JPH0444018B2 - - Google Patents
Info
- Publication number
- JPH0444018B2 JPH0444018B2 JP59168416A JP16841684A JPH0444018B2 JP H0444018 B2 JPH0444018 B2 JP H0444018B2 JP 59168416 A JP59168416 A JP 59168416A JP 16841684 A JP16841684 A JP 16841684A JP H0444018 B2 JPH0444018 B2 JP H0444018B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- dehydrating agent
- activated carbon
- hollow
- pva
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Inorganic Fibers (AREA)
Description
〔産業上の利用分野〕
本発明はポリビニルアルコール系繊維(以下
PVA繊維という)を炭化した中空状活性炭繊維
の製法である。
活性炭繊維は既に数種のものがよく知られてい
る。例えば天然繊維、再生セルローズ繊維、フエ
ノール繊維及びPVA繊維等を原料とするもので
ある。活性炭を繊維状とした場合は、従来から広
く使用されている粒状或いは粉末状の吸着剤とく
らべてマクロ的な接触面積が著しく大きく吸着速
度が速い他粉塵の発生がなく、また圧損失が低い
等の形態上の利点が多い。
しかし、更に中空状とすることにより、マクロ
的接触面積が増大する他、活性炭特有の吸着性と
中空繊維壁の選択透過性を兼備えた特異な物性を
示す。ポリビニルアルコール系樹脂を原料とした
半透膜の性質を有するような薄い繊維壁を有する
中空状活性炭繊維は知られていない。本発明はか
かる特異な物性を有する新規な材質を提供しよう
とするものである。
〔従来の技術〕
PVA繊維を原料とした炭素繊維の製法は、特
開昭49−24897、同50−35431、同50−52320及び
同50−52321号公報に記載されており、その要旨
は脱水触媒を塗布或いは含浸せしめたPVA繊維
を酸化性雰囲気中で180°〜300°で熱処理して炭化
し、要すれば更に高温で処理してグラフアイト化
を促進し、力学的物性を向上せしめる方法であ
る。これらは何れも構造材料としての炭素繊維を
目的としたものでPVA繊維の炭化の面で共通な
要素を含んでいるが、形状的に中空でなく、また
活性炭でもない。また特公昭54−3973号公報は活
性繊維の製法に関するもので、紡糸原液に脱水触
媒3〜15%を加え、得られたPVA繊維を180°〜
340°で収率65〜85%になる迄熱処理して炭化した
後、水蒸気を含む不活性ガス中で600°〜1000℃
で、収率10〜35%迄賦活せしめる方法である。
(同公報第1頁、第1欄、第16〜28行、特許請求
の範囲)。更に脱水触媒の添加方法と得られた活
性炭の吸着性は密接な関係があり、あらかじめ紡
糸原液に加えておいた場合にのみ吸着性が高い活
性炭繊維(ヨード吸着量1600〜1700mg/g)が得
られる旨記載されている(同公報第3頁、第1表
及び同頁、第6欄、5〜8行)。
〔発明が解決しようとする問題点〕
上記活性炭繊維は普通の繊維状で中空にはなつ
ていない。また活性炭粉末の押出成形技術では本
発明の目的とするような直径10数μ或いはそれ以
下の中空繊維は到底作ることができない。
本発明者等はPVA繊維を脱水剤水溶液に浸漬
した後熱処置して炭化する工程において、脱水剤
の浸透の度合及び熱処理条件と得られた炭化物の
形状について研究した。その結果両者の間には密
接な関係があり、特定の条件下において中空状の
炭化物が得られることを見出した。更に該炭化物
の賦活方法についても、原料として湿式紡糸また
は乾式紡糸したPVA繊維を使用すると共に、そ
の他の賦活性条件も工夫して吸着性を著しく高め
うる方法を見出して本発明を完成した。
〔問題点を解決するための手段〕
PVA繊維の表面層のみに脱水剤を付着せしめ
た後、繊維が溶融せぬよう黒褐色ないし黒色にな
る迄熱処理し、更に400°から1000℃迄5分以内に
昇温して乾留し、賦活することを特徴とする中空
状活性炭繊維の製法である。
以下本発明について詳しく説明する。
PVA繊維の製法には乾式紡糸と湿式紡糸があ
り、乾式紡糸はポリビニルアルコールを水溶液に
した紡糸原液を空気中に紡出し、乾燥、延伸して
糸とする方法であり、湿式紡糸は紡糸原液を
Na2SO4やNaOH等の濃厚電解質水溶液中に紡出
し、水洗・乾燥、延伸して糸とする方法である。
本発明は何れの方法で得られたPVA繊維にも
適用される。湿式紡糸法PVA繊維の場合には細
い繊度の糸が得られ、中空部分が作り易い。又乾
式紡糸法PVA繊維では湿式紡糸法に比して太い
糸が得られ中空部分の径を大きくすることができ
る。PVA繊維はその物理的性質を向上させる目
的で微量添加されるホウ酸やMgSO4の存在や耐
水性向上の目的にアルデヒド類等の架橋剤で架橋
反応を行なつたPVA繊維にも適用できる。また
ビニルアルコールを主成分とした、エチレン、塩
化ビニル等他のモノマーとの共重合物の繊維でも
よい。更に本発明では、ポリ塩化ビニル(PVC)
を主原料としたエマルジヨンにPVAの水溶液を
混合して芒硝浴中に紡糸し、通常のPVA繊維の
湿式紡糸の場合と同様にして製造したいわゆる
PVA−PVC繊維を原材料繊維として用いること
もできる。
本発明に使用される脱水剤は酸性が強い無機酸
例えば硫酸、塩酸、硝酸、リン酸、メタリン酸等
が好適であり、更にルイス酸例えばZnCl2AlCl3
及びTiCl2も有効である。尚、酸性のため材質上
支障がある場合はアンモニウム塩を使用すること
ができる。これは次の熱処置工程で熱分解してア
ンモニアが飛散し、生成した無機酸が脱水剤とし
て作用するものと考えられる。アンモニウム塩と
しては硫酸アンモニウム、塩化アンモニウム、硝
酸アンモニウム、リン酸アンモニウム、リン酸1
水素2アンモニウム、リン酸2水素1アンモニウ
ム、メタリン酸アンモニウム、ポリリン酸アンモ
ニウム等が効果的である。
脱水剤は水溶液としてマングロールによるデイ
ツプ方式或いはニツプ方式でPVA繊維の表面層
に均一に付着させることができる。ここで表面層
とは表面に近い部分で、スキン、コアーと分けた
場合略スキンに相当する領域をいう。
〔作用〕
本発明は脱水剤を繊維中心部迄均一に浸透させ
ることなしに表面層に近い部分のみに止めて急速
に乾燥せしめることにより後の乾留工程における
不融化と相まつて、脱水剤の浸透してないコアー
部分(以下中心層という)を溶融除去して中空状
を形成せしめることに要部がある。従つて、脱水
剤は表面層の一定の深さ迄のみ浸透し、中心部に
は浸透していないような不均一な浸透状態にする
必要がある。そのような付着方法であればどのよ
うな方法でもよいが、種々の浸漬条件と中空状形
成の関係をしらべた結果、脱水剤水溶液濃度2〜
40%、浸漬温度40°〜80℃、浸漬時間5秒〜2分、
脱水剤付着量5〜20重量%として、付着後速やか
に温風で急速乾燥する方法が好適であることを見
出した。すなわち、上記の方法により脱水剤は繊
維の表面層のみに5〜20重量%付着するが、この
際2%以下では熱処理工程における脱水反応が不
充分で、繊維が変形し易く良好な中空形状が得ら
れない場合があり、また20%以上付着させると、
脱水反応が進行し易く、中空部分の内径が小さく
なる傾向がある。
PVA繊維は脱水剤付着後速かに乾燥する必要
がある。乾燥方法は特に限定しないが、120℃の
温風で、3〜4分で急激に乾燥するような方法に
よれば好結果が得られる。乾燥後急速に加熱する
と溶融するおそれがあるので、180°から300℃迄
の間徐々に加熱して黒褐色または黒色になるよう
にする方法が好ましい。次に温度を上げ、400°か
ら1000℃迄5分以内に昇温して乾留を完結せしめ
る必要がある。その際PVA分子は脱水反応によ
りポリエン構造となり不融化される。熱処理によ
る脱水反応の速度は高温程大きいが、PVAの軟
化点は220°〜240℃であるため脱水反応不充分の
間にこの温度領域に達するとPVA繊維が溶融収
縮して変形が著しく、良好な中空形状が得られな
い。熱処理により、脱水反応が進行するとPVA
繊維は褐色から黒褐色または黒色となり、不融化
して軟化点が次第に上昇する。従つて、良好な表
層部の状態を形成せしめるためには、脱水反応の
進行状態に応じて熱処理温度は常にその軟化点以
下に保たねばならない。急速に加熱すると溶融し
て変形し、また中空部の閉塞されるおそれがある
ため、180°から300℃迄徐々に加熱する方法が好
ましい。一方中心層は脱水剤を含まぬため不融化
されず、220°〜240℃以上に達した場合、徐々に
溶融して中空部分が形成されると考えられる。し
かし、この段階で生成する中空部分は尚形状が不
完全であるが更に400°から1000℃に5分以内に昇
温して、短時間高温乾留することにより、表層部
の炭素質化が一層進行すると共に、中心層の溶融
も進行して中空部分の断面形状も整つた円形とな
り、また完全な黒色となる。尚昇温速度を低下せ
しめた場合は中心部の溶融不良で溶融して除去さ
れないうちに炭化された中空部が狭小化するもの
と考えられる。熱処理及び乾留は不活性ガス中で
行われ、処理時間は特に限定しないが、180°〜
300℃迄60分、220°〜300℃迄60分程度の場合良好
な結果が得られる。また乾留は一酸化炭素ガス、
水素ガスまたは窒素のいずれかにまたは混合ガス
中で行なうと整つた中空形状が得られ易い。尚中
空部分の形状は連続型とすることも独立型とする
ことも可能である。上記詳述した如く、熱処理及
び高温乾留工程は脱水剤付着工程の相まつて本発
明の要部である中空形状を形成せしめる上で重要
な意義を有する部分である。
乾留工程で得られた中空炭素繊維を賦活処理す
ることにより中空活性炭繊維が得られる。賦活方
法は特に限定しないが、一般に賦活を進めると吸
着特性は向上するが、強度的性質及び収率は低下
し、2律背反的質を示す。両者が比較的バランス
のとれは性質を賦与するためには、液化石油ガス
の燃焼ガスで炉内を800°〜1100℃の比較的高温に
維持し、乾留したPVA繊維を投入して20〜30分
保持する急速賦活法が好適で、その場合賦活収率
は40〜60%となる。
〔効果〕
本発明の中空状活性炭繊維は繊維壁が半透性を
示すものであれば、その太さは限定しないが、通
常外径5〜20数μで繊維壁の厚さは4〜10数μ、
中空部分の容積は10〜70%である。従つて、繊維
壁は活性炭特有の吸着性と半透膜の性質を併せた
特異な物性を示す。また中空部分は連続性とする
ことも独立性とすることも可能であるが、本発明
の活性炭繊維の特性を発揮せしめるには、連続孔
を有する活性炭繊維を集束として適当な長さに切
断し、ガラス管に封入し、両端の繊維壁の外側の
み熱硬化性樹脂でガラス管の内壁に固着し、中空
部分と繊維外部を繊維壁により完全に分離して使
用する方式が好ましい。
中空状活性炭繊維のベンゼン吸着量は120〜130
%、BET表面積1600〜2500m2/gに達している。
粒状活性炭は賦活を進めても表面積は1500〜1700
m2/gが限度であるから、本発明による中空活性
炭は極めて高性能であり、また平衡吸着量も高
い。更に表面積が大きいにも拘らず、強度的性質
もすぐれているが、これは高温乾留工程で賦与さ
れたものと考えられる。また活性炭特有の細孔の
孔径分布は20〜30Åを中心として比較的ブロード
な分布を示し、代表的な活性炭であるヤシ殻炭が
7〜10Åを中心として、比較的シヤープな分布を
示すのと相当な差違が認められ注目される。これ
はPVA繊維の物性に依存するものと考えられる。
本発明の中空状活性炭繊維の用途はオゾン分
解、糖液脱色精製、吸着用の地、半透膜としての
機能が併せて要求される分野として有機化合物の
精度が高い吸着分離、空気中の窒素及び酸素の分
離、エタノールと水の分離等に使用できる。尚気
体分離の場合は2本のカラムを交互に使用し、圧
力スイング法により連続的分離操作も可能のな
る。
〔実施例〕
以下具体的に本発明の態様を説明するが、本発
明はこれにより限定されるものではない。
実施例 1
工業材料用PVA繊維(1800d/1000f、強度
10.5g/d、伸度7%)に(NH4)2SO470gと
(NH4)2を各70gを1000gの水に溶解しこの水溶
液に上記PVA繊維を70℃で10秒間デイスプレマ
ングルで絞液し105℃で3分間乾燥させた。脱水
剤の付着率は7.3wt%であつた。この繊維を300℃
以下で黒褐色になるまで熱処理した後400℃から
900℃まで3分間でN2中で昇温し乾留した。その
後、スチーム中で1050℃で賦活収率50%になるま
で賦活した。
処理条件及び物性値を第1表に示す。尚表面積
はイタリーのCarlo Erba社製Sorptomatic1800
により、活性炭の常法であるB.E.T法
(Brunauer Emmett&Teller法)により測定した
ものである。中空部の形状は断面を光学顕微鏡及
び走査型電子顕微鏡により観察した。
尚上記実施例1において、300℃以下で黒褐色
になるまで熱処理した後高温乾留をせず、上記と
同一条件で賦活したところ中空部が狭少で連続型
とならず、また形状も著しく不規則となつた。
比較例 1
400°から900℃迄の昇温時間を10分間とした他、
実施例1と同一条件であるが、中空部内径0.6μ、
内部空間率0.2%で極めて狭小或は殆んど生成し
なかつた。徐々に温度を上げた場合は脱水剤が浸
透していない中心部の溶融状態が不良で、溶融し
て除去されないうちに炭化されたためと考えられ
る。尚昇温速度を更に低下し昇温時間を20分とし
た場合は中空部は全く認められなかつた。
比較例 2
脱水剤(NH4)2SO及び(NH4)2HPO4の付着
率をそれぞれ12%及び13%に増加した他実施例と
略同一条件で処理したものであるが、中空内径
2.1μ、内部空間率3.2%で、中空部は狭小で、独
立孔であつた。
実施例 2〜5
脱水剤として夫々硫酸、塩化亜鉛或いはリン酸
を使用し、また高温乾留条件も変化させたもので
処理条件及び物性値を第1表に示す。
[Industrial Application Field] The present invention is directed to polyvinyl alcohol fibers (hereinafter referred to as polyvinyl alcohol fibers).
This is a method for producing hollow activated carbon fibers by carbonizing PVA fibers. Several types of activated carbon fibers are already well known. For example, natural fibers, recycled cellulose fibers, phenol fibers, PVA fibers, etc. are used as raw materials. When activated carbon is in the form of fibers, it has a significantly larger macroscopic contact area than the conventionally widely used granular or powdered adsorbents, and has a faster adsorption speed, no dust generation, and lower pressure loss. It has many advantages in terms of form. However, by making it hollow, the macroscopic contact area increases, and it exhibits unique physical properties that combine the adsorption properties unique to activated carbon and the permselectivity of hollow fiber walls. Hollow activated carbon fibers made from polyvinyl alcohol resin and having thin fiber walls that have the properties of semipermeable membranes are not known. The present invention aims to provide a novel material having such unique physical properties. [Prior art] A method for manufacturing carbon fiber using PVA fiber as a raw material is described in Japanese Patent Application Laid-open Nos. 49-24897, 50-35431, 50-52320, and 50-52321, and the gist is that the process involves dehydration. A method in which PVA fibers coated or impregnated with a catalyst are heat-treated at 180° to 300° in an oxidizing atmosphere to carbonize them, and if necessary, treated at higher temperatures to promote graphitization and improve mechanical properties. It is. All of these are intended to be carbon fibers as structural materials, and include the same elements in terms of carbonization as PVA fibers, but they are not hollow in shape and are not activated carbon. In addition, Japanese Patent Publication No. 54-3973 relates to a method for producing active fibers, in which 3 to 15% of a dehydration catalyst is added to the spinning dope, and the resulting PVA fibers are
After heat treatment at 340° to a yield of 65-85% and carbonization, heat treatment at 600° to 1000°C in an inert gas containing water vapor.
This is a method of activating to a yield of 10 to 35%.
(Page 1, column 1, lines 16-28 of the same publication, scope of claims). Furthermore, there is a close relationship between the method of adding the dehydration catalyst and the adsorption properties of the obtained activated carbon, and activated carbon fibers with high adsorption properties (iodine adsorption amount of 1600 to 1700 mg/g) can only be obtained when added to the spinning dope in advance. (Page 3, Table 1 of the same publication, and column 6, lines 5 to 8 of the same publication). [Problems to be Solved by the Invention] The above-mentioned activated carbon fibers are in the form of ordinary fibers and are not hollow. Further, with the extrusion molding technology of activated carbon powder, it is impossible to produce hollow fibers having a diameter of 10-odd microns or less, which is the object of the present invention. The present inventors studied the degree of penetration of the dehydrating agent, the heat treatment conditions, and the shape of the resulting carbide in the step of immersing PVA fibers in an aqueous dehydrating agent solution and then heat-treating and carbonizing them. As a result, it was found that there is a close relationship between the two, and that hollow carbides can be obtained under certain conditions. Furthermore, regarding the method of activating the carbide, the present invention was completed by using wet-spun or dry-spun PVA fiber as a raw material and devising other activation conditions to significantly increase adsorption. [Means to solve the problem] After applying a dehydrating agent only to the surface layer of the PVA fibers, heat-treat the fibers until they become dark brown or black to prevent them from melting, and then heat from 400° to 1000°C within 5 minutes. This method of manufacturing hollow activated carbon fibers is characterized by carbonization and activation at elevated temperatures. The present invention will be explained in detail below. There are two methods for producing PVA fiber: dry spinning and wet spinning.Dry spinning is a method in which a spinning solution containing an aqueous solution of polyvinyl alcohol is spun into the air, dried, and stretched to make yarn, and wet spinning is a method in which a spinning solution containing an aqueous solution of polyvinyl alcohol is spun into the air, dried, and stretched to make yarn.
This method involves spinning into a concentrated aqueous electrolyte solution such as Na 2 SO 4 or NaOH, washing with water, drying, and stretching to make yarn. The present invention is applicable to PVA fibers obtained by either method. In the case of wet-spun PVA fibers, yarns with fine fineness can be obtained and hollow parts can be easily created. In addition, dry-spun PVA fibers can yield thicker yarns than wet-spun PVA fibers, and the diameter of the hollow portion can be increased. PVA fibers can also be applied to PVA fibers with trace amounts of boric acid or MgSO 4 added to improve their physical properties, or PVA fibers that have been crosslinked with a crosslinking agent such as aldehydes to improve water resistance. Further, fibers made of a copolymer containing vinyl alcohol as a main component and other monomers such as ethylene and vinyl chloride may also be used. Furthermore, in the present invention, polyvinyl chloride (PVC)
A so-called PVA fiber is produced by mixing an aqueous solution of PVA with an emulsion containing PVA as the main raw material and spinning it in a mirabilite bath in the same manner as in the case of wet spinning of ordinary PVA fiber.
PVA-PVC fibers can also be used as raw material fibers. The dehydrating agent used in the present invention is preferably a strongly acidic inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, metaphosphoric acid, etc., and also a Lewis acid such as ZnCl 2 AlCl 3
and TiCl2 are also effective. In addition, if there is a problem due to the material being acidic, an ammonium salt can be used. This is thought to be due to thermal decomposition in the next heat treatment step, where ammonia is scattered and the generated inorganic acid acts as a dehydrating agent. Ammonium salts include ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium phosphate, and phosphoric acid 1.
Diammonium hydrogen, monoammonium dihydrogen phosphate, ammonium metaphosphate, ammonium polyphosphate, etc. are effective. The dehydrating agent can be applied in the form of an aqueous solution to the surface layer of the PVA fibers by a dip method or a nip method using mangrol. Here, the surface layer refers to a region close to the surface, which roughly corresponds to the skin when separated into the skin and core. [Function] The present invention does not allow the dehydrating agent to penetrate uniformly to the center of the fibers, but instead allows the dehydrating agent to be applied only to the portion near the surface layer and quickly dries the fibers, thereby reducing the penetration of the dehydrating agent in conjunction with the infusibility in the subsequent carbonization process. The main part is to melt and remove the unfilled core portion (hereinafter referred to as the center layer) to form a hollow shape. Therefore, it is necessary that the dehydrating agent permeates the surface layer only to a certain depth and does not penetrate into the center. Any such attachment method may be used, but as a result of investigating the relationship between various immersion conditions and the formation of hollow shapes, we found that
40%, immersion temperature 40° to 80°C, immersion time 5 seconds to 2 minutes,
It has been found that it is suitable to use a method in which the amount of dehydrating agent deposited is 5 to 20% by weight, and rapid drying with warm air is performed immediately after deposition. That is, by the above method, 5 to 20% by weight of the dehydrating agent is attached only to the surface layer of the fibers, but if the dehydrating agent is less than 2%, the dehydrating reaction in the heat treatment process is insufficient, the fibers are easily deformed, and a good hollow shape is not achieved. In some cases, it may not be possible to obtain the desired results, and if more than 20% is deposited,
The dehydration reaction tends to proceed easily, and the inner diameter of the hollow portion tends to become smaller. PVA fibers need to be dried quickly after being coated with a dehydrating agent. The drying method is not particularly limited, but good results can be obtained by using a method that rapidly dries in 3 to 4 minutes using hot air at 120°C. If it is heated rapidly after drying, it may melt, so it is preferable to gradually heat it from 180°C to 300°C until it becomes dark brown or black. Next, it is necessary to raise the temperature from 400°C to 1000°C within 5 minutes to complete carbonization. At this time, the PVA molecule becomes a polyene structure due to a dehydration reaction and becomes infusible. The speed of the dehydration reaction due to heat treatment increases as the temperature increases, but since the softening point of PVA is 220° to 240°C, if this temperature range is reached while the dehydration reaction is insufficient, the PVA fibers will melt and shrink, resulting in significant deformation, which is not good. A hollow shape cannot be obtained. When the dehydration reaction progresses through heat treatment, PVA
The fiber changes from brown to dark brown or black, becomes infusible, and its softening point gradually increases. Therefore, in order to form a good surface layer condition, the heat treatment temperature must always be kept below the softening point depending on the progress of the dehydration reaction. Since rapid heating may cause melting and deformation, and the hollow portion may be blocked, a method of gradually heating from 180° to 300°C is preferable. On the other hand, since the center layer does not contain a dehydrating agent, it is not made infusible, and when the temperature reaches 220° to 240° C. or higher, it is thought to gradually melt and form a hollow portion. However, although the shape of the hollow part formed at this stage is still incomplete, the surface layer is further carbonized by raising the temperature from 400° to 1000°C within 5 minutes and performing high-temperature carbonization for a short time. As the melting progresses, the melting of the central layer also progresses, and the cross-sectional shape of the hollow portion also becomes a regular circle and becomes completely black. It is thought that if the temperature increase rate is lowered, the carbonized hollow portion becomes narrower before it is melted and removed due to insufficient melting in the center. Heat treatment and carbonization are performed in an inert gas, and the treatment time is not particularly limited, but
Good results can be obtained when heating to 300°C for 60 minutes or from 220° to 300°C for about 60 minutes. Carbon monoxide gas is also used in carbonization.
If the process is carried out in either hydrogen gas or nitrogen gas, or in a mixed gas, a regular hollow shape can be easily obtained. Note that the shape of the hollow portion can be either a continuous type or an independent type. As detailed above, the heat treatment and high-temperature carbonization steps, together with the dehydrating agent deposition step, play an important role in forming the hollow shape, which is the essential part of the present invention. Hollow activated carbon fibers are obtained by activating the hollow carbon fibers obtained in the carbonization process. Although the activation method is not particularly limited, in general, as the activation progresses, the adsorption properties improve, but the strength and yield decrease, exhibiting antinomian properties. In order to give properties that are relatively balanced between the two, it is necessary to maintain the inside of the furnace at a relatively high temperature of 800° to 1100°C with combustion gas of liquefied petroleum gas, and add carbonized PVA fibers to heat the furnace for 20 to 30 minutes. A rapid activation method is preferred, in which the activation yield is 40-60%. [Effect] The thickness of the hollow activated carbon fiber of the present invention is not limited as long as the fiber wall exhibits semipermeability, but usually the outer diameter is 5 to 20 μm and the thickness of the fiber wall is 4 to 10 μm. A few μ,
The volume of the hollow part is 10-70%. Therefore, the fiber wall exhibits unique physical properties that combine the adsorptive properties unique to activated carbon and the properties of a semipermeable membrane. Furthermore, the hollow portions can be continuous or independent; however, in order to bring out the characteristics of the activated carbon fibers of the present invention, activated carbon fibers having continuous pores are cut into bundles into appropriate lengths. It is preferable to use a method in which the fiber is sealed in a glass tube, and only the outside of the fiber walls at both ends are fixed to the inner wall of the glass tube with a thermosetting resin, so that the hollow part and the outside of the fiber are completely separated by the fiber wall. Benzene adsorption amount of hollow activated carbon fiber is 120~130
%, BET surface area reaches 1600-2500 m 2 /g.
Granular activated carbon has a surface area of 1500 to 1700 even after activation.
m 2 /g is the limit, the hollow activated carbon according to the present invention has extremely high performance and also has a high equilibrium adsorption amount. Furthermore, despite its large surface area, it also has excellent strength properties, which is thought to have been imparted during the high-temperature carbonization process. In addition, the pore size distribution peculiar to activated carbon shows a relatively broad distribution centered on 20 to 30 Å, which is similar to that of coconut shell carbon, a typical activated carbon, which shows a relatively sharp distribution centered on 7 to 10 Å. Considerable differences are recognized and attract attention. This is considered to depend on the physical properties of the PVA fiber. The hollow activated carbon fibers of the present invention are used for ozone decomposition, sugar solution decolorization and purification, adsorption base, and fields that require functions as semipermeable membranes, such as highly accurate adsorption separation of organic compounds, and nitrogen removal in the air. It can be used for the separation of oxygen, ethanol and water, etc. In the case of gas separation, two columns are used alternately, and continuous separation operation is also possible using the pressure swing method. [Example] Hereinafter, aspects of the present invention will be specifically described, but the present invention is not limited thereto. Example 1 PVA fiber for industrial materials (1800d/1000f, strength
10.5 g/d, elongation 7%), 70 g each of (NH 4 ) 2 SO 4 and 70 g of (NH 4 ) 2 were dissolved in 1000 g of water, and the above PVA fiber was placed in a display mangle at 70°C for 10 seconds in this aqueous solution. The liquid was squeezed out and dried at 105°C for 3 minutes. The adhesion rate of the dehydrating agent was 7.3 wt%. This fiber is heated to 300℃
From 400℃ after heat treatment until it becomes blackish brown.
The temperature was raised to 900°C for 3 minutes in N 2 and carbonization was carried out. Thereafter, activation was performed in steam at 1050°C until the activation yield was 50%. The treatment conditions and physical property values are shown in Table 1. The surface area is Sorptomatic 1800 manufactured by Carlo Erba in Italy.
It was measured by the BET method (Brunauer Emmett & Teller method), which is a conventional method for activated carbon. The shape of the hollow portion was observed in cross section using an optical microscope and a scanning electron microscope. In Example 1 above, when activated under the same conditions as above without performing heat treatment at 300°C or less until it turned blackish brown, the hollow part was narrow and the shape was extremely irregular. It became. Comparative example 1 The heating time from 400° to 900°C was 10 minutes, and
Same conditions as Example 1, but the inner diameter of the hollow part was 0.6μ,
With an internal void ratio of 0.2%, the space was extremely narrow or almost non-existent. It is thought that when the temperature was gradually raised, the melting state of the center where the dehydrating agent had not penetrated was poor, and the material was carbonized before being melted and removed. Furthermore, when the heating rate was further reduced and the heating time was increased to 20 minutes, no hollow portions were observed at all. Comparative Example 2 This was treated under substantially the same conditions as in the other examples in which the adhesion rates of the dehydrating agent (NH 4 ) 2 SO and (NH 4 ) 2 HPO 4 were increased to 12% and 13%, respectively, but the hollow inner diameter
It had a diameter of 2.1μ and an internal void ratio of 3.2%, and the hollow part was narrow and had independent holes. Examples 2 to 5 Sulfuric acid, zinc chloride, or phosphoric acid was used as the dehydrating agent, and the high-temperature carbonization conditions were also varied. The treatment conditions and physical property values are shown in Table 1.
【表】【table】
第1図は実施例1で、第2図は実施例2で、第
3図は比較例1で得られた活性炭繊維の断面の走
査型電子顕微鏡写真を示す。(6000倍)
FIG. 1 shows Example 1, FIG. 2 shows Example 2, and FIG. 3 shows scanning electron micrographs of the cross sections of activated carbon fibers obtained in Comparative Example 1. (6000x)
Claims (1)
剤を付着せしめた後、繊維が溶融せぬよう黒褐色
ないし黒色になる迄熱処置し、更に400℃から
1000℃迄5分以内に昇温して乾留し、次いで賦活
することを特徴とする中空状活性繊維の製法。 2 ポリビニルアルコール系繊維が、湿式紡糸ま
たは乾式紡糸したポリビニルアルコール繊維であ
る、特許請求の範囲第1項記載の中空状活性炭繊
維の製法。 3 脱水剤を付着せしめる場合、脱水剤水溶液濃
度が2〜40重量%、浸漬温度が10℃〜80℃、浸漬
時間が5秒〜2分、脱水剤付着量が5〜20重量%
である、特許請求の範囲第1項及び第2項記載の
中空状活性炭繊維の製法。 4 乾留時の不活性ガスが一酸化炭素ガス、水素
ガス及び窒素ガスからなる成分の中、少なくとも
1つである特許請求の範囲第1項記載の中空状活
性炭繊維の製法。[Claims] 1. After attaching a dehydrating agent to the surface layer of polyvinyl alcohol fibers, heat treatment is performed until the fibers become dark brown or black so as not to melt, and then heated from 400°C to
A method for producing hollow activated fibers, which comprises raising the temperature to 1000°C within 5 minutes, carbonizing it, and then activating it. 2. The method for producing hollow activated carbon fibers according to claim 1, wherein the polyvinyl alcohol fibers are wet-spun or dry-spun polyvinyl alcohol fibers. 3 When attaching a dehydrating agent, the concentration of the dehydrating agent aqueous solution is 2 to 40% by weight, the immersion temperature is 10°C to 80°C, the immersion time is 5 seconds to 2 minutes, and the amount of dehydrating agent attached is 5 to 20% by weight.
A method for producing hollow activated carbon fibers according to claims 1 and 2. 4. The method for producing hollow activated carbon fibers according to claim 1, wherein the inert gas during carbonization is at least one of carbon monoxide gas, hydrogen gas, and nitrogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59168416A JPS6147827A (en) | 1984-08-10 | 1984-08-10 | Hollow activated carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59168416A JPS6147827A (en) | 1984-08-10 | 1984-08-10 | Hollow activated carbon fiber |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3224633A Division JPH076093B2 (en) | 1991-08-10 | 1991-08-10 | Gas or liquid separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6147827A JPS6147827A (en) | 1986-03-08 |
JPH0444018B2 true JPH0444018B2 (en) | 1992-07-20 |
Family
ID=15867719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59168416A Granted JPS6147827A (en) | 1984-08-10 | 1984-08-10 | Hollow activated carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6147827A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089135A (en) * | 1988-01-20 | 1992-02-18 | Mitsubishi Rayon Co., Ltd. | Carbon based porous hollow fiber membrane and method for producing same |
JPH0248024A (en) * | 1988-08-10 | 1990-02-16 | Nok Corp | Hollow fiber with adsorbent and production thereof and water cleaning device |
JPH0724743B2 (en) * | 1991-04-24 | 1995-03-22 | 工業技術院長 | Method for producing molecular sieve carbon membrane |
CN103274402B (en) * | 2013-06-04 | 2016-01-20 | 成都银鑫新能源有限公司 | Polyvinyl alcohol is utilized to prepare the method for gac |
JP6992448B2 (en) * | 2017-11-28 | 2022-01-13 | 株式会社豊田中央研究所 | Carbon material precursor composition and method for producing carbon material using it |
RU2722507C1 (en) * | 2019-12-17 | 2020-06-01 | Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук (ИСПМ РАН). | Method of modification (versions) of oriented pva-fibers and a method of producing carbonised fibers (versions) using modified pva fibers as a precursor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS515090A (en) * | 1974-07-01 | 1976-01-16 | Yoshito Noda | DAKUDOSOKUTEIHOHO |
JPS5224132A (en) * | 1975-08-05 | 1977-02-23 | Dowa Mining Co | Rigid alloy plating method |
JPS543973A (en) * | 1977-06-06 | 1979-01-12 | Fram Corp | Fluid filter assemblied body |
-
1984
- 1984-08-10 JP JP59168416A patent/JPS6147827A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS515090A (en) * | 1974-07-01 | 1976-01-16 | Yoshito Noda | DAKUDOSOKUTEIHOHO |
JPS5224132A (en) * | 1975-08-05 | 1977-02-23 | Dowa Mining Co | Rigid alloy plating method |
JPS543973A (en) * | 1977-06-06 | 1979-01-12 | Fram Corp | Fluid filter assemblied body |
Also Published As
Publication number | Publication date |
---|---|
JPS6147827A (en) | 1986-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Precursors and manufacturing of carbon fibers | |
US3639953A (en) | Method of producing carbon fibers | |
Bahl et al. | Manufacture of carbon fibers | |
US3497318A (en) | Preparation of carbon textiles from polyacrylonitrile base textiles | |
Li et al. | Polyacrylonitrile based carbon fibers: Spinning technology dependent precursor fiber structure and its successive transformation | |
JPH0444018B2 (en) | ||
US4925604A (en) | Process for preparing a carbon fiber of high strength | |
JP7264190B2 (en) | Method for manufacturing carbon material | |
Zhang et al. | Dry‐jet wet‐spun PAN/MWCNT composite fibers with homogeneous structure and circular cross‐section | |
US3666417A (en) | Process for production of carbon fibers | |
KR20160142538A (en) | Method of manufacturing carbon fiber with thick denier | |
JP4875238B2 (en) | Method for producing carbon fiber and precursor thereof, and method for attaching oil agent | |
JPH06128816A (en) | Gas or liquid separation method | |
JPH02242920A (en) | Carbon fiber containing composite metal | |
KR101221615B1 (en) | Preparation method of carbon nano-fiber using electrospinning | |
US3488151A (en) | Preparation of carbon fibers from polyvinyl alcohol base fibers | |
JPH01132832A (en) | Method for producing carbon material | |
CN100400727C (en) | Preparation method of polyvinyl alcohol-based activated carbon fiber | |
KR20170111970A (en) | Polyacrylronitrile type carbon fiber and method of manufacturing the same | |
JPS6316485B2 (en) | ||
JP2849156B2 (en) | Method for producing hollow carbon fiber | |
JP2009243024A (en) | Precursor for carbon fiber production and method for producing the same | |
JP6336947B2 (en) | Polyvinyl alcohol-based carbon nanofibers manufactured at low yield and high yield by electrospinning method | |
JP2008088054A (en) | Method for producing carbonaceous material | |
JP2004339627A (en) | Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |