composite wires 4 to be fixed to each other.
このようにSnによって隣接する集合線4どうしが固着
される二とがあると、撚線5に応力か付加された場合な
どにおいて、集合線4どうしが相互に摺動できないため
に、撚線5の可撓性が損なわれる結果、固着部分が応力
集中点となるおそれがあり、機械強度か低下する問題が
あった。In this way, if the adjacent strands 4 are fixed to each other by Sn, the strands 4 cannot slide against each other when stress is applied to the stranded wires 5. As a result of the loss of flexibility, there is a risk that the fixed portion may become a stress concentration point, resulting in a decrease in mechanical strength.
更に、前記超電導撚線を交流用として用いた場合、前記
固着部分に応力が集中すると、応力集中部分の超電導線
に大きな歪が発生し、この部分の超電導特性が劣化する
問題がある。Furthermore, when the superconducting stranded wire is used for alternating current, if stress concentrates on the fixed portion, a large strain will occur in the superconducting wire in the stress concentrated portion, causing a problem that the superconducting properties of this portion will deteriorate.
本発明は前記課題を解決するためになされたもので、機
械強度が高く、撚線を構成する超電導線間の固着かなく
、可撓性に優れるとともに、鍵れた超電導特性を発揮し
、超電導発電機用などの交流用として優れた構造を有す
る化合物系超電導撚線およびその製造方法を提供するこ
とを目的とする。The present invention has been made to solve the above problems, and has high mechanical strength, no sticking between superconducting wires constituting a stranded wire, excellent flexibility, and exhibits key superconducting properties. The object of the present invention is to provide a compound-based superconducting stranded wire having an excellent structure for alternating current applications such as generators, and a method for manufacturing the same.
「課題を解決するための手段」
請求項1に記載した発明は前記課題を解決するために、
金属基地の内部に超電導金属間化合物からなるフィラメ
ントを多数分散してなる超電導線を複数本集合して超電
導導体部を構成し、良導電性の導電体を高融点金属の拡
散防止層で覆って安定化導体を構成するとともに、前記
超電導導体部の周囲を複数本の安定化導体で覆って素線
を構成し、この素線を複数本撚り合わせてなるものであ
る。"Means for solving the problem" In order to solve the problem, the invention stated in claim 1 has the following features:
A superconducting conductor section is constructed by assembling multiple superconducting wires made of a large number of filaments made of superconducting intermetallic compounds dispersed inside a metal base, and the highly conductive conductor is covered with a diffusion prevention layer made of a high melting point metal. In addition to forming a stabilizing conductor, the superconducting conductor portion is surrounded by a plurality of stabilizing conductors to form a wire, and a plurality of these wires are twisted together.
請求項2に記載した発明は前記課題を解決するために、
超電導金属間化合物を構成する2種以上の金属元素のう
ち、少なくとも1つの元素からなるフィラメントを金属
基地の内部に分散してなるロンドを用い、前記ロッドの
外周に、前記金属間化合物を構成する2種以上の金属元
素のうち、残りの元素の被覆層を形成して被覆複合線を
作威し、次いでこの被覆複合線を複数本集合して集合素
線を形成する一方、良導電性の導電体を高融点金属から
なる拡散防止層で覆って安定化導体を形成し、前記集合
素線の周囲を複数本の安定化導体で覆った後に撚線加工
するものである。In order to solve the above problem, the invention described in claim 2 has the following features:
The intermetallic compound is formed around the outer periphery of the rod using a rond in which filaments made of at least one element among the two or more metal elements constituting the superconducting intermetallic compound are dispersed inside a metal base. Out of two or more metal elements, a coating layer of the remaining element is formed to create a coated composite wire, and then a plurality of coated composite wires are assembled to form an aggregate strand, while a highly conductive A stabilized conductor is formed by covering a conductor with a diffusion prevention layer made of a high-melting point metal, and the wire assembly is covered with a plurality of stabilized conductors and then twisted.
