JPH0444271A - Manufacture of semiconductor integrated circuit - Google Patents
Manufacture of semiconductor integrated circuitInfo
- Publication number
- JPH0444271A JPH0444271A JP14961090A JP14961090A JPH0444271A JP H0444271 A JPH0444271 A JP H0444271A JP 14961090 A JP14961090 A JP 14961090A JP 14961090 A JP14961090 A JP 14961090A JP H0444271 A JPH0444271 A JP H0444271A
- Authority
- JP
- Japan
- Prior art keywords
- region
- drain
- resist
- diffusion
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 238000002955 isolation Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 16
- 238000009792 diffusion process Methods 0.000 claims description 56
- 238000005468 ion implantation Methods 0.000 claims description 19
- 238000000926 separation method Methods 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 7
- 229910052796 boron Inorganic materials 0.000 abstract description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分計1
本発明は、ボルテージレギュレーター、モーター制御、
オーディオアンプなどに用いられる大電力駆動が可能な
二重拡散型1を界効果半導体装置(以下DMO5と略称
する)を含む集積回路の製造方法に関する。[Detailed Description of the Invention] [Industrial Applications 1] The present invention is applicable to voltage regulators, motor controls,
The present invention relates to a method for manufacturing an integrated circuit including a field effect semiconductor device (hereinafter abbreviated as DMO 5) using a double diffusion type 1 capable of driving with high power and used in audio amplifiers and the like.
[発明の概要]
DMO5は、ベース領域及びソース領域がゲート電極を
マスクとする自己整合により形成され、ゲート電極の下
のベース領域をチャネルとして機能させるトランジスタ
ーである。DMO5は、チャネル長が前:己ベース領域
及び舵記ソース頓域の横方向拡散の差で決定されるため
、チャネル長がゲート電極の幅できまる通常のMOSに
くらべ。[Summary of the Invention] The DMO 5 is a transistor in which a base region and a source region are formed by self-alignment using a gate electrode as a mask, and the base region under the gate electrode functions as a channel. In DMO5, the channel length is determined by the difference in lateral diffusion between the base region and the source region, compared to a normal MOS whose channel length is determined by the width of the gate electrode.
同じデザインルールで製造した場合に、チャネル長が短
くに値が大きい、オン抵抗が小さいという特徴をもち大
電力駆動に遇している。DMOSのドレイン領域は、前
記ベース領域及び前記ソース領域を囲む低濃度の拡散領
域と、前記低濃度の拡散領域上に前記ソース領域と隔て
て配した配線用の電極とオーミックなコンタクトをとる
ための高濃度の拡散領域から構成される1本発明は前記
ドレイン用の低濃度拡散領域と素子分離用の拡散領域の
熱拡散を同一の工程で行うことにより製造工程を簡略化
するものである。When manufactured using the same design rules, they have short channel lengths, high values, and low on-resistance, making them suitable for high power drive. The drain region of the DMOS includes a low concentration diffusion region surrounding the base region and the source region, and a wiring electrode arranged on the low concentration diffusion region to be separated from the source region for making ohmic contact. The present invention, which is composed of a high concentration diffusion region, simplifies the manufacturing process by performing thermal diffusion of the low concentration diffusion region for the drain and the diffusion region for element isolation in the same process.
[従来の技術]
従来の半導体集積回路の製造方法について、第2図(a
)〜(e)に示す製造工程順断面図を用いて説明する。[Prior Art] A conventional method for manufacturing a semiconductor integrated circuit is shown in Fig. 2 (a).
) to (e).
第2図(a)は、P型基板1上にP型の埋込領域4を選
択的に形成し、エピタキシャル成長を行なってN型のエ
ピタキシャル層2を形成し、エピタキシャル層2の表面
を酸化し酸化1[13を形成した工程後の集積回路の断
面図である0次にレジスト5をマスクにして酸化膜3を
選択的にエツチングし、レジスト5及び酸化膜3をマス
クにして分離用のP型不純物イオンをN型エピタキシャ
ル層2上に選択的に注入する(第2図(b))、次に、
前記分離用の不純物イオンを拡散するために高温長時間
の熱処理を行い、分離用拡散領域9を埋込領域4と接続
させる(第2図(c))、熱処理の条件は、エピタキシ
ャル層2の厚さ、及び埋込領域4のエピタキシャル層中
へのオートドープの程度にも依存するが、通常5〜10
μmの厚さのエピタキシャル層を形成した場合、110
0〜1200℃で3〜10時間の熱処理を要する0次に
、レジスト5をマスクにして酸化膜3を選択的にエツチ
ングし、レジスト5及び酸化膜3をマスクにしてドレイ
ン用のP型不純物イオンをN型エピタキシャル層2上に
選択的に注入する。(第2図(d))、次に、前記ドレ
イン用の不純物イオンを拡散するための1000〜12
00℃の熱処理を行う、(第2図(e))。In FIG. 2(a), a P-type buried region 4 is selectively formed on a P-type substrate 1, an N-type epitaxial layer 2 is formed by epitaxial growth, and the surface of the epitaxial layer 2 is oxidized. This is a cross-sectional view of the integrated circuit after the step of forming oxide 1 [13] Next, the oxide film 3 is selectively etched using the resist 5 as a mask, and the isolation P is etched using the resist 5 and the oxide film 3 as a mask. Type impurity ions are selectively implanted onto the N type epitaxial layer 2 (FIG. 2(b)), and then,
In order to diffuse the impurity ions for isolation, heat treatment is performed at high temperature and for a long time to connect the isolation diffusion region 9 to the buried region 4 (FIG. 2(c)). Although it depends on the thickness and the degree of autodoping into the epitaxial layer of the buried region 4, it is usually 5 to 10
When forming an epitaxial layer with a thickness of 110 μm,
Next, the oxide film 3 is selectively etched using the resist 5 as a mask, and P-type impurity ions for the drain are etched using the resist 5 and the oxide film 3 as a mask. is selectively implanted onto the N-type epitaxial layer 2. (FIG. 2(d)), Next, 100 to 12
Heat treatment is performed at 00°C (Fig. 2(e)).
[発明が解決しようとする課題]
前述したように、従来法では分離用拡散領域形成のため
の熱処理と、ドレイン用低濃度拡#1領域形成のための
熱処理を異なる工程で行なっていた。前記した2つの熱
処理はいずれも処理時間が数時間と他の工程にくらべ時
間がかかり、集積回路のl造時間を増やす大きな要因で
あった。[Problems to be Solved by the Invention] As described above, in the conventional method, the heat treatment for forming the isolation diffusion region and the heat treatment for forming the low concentration expanded #1 region for the drain are performed in different steps. Both of the two heat treatments described above require several hours of processing time, which is longer than other processes, and are a major factor in increasing the manufacturing time of integrated circuits.
[!!題を解決するための手段]
前記分離用拡散領域と前記ドレイン用低濃度拡散領域の
形成を同一工程で行うことにした。半導体集積回路の特
性の最適化のため、前記分離用拡散領域の拡散プロファ
イルと前記トレイン用低濃度を散領域の拡散プロファイ
ルを異なるものにするン・要がある場合には、各々の領
域に対し不純物導入のためのイオン注入条件として異な
る条件を用いることにし、少なくとも拡散領1形成のた
めの熱処理については同一工程で行うことにした。[! ! Means for Solving the Problem] It was decided that the isolation diffusion region and the drain low concentration diffusion region were formed in the same process. In order to optimize the characteristics of a semiconductor integrated circuit, it is necessary to make the diffusion profile of the isolation diffusion region and the train diffusion region different from each other. It was decided to use different ion implantation conditions for impurity introduction, and to perform at least the heat treatment for forming the diffusion region 1 in the same process.
[作用]
高温、長時間の熱処理工程が一二程省略できるので集積
回路の製造時間を短縮できる。[Function] Since one or two high-temperature, long-time heat treatment steps can be omitted, the manufacturing time of integrated circuits can be shortened.
〔実施例1
本発明の半導体集積回路の製造方法の第1実施例につい
て第1図(a)〜(d)に示す製造工程順断面図を用い
て説明する。第1図(a)は、P型基板l上に選択的に
ボロンなどのP型不純物を高濃度に拡散して素子分離用
の埋込領域4を形成した後、リンなどのN型不純物を1
0”−10cm−”ドープしたエピタキシャル層2を5
〜lOμmの厚さに堆積し、エピタキシャル層2の表面
を熱酸化法で酸化し厚さ3000〜5oOo人の酸化!
113を形成した後の集積回路の断面図である0次に、
レジスト5を酸化1113上に塗布し、フォトリソグラ
フィー法を用いて、素子分Ii領埴及び低濃度ドレイン
領域上のレジスト5を除去する。さらにパクーニングし
たレジスト5をマスクに弗酸な含むエツチング液を用い
て酸化膜3をエツチングする。エツチングされる部分の
酸化膜はエピタキシャル層2上に数百人のこるようにエ
ツチング条件を制御することにより、後に続くイオン注
入工程によりエピタキシャル層表面がうけるダメージを
緩和する0次に、レジスト5及び酸化113をマスクに
ボロンなどのP型不純物をイオン注入し、ドレイン用の
不純物イオン注入領域6及び分離用の不純物イオン注入
領域7を形成する(第1図(b))、次に、レジスト5
を除去し、1100〜1200℃の温度で5〜10時間
の熱拡散工程を行い、ドレイン用低濃度拡散領t!i8
、及び分離用拡散領域9の形成を行う(第1図(C))
、前記イオン注入の条件及び前記熱拡散の条件は、分離
用拡散領域9と分離用埋込領域4が電気的に導通し、か
つドレイン用低濃度拡散領域8が基板lと電気的に導通
しないように最適化される。第1図(d)は第1図(c
)に示す工程の後、複数回の工程を経てDMOSのゲー
ト電極14、ベース領域11、ソース領域12.ドレイ
ン用高濃度拡散領域13が形成された集積回路の断面図
である6本発明の第一実施例によれば、イオン注入工程
及び熱拡散工程がそれぞれ従来法にくらベー工程省略で
きるため製造時間短縮の効果は大きい、 次に1本発明
の半導体集積回路の製造方法の第二実施例について、第
3図(a)〜(e)に示す製造工程順断面図を用いて説
明する0本発明の半導体集積回路の製造方法は、DMO
Sと通常MOSあるいはESD保護用のP゛NNダイオ
ード在させた集積回路に対しても適用しつる。この場合
、NMOSのチャネル5IJI域を形成するPウェルと
、DMOSのトレイン用低濃度拡散、ダイオードのP型
拡散、分離用のP型拡散はいずれも比較的低濃度で深い
P型拡散で望ましくは同一工程で形成するのが工程簡略
化上宵月である。しかし、前記Pウェルの拡散プロファ
イルはNMOSのvTMや移動度を決定する要因であり
、ダイオードのP型拡散の拡散プロファイルは、回路の
保護電圧である降伏電圧を決定する要因であるため、同
一の拡散プロファイルでは最適化できないという問題が
ある。また、埋込領域のオートドープ量が十分大きくな
い場合には、DMOSのドレイン用低濃度拡散と基板を
接続させず、かつ分離用のP型拡散と埋込領域を接続さ
せるための前記熱拡散の条件のマージンが小さいという
問題もある。前記した2つの問題は、NMOSのPウェ
ルとDMOSのドレイン用低濃度拡散を第一のイオン注
入条件で形成し、分離用P型拡散とタイオードのP型拡
散を第二のイオン注入条件で形成し、たとえば第二のイ
オン注入条件として、第一のイオン注入条件にくらべ高
いドーズ量を用いることにより解決しつる。第3図(a
)は第1図(a)と同一の工程後、また第3図(b)は
第1図(bJと同一の工程後の集積回路の断面図である
。第3図(b)において、P型不純物のイオン注入条件
はたとえばポロンイオン、100KeV、10” 〜1
0”crn−”とする6次に、レジスト5を除去せずに
、レジスト15を塗布し、フォトリソグラフィー法によ
りパターニングし、DMOSのドレイン用イオン注入領
域6をマスクする1次に、酸化1ti3、レジスト5、
レジスト15をマスクとして、イオン注入法によりボロ
ンイオンをたとえば100〜150KeV、10目〜1
0”cm−”の注入条件で分離領域に注入し、イオン注
入類t1i16を形成する(第3図(c))。[Embodiment 1] A first embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention will be described using sequential cross-sectional views of the manufacturing steps shown in FIGS. 1(a) to 1(d). In FIG. 1(a), a buried region 4 for element isolation is formed by selectively diffusing P-type impurities such as boron to a high concentration on a P-type substrate l, and then N-type impurities such as phosphorus are diffused onto the P-type substrate l. 1
0"-10cm-" doped epitaxial layer 2
The surface of the epitaxial layer 2 is oxidized by a thermal oxidation method to a thickness of 3000 to 500 μm!
113, which is a cross-sectional view of the integrated circuit after forming 113,
A resist 5 is applied on the oxide 1113, and the resist 5 on the element portion Ii region and the low concentration drain region is removed using a photolithography method. Furthermore, the oxide film 3 is etched using an etching solution containing hydrofluoric acid using the paquerated resist 5 as a mask. By controlling the etching conditions so that the oxide film in the portion to be etched is etched several hundred times over the epitaxial layer 2, the damage to the surface of the epitaxial layer caused by the subsequent ion implantation process is alleviated. P-type impurity such as boron is ion-implanted using 113 as a mask to form an impurity ion-implanted region 6 for the drain and an impurity ion-implanted region 7 for isolation (FIG. 1(b)). Next, the resist 5
is removed and subjected to a thermal diffusion process for 5 to 10 hours at a temperature of 1100 to 1200°C to form a low concentration diffusion region for drain t! i8
, and forming the isolation diffusion region 9 (FIG. 1(C))
, the ion implantation conditions and the thermal diffusion conditions are such that the isolation diffusion region 9 and the isolation buried region 4 are electrically conductive, and the drain low concentration diffusion region 8 is not electrically conductive with the substrate l. Optimized as follows. Figure 1(d) is
), the DMOS gate electrode 14, base region 11, source region 12 . 6 is a cross-sectional view of an integrated circuit in which a high concentration diffusion region 13 for a drain is formed.According to the first embodiment of the present invention, the ion implantation process and the thermal diffusion process can be omitted, respectively, compared to the conventional method, so that the manufacturing time is reduced. The shortening effect is significant.Next, a second embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention will be described using the sequential cross-sectional views of the manufacturing process shown in FIGS. 3(a) to 3(e). The method for manufacturing semiconductor integrated circuits is DMO
It can also be applied to integrated circuits in which S and normal MOS or PNN diodes for ESD protection are present. In this case, the P-well forming the NMOS channel 5IJI region, the low-concentration diffusion for the DMOS train, the P-type diffusion for the diode, and the P-type diffusion for isolation are all preferably relatively low-concentration and deep P-type diffusions. The process-simplified Kamiyogetsu is formed in the same process. However, the diffusion profile of the P-well is a factor that determines the vTM and mobility of the NMOS, and the diffusion profile of the P-type diffusion of the diode is a factor that determines the breakdown voltage, which is the protection voltage of the circuit. There is a problem in that the diffusion profile cannot be optimized. In addition, if the amount of autodoping in the buried region is not large enough, the low concentration diffusion for the DMOS drain and the substrate are not connected, and the thermal diffusion for connecting the P-type diffusion for isolation and the buried region is performed. There is also the problem that the margin for the condition is small. The above two problems can be solved by forming the NMOS P well and DMOS drain low concentration diffusion under the first ion implantation condition, and forming the isolation P type diffusion and the diode P type diffusion under the second ion implantation condition. However, this problem can be solved, for example, by using a higher dose for the second ion implantation condition than for the first ion implantation condition. Figure 3 (a
) is a cross-sectional view of the integrated circuit after the same process as in FIG. 1(a), and FIG. 3(b) is a cross-sectional view of the integrated circuit after the same process as in FIG. 1(bJ). The ion implantation conditions for the type impurity are, for example, poron ions, 100KeV, 10" to 1
0"crn-" 6 Next, without removing the resist 5, a resist 15 is applied and patterned by photolithography to mask the ion implantation region 6 for the drain of the DMOS. resist 5,
Using the resist 15 as a mask, boron ions are implanted at, for example, 100 to 150 KeV, 10th to 1st
Ion implantation is performed in the isolation region under an implantation condition of 0 cm- to form ion implantations t1i16 (FIG. 3(c)).
次に、レジスト5.15を除去した後、1100〜12
00℃で3〜10時間の熱処理を行う(第3図(d))
、分離用のP型拡散9は、ドレイン用のP型拡散8にく
らべ、同じ熱拡散条件ではあるが、イオン注入量が多い
ため、深く濃度が高い拡散領域となり、前記熱拡散条件
のマージンが高くなる。また、同時に形成したNMOS
のPウェル、ダイオードのP型拡散について独立に拡散
プロファイルをきめられるので、それぞれの素子Iこつ
いて特性の最適化をはかることができる。第3図(e)
は第3図(d)に示す工程の後、複数回の工程を経てD
MOSのゲート電極14、ベース1N域11、ソース領
域12、ドレイン用高濃度拡散領域13が形成された集
積回路の断面図である。ドレイン用低濃度拡散領域8の
深さは、ベース領域11とエピタキシャル層2の耐圧が
十分高くなるように決定される。Next, after removing resist 5.15, 1100~12
Heat treatment is performed at 00°C for 3 to 10 hours (Fig. 3(d)).
The P-type diffusion 9 for isolation has the same thermal diffusion conditions as the P-type diffusion 8 for drain, but because the amount of ions implanted is larger, it becomes a deep and highly concentrated diffusion region, and the margin of the thermal diffusion conditions is It gets expensive. Also, the NMOS formed at the same time
Since the diffusion profile can be determined independently for the P-well and P-type diffusion of the diode, the characteristics of each element can be optimized. Figure 3(e)
After the step shown in Figure 3(d), D is obtained through multiple steps.
FIG. 2 is a cross-sectional view of an integrated circuit in which a MOS gate electrode 14, a base 1N region 11, a source region 12, and a heavily doped drain region 13 are formed. The depth of the drain low concentration diffusion region 8 is determined so that the breakdown voltage of the base region 11 and the epitaxial layer 2 is sufficiently high.
〔発明の効果)
本発明の半導体集積回路の製造方法によれば、高温長時
間の熱拡散工程数を削減できるので、集積回路の製造時
間短縮、プロヤスコスト削減、熱歪による歩留低下防止
の効果が得られる0本発明の第二実施例では、分離拡散
用のイオン注入を2回行なっているが、たとえば分離拡
散用のイオン注入とドレイン拡散用のイオン注入を別の
工程で行ない、イオン注入条件をかえるという場合でも
、本発明の効果が得られることは明らかである。[Effects of the Invention] According to the method for manufacturing a semiconductor integrated circuit of the present invention, the number of thermal diffusion processes that require high temperatures and long periods of time can be reduced, thereby shortening the manufacturing time of integrated circuits, reducing processing costs, and preventing yield loss due to thermal distortion. In the second embodiment of the present invention, the ion implantation for separation and diffusion is performed twice, but for example, the ion implantation for separation and diffusion and the ion implantation for drain diffusion are performed in separate steps, It is clear that the effects of the present invention can be obtained even when the injection conditions are changed.
第1図(a)〜(d)は本発明の半導体集積回路の製造
方法の第一実施例の製造工程順断面図、第2図(a)〜
(e)従来の半導体集積回路の製造方法の製造工程順断
面図、第3図(a)〜(e)は本発明の半導体集積回路
の製造方法の第二実施例の製造工程順断面図である。
l ・ ・ ・ ・ ・ ・ ・
2 ・ ・ ・ ・ ・ ・ ・
3、 l Ol 17 ・
4 ・ ・ ・ ・ ・ ・ ・
5、15 ・ ・ ・ ・
6、7.16 ・ ・
・基板
・エピタキシャル層
・酸化膜
・埋込領域
・レジスト
・不純物イオン注入領域
壬堺1本薄積回路のN荷)−汰の第1大丘例のへj改工
程p自直ω図第1
ドレイン用低濃度拡散領域
分離用拡散領域
ベース領域
ソース領域
ドレイン用高濃度拡散領域
ゲート電極
以上
出願人 セイコー電子工業株式会社
代理人 弁理士 林 敬 之 肋促*の峯廊イオ
隼横回路の製置方法の製カニ1r臼i釦図第2図1(a) to 1(d) are cross-sectional views in the order of manufacturing steps of the first embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention, and FIGS. 2(a) to 2(d) are
(e) A sectional view in the order of manufacturing steps of a conventional method for manufacturing a semiconductor integrated circuit; FIGS. be.・ ・ ・ ・ ・ ・ ・ ・ 2 ・ ・ ・ ・ ・ ・ 3, l Ol 17 ・ 4 ・ ・ ・ ・ ・ ・ 5, 15 ・ ・ ・ ・ 6, 7.16 ・ ・ ・Substrate・Epitaxial layer・Oxide film/embedded region/resist/impurity ion implantation region Mitsakai single thin integrated circuit N load)-Ta's first large hill example Isolation diffusion region Base region Source region Drain high concentration diffusion region Gate electrode Above Applicant Seiko Electronics Co., Ltd. Agent Patent attorney Takayuki Hayashi Crab 1R mortar for manufacturing method of Minero Io Hayabusa horizontal circuit i button diagram figure 2
Claims (3)
域を配し、前記ベース領域上に一導電型のソース領域を
配し、前記ドレイン領域と前記ソース領域にはさまれた
前記ベース領域の表面にチャネル領域を形成する二重拡
散型電界効果半導体装置を含む半導体集積回路の製造方
法において、前記一導電型のドレイン領域と素子分離用
の一導電型の拡散領域を同一の熱拡散工程で形成するこ
とを特徴とする半導体集積回路の製造方法。(1) A base region of an opposite conductivity type is disposed on a drain region of one conductivity type, a source region of one conductivity type is disposed on the base region, and the base is sandwiched between the drain region and the source region. In a method of manufacturing a semiconductor integrated circuit including a double-diffused field effect semiconductor device in which a channel region is formed on the surface of a region, the drain region of one conductivity type and the diffusion region of one conductivity type for element isolation are formed in the same thermal diffusion region. A method for manufacturing a semiconductor integrated circuit, characterized in that it is formed in a process.
形成するための不純物導入を同一のイオン注入工程を用
いて行うことを特徴とする第1項記載の半導体集積回路
の製造方法。(2) The method of manufacturing a semiconductor integrated circuit according to item 1, wherein impurity introduction for forming the drain region and the element isolation diffusion region is performed using the same ion implantation step.
件と前記素子分難用の拡散領域を形成するためのイオン
注入条件が異なることを特徴とする第1項記載の半導体
集積回路の製造方法。(3) The method for manufacturing a semiconductor integrated circuit according to item 1, wherein the ion implantation conditions for forming the drain region and the ion implantation conditions for forming the diffusion region for device separation are different.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14961090A JPH0444271A (en) | 1990-06-07 | 1990-06-07 | Manufacture of semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14961090A JPH0444271A (en) | 1990-06-07 | 1990-06-07 | Manufacture of semiconductor integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0444271A true JPH0444271A (en) | 1992-02-14 |
Family
ID=15478972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14961090A Pending JPH0444271A (en) | 1990-06-07 | 1990-06-07 | Manufacture of semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0444271A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001298187A (en) * | 2000-03-15 | 2001-10-26 | Hynix Semiconductor Inc | Method for manufacturing high voltage transistor |
-
1990
- 1990-06-07 JP JP14961090A patent/JPH0444271A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001298187A (en) * | 2000-03-15 | 2001-10-26 | Hynix Semiconductor Inc | Method for manufacturing high voltage transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5693974A (en) | Elevated source/drain with solid phase diffused source/drain extension for deep sub-micron MOSFETS | |
KR920009745B1 (en) | Manufacturing method of semiconductor | |
US7161210B2 (en) | Semiconductor device with source and drain regions | |
JPS60163452A (en) | Integrated circuit with bipolar device and field effect device and method for manufacturing the same | |
JPH0444271A (en) | Manufacture of semiconductor integrated circuit | |
JPS6325977A (en) | Manufacture of semiconductor integrated circuit deivce | |
JPH08172139A (en) | Semiconductor device manufacturing method | |
JP3259479B2 (en) | MOS type semiconductor device and method of manufacturing the same | |
JPH07254645A (en) | Fabrication of semiconductor device | |
JP2526476B2 (en) | Method for manufacturing semiconductor device | |
JP3041860B2 (en) | Method for manufacturing MIS transistor | |
JP2002134738A (en) | Semiconductor device and its manufacturing method | |
JPS63302562A (en) | Manufacturing method of MOS type semiconductor device | |
JPS61251166A (en) | Manufacture of semiconductor device | |
JP2610906B2 (en) | Method for manufacturing BiMOS semiconductor circuit device | |
JPH0377377A (en) | Manufacture of semiconductor device | |
JPH02189965A (en) | Manufacture of semiconductor device | |
JP2915040B2 (en) | Method for manufacturing semiconductor device | |
JP3008579B2 (en) | Method for manufacturing semiconductor device | |
JP3128255B2 (en) | Method for manufacturing BiCMOS type semiconductor device | |
JP2002124670A (en) | Semiconductor device and its manufacturing method | |
JPS61239669A (en) | Semiconductor integrated circuit | |
JPH04218972A (en) | Fabrication of semiconductor device including dmos | |
JPH04369261A (en) | Manufacture of semiconductor device | |
JP2010153634A (en) | Semiconductor device and method of manufacturing the same |