「作用」
超電導線を集合してなる超電導導体部の周囲に安定化導
体を配置して素線を構成し、この素線を撚線化している
ので、前記安定化導体が超電導線を補強する結果、機械
強度が向上する。また、素線どうしを撚線化した場合、
撚線時に主に擦れ合うのは、素線外周部に設けた安定化
導体どうしであり、素線どうしは安定化導体を介して接
する。"Function" A stabilizing conductor is arranged around a superconducting conductor section made up of a collection of superconducting wires to form a strand, and this strand is twisted, so the stabilizing conductor reinforces the superconducting wire. As a result, mechanical strength is improved. In addition, when the wires are twisted together,
What mainly rubs against each other when the wires are twisted are the stabilizing conductors provided on the outer periphery of the wires, and the wires come into contact with each other via the stabilizing conductors.
従って熱処理を行った場合、素線どうしが固着されてし
まうことがなくなり、素線の可撓性が損なわれることが
起こらないので、機械強度の低下を起こさない。Therefore, when heat treatment is performed, the wires are not stuck to each other, and the flexibility of the wires is not impaired, so that mechanical strength does not decrease.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
第1図は本発明の方法をNbsεn系の交流用超電導撚
線を製造する場合に適用した例について説明するための
もので、この例の方法を実施するには、まず、第1図(
a)に示すインサイチュロッド9を作製する。FIG. 1 is for explaining an example in which the method of the present invention is applied to the production of Nbsεn-based AC superconducting stranded wires.
The in-situ rod 9 shown in a) is manufactured.
このインサイチュロッド9を作製するには、所定成分の
Cu−N b合金あるいはCu−N b−5n合金など
を溶製してインサイチュインゴットを作成し、このイン
サイチュインゴットを圧延加工、鍛造加工などの塑性加
工で線引することにより作製する。In order to manufacture this in-situ rod 9, an in-situ ingot is created by melting a Cu-N b alloy or a Cu-N b-5n alloy with a predetermined composition, and this in-situ ingot is subjected to plastic processing such as rolling or forging. Manufactured by drawing during processing.
前記インサイチュインゴットは、CuあるいはCu−S
n合金などからなる金属基地の内部に、Nbからなる無
数の樹枝状晶が分散された構造をなす加工性の良好なも
のである。このインサイチュインゴットを線引加工する
ことにより、金属基地内に繊維状の無数のNbフィラメ
ントが分散配列された構造のインサイチュロッド9を得
ることができる。The in-situ ingot is made of Cu or Cu-S.
It has a structure in which countless dendrites made of Nb are dispersed inside a metal base made of an n-alloy, etc., and has good workability. By drawing this in-situ ingot, it is possible to obtain an in-situ rod 9 having a structure in which numerous fibrous Nb filaments are dispersed and arranged within a metal base.
次にこのインサイチュロッド9の外周面に電気メツキ法
、あるいは溶融メツキ法などの手段によってSnの被覆
層10を形成して第1図(b)に示す構造の被覆腹合線
l】を形成する。ここで被覆1ilOを形成する手段は
前記の手段に限定されるものではなく、Snテープの巻
き付けなどの手段によっても良い。Next, a coating layer 10 of Sn is formed on the outer circumferential surface of this in-situ rod 9 by means such as electroplating or melt plating to form a coating anti-contact line l] having the structure shown in FIG. 1(b). . Here, the means for forming the coating 1ilO is not limited to the above-mentioned means, but may also be performed by winding a Sn tape or the like.
次いで前記被覆複合線11を複数本、例えば、7本集合
して第1図(c)に示す集合素線I2を作成する。Next, a plurality of coated composite wires 11, for example seven wires, are assembled to form a set of wires I2 shown in FIG. 1(c).
一方、第1図(d)に示すロッド状の良導電性の導電体
13を用意し、この導電体13を管体I4に挿入する。On the other hand, a rod-shaped, highly conductive conductor 13 shown in FIG. 1(d) is prepared, and this conductor 13 is inserted into the tubular body I4.
前記導電体13は良導電性の純Cuなどからなるもので
あって、管体14はTaあるいはNbなどからなるもの
である。The conductor 13 is made of highly conductive pure Cu, and the tube body 14 is made of Ta or Nb.
前記管体14に導電体13を挿入したならば、縮径加工
を施し、第1図(e)に示す安定化導体15を得る。こ
の安定化導体15は、内部側の導電体16を拡散防止層
17で覆ってなる構成のものである。After the conductor 13 is inserted into the tube 14, a diameter reduction process is performed to obtain the stabilized conductor 15 shown in FIG. 1(e). This stabilizing conductor 15 has a structure in which an internal conductor 16 is covered with a diffusion prevention layer 17.
前記拡散防止層17を構成する金属材料は、導電体!6
を構成する純Cuとの間に不要な化合物・などを生じな
い材料であって、”高融点のTaあるいはNbなどの金
属材料からなり、後述する拡散熱処理時に導電体16に
その外部側から不要な元素が拡散しないようにするため
に設けられる。The metal material constituting the diffusion prevention layer 17 is a conductor! 6
It is a material that does not form unnecessary compounds with pure Cu that constitutes the conductor 16, and is made of a metal material such as Ta or Nb with a high melting point. This is provided to prevent elements from diffusing.
なお、前記導電体16の外方に拡散防止層17を形成す
る手段として、導電体13の外方にメツキ処理を施すか
、あるいは、導電体13の外方に前記材料からなるテー
プあるいは箔などを被せて伸線加工するなどの手段を採
用しても良い。In addition, as a means for forming the diffusion prevention layer 17 on the outside of the conductor 16, plating is performed on the outside of the conductor 13, or a tape or foil made of the above-mentioned material is applied on the outside of the conductor 13. It is also possible to adopt methods such as covering the wire with wire drawing processing.
前述のように集合線12と安定化導体15とを作成した
ならば、集合線12の外周を覆うように複数の安定化導
体15を添わせて第1図Cf)に示すような断面構造の
素線I8を形成する。Once the group wire 12 and the stabilizing conductor 15 have been created as described above, a plurality of stabilizing conductors 15 are attached so as to cover the outer periphery of the group wire 12 to form a cross-sectional structure as shown in FIG. 1 Cf). A strand I8 is formed.
続いて前記素線18を複数本用意して撚線加工を施し、
撚線を得る。この撚線加工において、索線18の外周部
どうしが擦り合わされて素線18の外周部が損傷するお
それもあるが、素線18の外周部には安定化導体15が
配置されているので、安定化導体■5に多少の損耗が生
じても差し支えない。Subsequently, a plurality of the strands 18 are prepared and twisted.
Get strands. In this stranding process, there is a risk that the outer peripheries of the cable wires 18 may rub against each other and damage the outer periphery of the strands 18, but since the stabilizing conductor 15 is arranged on the outer periphery of the strands 18, There is no problem even if some wear and tear occurs on the stabilizing conductor (5).
撚線を作成したならば、以下に説明する段階的熱処理を
行って第2図に示す超電導撚線20を得ることができる
。Once the strands have been created, the stepwise heat treatment described below can be performed to obtain the superconducting strands 20 shown in FIG.
まず、撚線をSnの融点より低い温度であって、Snの
拡散が進行する180〜220℃に数時間〜数十時間加
熱する第1熱処理を施す。この第1熱処理によってSn
の溶は落ちを防止しつつSnの被覆層2をインサイチュ
ロッドlの内部に拡散させる。なお、この第1熱処理は
、Snをインサイチュロッド9側に十分に拡散させて消
失させるまで行うことが好ましい。First, a first heat treatment is performed in which the stranded wire is heated for several hours to several tens of hours at a temperature of 180 to 220° C., which is lower than the melting point of Sn and at which the diffusion of Sn proceeds. Through this first heat treatment, Sn
The melting causes the Sn coating layer 2 to diffuse into the inside of the in-situ rod 1 while preventing it from falling off. Note that this first heat treatment is preferably performed until Sn is sufficiently diffused to the in-situ rod 9 side and disappears.
第1熱処理が終了したならば、前記撚線を更に300〜
450℃の温度で数時間〜数十時間加熱する第2熱処理
を施す。この第2熱処理によってインサイチュロッド1
の中心部側までSnを十分に拡散させるとともに、Cu
とSnの不要な化合物相が生しないようにする。After the first heat treatment is completed, the stranded wire is further
A second heat treatment is performed at a temperature of 450° C. for several hours to several tens of hours. By this second heat treatment, the in-situ rod 1
While Sn is sufficiently diffused to the center side of the Cu
Avoid the formation of unnecessary compound phases of Sn and Sn.
第2熱処理が終了したならば、前記撚線を更に450℃
よりも高い温度、例えば500〜750℃で数十時間〜
数百時間加熱する第3熱処理を施してNbフィラメント
とSnを反応させ、Nb、Sn超電導金属間化合物フィ
ラメントを生成させる。After the second heat treatment is completed, the stranded wire is further heated to 450°C.
for several tens of hours at a higher temperature, e.g. 500-750℃.
A third heat treatment in which the Nb filament is heated for several hundred hours is performed to react the Nb filament with Sn to produce a Nb, Sn superconducting intermetallic compound filament.
以上説明した第1〜第3熱処理において、被覆複合線1
1の被覆層lOは周囲の安定化導体15に接触している
ので、安定化導体15側にSnの拡散を生じることが懸
念されるが、安定化導体I5の外周部分には拡散防止層
17が形成され、拡散防止層17がSnの拡散を阻止す
るので、導電体16がSnで汚染されることがない。な
おここで、導電体16がSnによって汚染されると、極
。In the first to third heat treatments described above, the coated composite wire 1
Since the coating layer 1O of No. 1 is in contact with the surrounding stabilizing conductor 15, there is a concern that Sn will diffuse to the stabilizing conductor 15 side. is formed and the diffusion prevention layer 17 prevents the diffusion of Sn, so that the conductor 16 is not contaminated with Sn. Note that if the conductor 16 is contaminated with Sn, the electrodes will be damaged.
低温に冷却されて通電される場合に導電体16の電気抵
抗が上昇するので好ましくない。This is not preferable because the electrical resistance of the conductor 16 increases when it is cooled to a low temperature and energized.
なおまた、前述のように段階的に第1〜第3熱処理を行
うことなく、500〜700℃に数十時間〜数百時間加
熱する1回の熱処理でNb5Sn超電導フイラメントを
生成させるようにしても差し支えない。Furthermore, even if the Nb5Sn superconducting filament is generated by a single heat treatment of heating at 500 to 700°C for several tens of hours to several hundreds of hours, without performing the first to third heat treatments stepwise as described above. No problem.
以上の処理によって、被覆複合線11の内部にNb3S
n超電導フィラメントを生成させて超電導線19を形成
し、第2図に示す超電導撚線20を製造するごとができ
る。Through the above processing, Nb3S is formed inside the coated composite wire 11.
A superconducting wire 19 is formed by generating n superconducting filaments, and a superconducting stranded wire 20 shown in FIG. 2 is manufactured.
前記超電導撚線20は、N bs S n超電導金属間
化合物フィラメントが生成された超電導線!9を複数本
集合してなる超電導導体部と、この超電導導体部を覆っ
た複数の安定化導体15から構成された素線が、複数本
撚り合わされてなるものである。The superconducting stranded wire 20 is a superconducting wire in which N bs S n superconducting intermetallic compound filaments are formed! A superconducting conductor section formed by a plurality of superconducting conductor sections 9 and a plurality of stabilizing conductors 15 covering this superconducting conductor section are twisted together.
以上のように製造された超電導撚線20は、各素線18
の外周部に安定化導体15が配置され、撚線時において
素線18どうしの擦れ合いが生じても安定化導体I5が
緩衝層として機能するので、素線18の内側に配置され
ている被覆複合線!Iの被覆層10の損傷程度を最低限
に抑えることができる。このため、撚線化の後に行う拡
散熱処理時においてインサイチュロッド9に被覆層10
のSnが拡散する場合、インサイチュロッド9の内部側
に向けてSnが均一に拡散する。従ってインサイチュロ
ッド9の内部にNb5Sn超電導フイラメントを均一に
生成させることができる。In the superconducting stranded wire 20 manufactured as described above, each strand 18
A stabilizing conductor 15 is arranged on the outer periphery of the strands, and even if the strands 18 rub against each other during twisting, the stabilizing conductor 15 functions as a buffer layer. Composite line! The degree of damage to the coating layer 10 of I can be suppressed to a minimum. For this reason, the coating layer 10 is applied to the in-situ rod 9 during the diffusion heat treatment performed after the wire twisting.
When Sn diffuses, the Sn diffuses uniformly toward the inside of the in-situ rod 9. Therefore, Nb5Sn superconducting filaments can be uniformly generated inside the in-situ rod 9.
また、前記構成の超電導撚線は、インサイチュロッド9
から製造された超電導線21を存し、それらの超電導線
21を複数本の安定化導体15で補強した構造になって
いるので、臨界電流特性に優れ、機械歪を受(すても超
電導特性の劣化が少ないなど、機械強度の面でも優れて
いる。Furthermore, the superconducting twisted wires having the above structure are arranged in the in-situ rod 9.
Since the superconducting wire 21 is reinforced with a plurality of stabilizing conductors 15, it has excellent critical current characteristics and is resistant to mechanical strain (very superconducting characteristics). It also has excellent mechanical strength, with little deterioration.
従って前記構造の超電導撚線20は超電導発電機の界磁
巻線用などの交流用として好適に使用することができる
。Therefore, the superconducting stranded wire 20 having the above structure can be suitably used for alternating current applications such as field windings of superconducting generators.
なお、前記の例においては、超電導導体部の超電導線2
1をインサイチュロット9を用いて形成したが、Nbの
芯材にSnパイプを被せた複合体を多数本集合して縮径
する操作を複数回行って製造した複合多心線をインサイ
チュロッド9の代用として用いることで超電導線を製造
しても良いのは勿論である。In addition, in the above example, the superconducting wire 2 of the superconducting conductor part
1 was formed using the in-situ rod 9, but a composite multi-core wire manufactured by assembling a large number of composites in which a Nb core material was covered with a Sn pipe and performing the diameter reduction operation multiple times was fabricated using the in-situ rod 9. Of course, superconducting wires may be manufactured by using it as a substitute.
更に、前記の例においては、本発明方法をNb。Furthermore, in the above examples, the method of the present invention is applied to Nb.
Sn系の超電導撚線の製造方法に適用した例について説
明したが、本発明の方法をV s G a系、Nb。Although an example in which the method of the present invention is applied to a method for producing Sn-based superconducting stranded wires has been described, the method of the present invention can also be applied to V s Ga-based, Nb-based superconducting stranded wires.
Ge系、Nb3Al系などの他の化合物系超電導撚線の
製造方法として適用できることは勿論である。It goes without saying that the present invention can also be applied as a method for producing superconducting stranded wires based on other compounds such as Ge-based and Nb3Al-based wires.
「実施例」
Cu−30vt%Nbの組成を有するインサイチュイン
ゴットを溶製し、これに鍛造加工と押出加工と線引加工
を施して直径0.185asのインサイチュロッドを作
成し、更にその外周面に電気メツキにより厚さ7.5μ
mのSnメツキ層を被覆して被覆複合線を得、この被覆
複合線を7本集合して集合線を得た。"Example" An in-situ ingot having a composition of Cu-30vt%Nb was melted and subjected to forging, extrusion, and wire drawing to create an in-situ rod with a diameter of 0.185 as. 7.5μ thick by electroplating
A coated composite wire was obtained by coating with a Sn plating layer of m, and seven of the coated composite wires were assembled to obtain an assembled wire.
一方、外径16mm、内径14mmのTaの管体に、外
径13.5a+aの純Cuのロッドを挿入し、全体を縮
径加工して直径0,2■の安定化導体を得た。On the other hand, a pure Cu rod with an outer diameter of 13.5a+a was inserted into a Ta tube with an outer diameter of 16 mm and an inner diameter of 14 mm, and the whole was reduced in diameter to obtain a stabilized conductor with a diameter of 0.2 mm.
次に府記集合線の周囲に前記安定化導体を12本添わせ
て素線を形成し、この素線を9本用いて平角成形撚りを
行い、厚さl、8■−1幅4.51の矩形断面形状の撚
線を得た。Next, 12 of the above-mentioned stabilizing conductors are attached around the Fuki group wire to form a strand, and 9 of these strands are twisted into a rectangular shape, so that the thickness is l, the width is 8cm-1, and the width is 4mm. 51 stranded wires with a rectangular cross-section were obtained.
この撚線にNb5Sn生成用の拡散熱処理を施して超電
導撚線を得た。This stranded wire was subjected to diffusion heat treatment for Nb5Sn production to obtain a superconducting stranded wire.
得られた超電導撚線の臨界電流密度を測定したところ、
8Tの外部磁場中において、約1700A/am”を示
した。When we measured the critical current density of the obtained superconducting stranded wire, we found that
In an external magnetic field of 8T, it exhibited approximately 1700 A/am''.
なお、この超電導撚線を構成しているインサイチュロッ
ドからなる超電導導体部において、1本の超電導線の臨
界電流密度は2000 A/mm’であるので、約85
%の特、性が得られたことになる。In addition, in the superconducting conductor section consisting of in-situ rods that make up this superconducting stranded wire, the critical current density of one superconducting wire is 2000 A/mm', so approximately 85
This means that the characteristics and characteristics of % have been obtained.
また、得られた超電導撚線に曲げ歪を付加したところ、
約2%歪まで特性の劣化は生しなかった。In addition, when bending strain was added to the obtained superconducting stranded wire,
No deterioration of characteristics occurred up to approximately 2% strain.
更に、超電導導体部を構成する各超電導線の密着現象は
生じることがなく、超電導撚線全体は十分な可撓性を有
していた。Further, the superconducting wires constituting the superconducting conductor portion did not adhere to each other, and the entire superconducting stranded wire had sufficient flexibility.
「発明の効果」
以上説明したように本発明によれば、超電導線の周囲に
複数の安定化導体が配置されて素線が構成され、この素
線が撚線化されているので、超電導線が安定化導体によ
り補強された構造となっている。このため機械強度が高
く、機械歪を受けても超電導特性の劣化が少ない超電導
撚線を提供することができる。"Effects of the Invention" As explained above, according to the present invention, a plurality of stabilizing conductors are arranged around a superconducting wire to constitute a wire, and since the wire is twisted, the superconducting wire The structure is reinforced with stabilizing conductors. Therefore, it is possible to provide a superconducting stranded wire that has high mechanical strength and exhibits little deterioration in superconducting properties even when subjected to mechanical strain.
また、素線を撚線化する場合、素線どうしが擦れ合うが
、素線の外周部に安定化導体を配置しているので、これ
らの安定化導体が緩衝層となってそれらの内部側に設け
られるロッドと被覆層の損傷を少なくできる。よって、
安定化導体の内部側に設ける被覆層の損傷割合が少なく
なるので、拡散熱処理を施した場合、被覆層の元素をロ
ッド側に均一に拡散させることができ、ロブド内に均一
に超電導金属間化合物フィラメントを生成さ仕て超電導
線を得ることができる。In addition, when stranding strands, the strands rub against each other, but since stabilizing conductors are placed around the outer periphery of the strands, these stabilizing conductors act as a buffer layer and prevent the strands from rubbing against each other. Damage to the provided rod and coating layer can be reduced. Therefore,
Since the rate of damage to the coating layer provided on the inside of the stabilizing conductor is reduced, when diffusion heat treatment is applied, the elements of the coating layer can be uniformly diffused to the rod side, and the superconducting intermetallic compound is uniformly distributed within the rod. Superconducting wire can be obtained by producing filaments.
更に、各素線の外周部に高融点金属て被覆した安定化導
体を配置するので、撚線後に熱処理した場合であっても
、素線どうしが固着されることがなくなる。よって超電
導撚線は優れた可撓性を有するので、機械歪が加わる可
能性の高い超電導発電機用などの交流用として好適であ
る。Furthermore, since a stabilizing conductor coated with a high-melting point metal is arranged around the outer periphery of each strand, the strands will not be stuck to each other even if the strands are heat treated after being twisted. Therefore, since the superconducting stranded wire has excellent flexibility, it is suitable for use in alternating current applications such as superconducting generators where mechanical strain is likely to be applied.
第1図(a)〜(r)は本発明方法を説明するための合
線の断面図、第1図(d)は導電体を管体に挿入した状
聾を示す断面図、第1図(e)は安定化導体の断面図、
第1図(f)は素線の断面図、第2図は撚線を示す断面
図、第3図ないし第6図は従来方法を説明するためのも
ので、第3図はインサイチュロッドの断面図、第4図は
被覆複合線の断面図、第5図は集合線の断面図、第6図
は超電導撚線の断面図である。
9・・・インサイチュロッド、IO・・・被覆層、!l
・・・被覆複合線、12・・・集合線、15・・−安定
化導体、16・電導体、17・・拡散防止層、18・・
素線、19・・・超電導線、20・・・超電導撚線。FIGS. 1(a) to (r) are cross-sectional views of combined lines for explaining the method of the present invention, FIG. 1(d) is a cross-sectional view showing a hearing device in which a conductor is inserted into a tube body, and FIG. (e) is a cross-sectional view of the stabilizing conductor;
Fig. 1(f) is a cross-sectional view of the strand, Fig. 2 is a cross-sectional view of the twisted wire, Figs. 3 to 6 are for explaining the conventional method, and Fig. 3 is a cross-sectional view of the in-situ rod. 4 is a sectional view of the coated composite wire, FIG. 5 is a sectional view of the assembled wire, and FIG. 6 is a sectional view of the superconducting stranded wire. 9...In-situ rod, IO...Coating layer,! l
... Covered composite wire, 12 ... Gathered wire, 15 ... - Stabilizing conductor, 16 - Electrical conductor, 17 ... Diffusion prevention layer, 18 ...
Element wire, 19... superconducting wire, 20... superconducting stranded wire.
Claims (2)
ィラメントを多数分散してなる超電導線を複数本集合し
て超電導導体部が構成され、良導電性の導電体を高融点
金属の拡散防止層で覆って安定化導体が構成されるとと
もに、前記超電導導体部の周囲を複数本の安定化導体で
覆って素線が構成され、この素線が複数本撚り合わされ
てなることを特徴とする化合物系超電導撚線。(1) A superconducting conductor section is constructed by assembling a plurality of superconducting wires made by dispersing a large number of filaments made of a superconducting intermetallic compound inside a metal base, and a highly conductive conductor is layered with a diffusion prevention layer of a high melting point metal. A compound characterized in that a stabilizing conductor is constructed by covering the superconducting conductor portion, a strand is constructed by covering the periphery of the superconducting conductor portion with a plurality of stabilizing conductors, and a plurality of these strands are twisted together. system superconducting stranded wire.
素のうち、少なくとも1つの元素からなるフィラメント
を金属基地の内部に分散してなるロッドを用い、前記ロ
ッドの外周に、前記金属間化合物を構成する2種以上の
金属元素のうち、残りの元素の被覆層を形成して被覆複
合線を作成し、次いでこの被覆複合線を複数本集合して
集合素線を形成する一方、良導電性の導電体を高融点金
属からなる拡散防止層で覆って安定化導体を形成し、前
記集合素線の周囲を複数本の安定化導体で覆った後に撚
線加工し、その後に拡散熱処理することを特徴とする化
合物系超電導撚線の製造方法。(2) Using a rod in which filaments made of at least one element among the two or more metal elements constituting the superconducting intermetallic compound are dispersed inside a metal base, the intermetallic compound is attached to the outer periphery of the rod. A coated composite wire is created by forming a coating layer of the remaining element among two or more metal elements constituting the metal element, and then a plurality of coated composite wires are assembled to form an aggregate strand, while a good conductive wire is formed. A stabilized conductor is formed by covering a conductor with a high melting point with a diffusion prevention layer made of a high melting point metal, and after covering the periphery of the aggregated strands with a plurality of stabilizing conductors, the wire is twisted, and then a diffusion heat treatment is performed. A method for manufacturing a compound-based superconducting stranded wire, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104657A JP3045517B2 (en) | 1990-04-20 | 1990-04-20 | Compound based superconducting stranded wire and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104657A JP3045517B2 (en) | 1990-04-20 | 1990-04-20 | Compound based superconducting stranded wire and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH044519A true JPH044519A (en) | 1992-01-09 |
JP3045517B2 JP3045517B2 (en) | 2000-05-29 |
Family
ID=14386538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2104657A Expired - Fee Related JP3045517B2 (en) | 1990-04-20 | 1990-04-20 | Compound based superconducting stranded wire and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3045517B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5364709A (en) * | 1992-11-24 | 1994-11-15 | Composite Materials Technology, Inc. | Insulation for superconductors |
-
1990
- 1990-04-20 JP JP2104657A patent/JP3045517B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5364709A (en) * | 1992-11-24 | 1994-11-15 | Composite Materials Technology, Inc. | Insulation for superconductors |
Also Published As
Publication number | Publication date |
---|---|
JP3045517B2 (en) | 2000-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4195199A (en) | Superconducting composite conductor and method of manufacturing same | |
US4506109A (en) | Al-stabilized superconducting wire and the method for producing the same | |
JP2013062239A (en) | Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME | |
JPH044519A (en) | Compound superconducting stranded wire and manufacture thereof | |
JPH08180752A (en) | Nb3sn superconductive wire and manufacture thereof | |
JP2742436B2 (en) | Method for producing compound superconducting stranded wire | |
JP2742437B2 (en) | Method for producing compound superconducting stranded wire | |
JP3585770B2 (en) | Superconducting conductor and manufacturing method thereof | |
JP3701349B2 (en) | Superconducting wire manufacturing method and superconducting wire | |
JP2874955B2 (en) | Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator | |
JPH05804B2 (en) | ||
JPH0419919A (en) | Manufacture of nb3sn superconductor wire | |
JP2742421B2 (en) | Superconducting wire and its manufacturing method | |
JP2719155B2 (en) | Superconducting stranded wire manufacturing method | |
JP2845905B2 (en) | Compound conducting wire for alternating current | |
JPS604573B2 (en) | Manufacturing method of compound hollow superconducting magnet | |
JPH0430124B2 (en) | ||
JPH0146963B2 (en) | ||
JPS637353A (en) | Production of fiber dispersion type superconductive wire | |
JP2874132B2 (en) | Method for manufacturing Nb (3) Sn superconducting wire for AC | |
JP2742422B2 (en) | Method of manufacturing compound superconducting wire | |
JPS63276827A (en) | Manufacturing of fiber-dispersion-type superconducting wire | |
JPH02103813A (en) | Compound superconducting wire and manufacture thereof | |
JPH02103811A (en) | Compound superconducting wire | |
JPH02162612A (en) | Manufacturing method of stranded conductor for covered electric wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080317 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |