[go: up one dir, main page]

JPH0443087B2 - - Google Patents

Info

Publication number
JPH0443087B2
JPH0443087B2 JP59205994A JP20599484A JPH0443087B2 JP H0443087 B2 JPH0443087 B2 JP H0443087B2 JP 59205994 A JP59205994 A JP 59205994A JP 20599484 A JP20599484 A JP 20599484A JP H0443087 B2 JPH0443087 B2 JP H0443087B2
Authority
JP
Japan
Prior art keywords
group
component
resin composition
epoxy resin
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59205994A
Other languages
Japanese (ja)
Other versions
JPS6183220A (en
Inventor
Katsuhiko Isayama
Toshibumi Hirose
Takanao Iwahara
Fumio Kawakubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP20599484A priority Critical patent/JPS6183220A/en
Priority to CN 85104433 priority patent/CN1007988B/en
Publication of JPS6183220A publication Critical patent/JPS6183220A/en
Publication of JPH0443087B2 publication Critical patent/JPH0443087B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、分子中に少なくとも1つの反応性ケ
イ素基を有するゴム系有機重合体、フエノール樹
脂、エポキシ樹脂およびエポキシ樹脂用硬化剤か
らなる可撓性、耐衝撃性、弱靱性または強度の改
善された硬化物を与える硬化性樹脂組成物に関す
る。 [従来の技術] 従来、フエノール樹脂またはエポキシ樹脂は、
各種成形材料、接着剤、塗料、合板、積層品など
の幅広い用途に使用されているが、これらの用途
に共通する問題として、硬化物が脆いという欠点
がある。 一方、反応性ケイ素基を有するゴム系有機重合
体は、常温でも硬化し、ゴム弾性体になるという
興味ある特性を有しているが、通常硬化物の強度
が小さいという欠点を有しており、用途が制限さ
れている。 [発明が解決しようとする問題点] 本発明は、フエノール樹脂硬化物またはエポキ
シ樹脂硬化物が脆い、あるいは反応性ケイ素基を
有するゴム系有機重合体硬化物の強度が不足する
という問題を解決するためになされたものであ
る。 [問題点を解決するための手段] 本発明は、(A)フエノール樹脂、(B)エポキシ樹
脂、(C)分子中に少なくとも1つの反応性ケイ素基
を含有するゴム系有機重合法、および(D)エポキシ
樹脂用硬化剤を有効成分として含有し、((A)+
(B))/(C)が1/100〜100/1(重量比)であるこ
とを特徴とする硬化性樹脂組成物に関し、反応性
ケイ素基を有するゴム系有機重合体、エポキシ樹
脂、フエノール樹脂およびエポキシ樹脂用硬化剤
の4成分がよく相溶し、前記問題点が大巾に改良
されることを見出し、本発明を完成するに至つた
ものである。 [実施例] 本発明に用いる(A)成分であるフエノール樹脂に
はとくに限定はなく、通常使用されるフエノール
樹脂であれば使用しうる。このようなフエノール
樹脂の具体例としては、フエノール、クレゾー
ル、キシレール、レゾルシノール、アルキルフエ
ノール、変性フエノール(たとえばカシユーオイ
ル変性フエノール、トールオイル変性フエノール
など)などのフエノール系化合物とホルマリン、
パラホルムアルデヒドなどのアルデヒド系化合物
との縮合反応によりえられるレゾール型またはノ
ボラツク型のフエノール樹脂、あるいは前記フエ
ノール系化合物とアルデヒド系化合物との反応の
際に、アンモニアやアミン系化合物を触媒として
用いて縮合させてえられるチツ素原子を含むフエ
ノール樹脂などがあげられ、これらを単独で用い
てもよく、2種以上混合して用いてもよい。 なおノボラツク型フエノール樹脂を使用するば
あいには、アルデヒドとかヘキサメチレンテトラ
ミンなどのごときフエノール樹脂用硬化剤として
一般に知られている硬化剤を、硬化させるばあい
に併用してもよい。 本発明に用いる(B)成分であるエポキシ樹脂とし
ては、たとえばエピクロルヒドリン−ビスフエノ
ールA型エポキシ樹脂、エピクロルヒドリン−ビ
スフエノールF型エポキシ樹脂、テトラブロモビ
スフエノールAのグリシジルエーテルなどの難燃
型エポキシ樹脂、ノボラツク型エポキシ樹脂、水
添ビスフエノールA型エポキシ樹脂、ビスフエノ
ールAプロピレンオキシド付加物のグリシジルエ
ーテル型エポキシ樹脂、p−オキシ安息香酸−グ
リシジルエーテルエステル型エポキシ樹脂、m−
アミノフエノール系エポキシ樹脂、ジアミノジフ
エニルメタン系エポキシ樹脂、ウレタン変性エポ
キシ樹脂、各種脂環式系エポキシ樹脂、N,N−
ジグリシジルアニリン、N,N−ジグリシジル−
O−トルイジン、トリグリシジルイソシアヌレー
ト、ポリアルキレングリコールジグリシジルエー
テル、グリセリンなどのごとき多価アルコールの
グリシジルエーテル、ヒダントイン型エポキシ樹
脂、石油樹脂などのごとき不飽和重合体のエポキ
シ化物などが例示されるが、これらに限定される
ものではなく、一般に知られているエポキシ樹脂
であれば使用しうる。これらのエポキシ樹脂のう
ちでは式:
[Industrial Application Field] The present invention is directed to a rubber-based organic polymer having at least one reactive silicon group in the molecule, a phenol resin, an epoxy resin, and a curing agent for epoxy resin, which has flexibility, impact resistance, The present invention relates to a curable resin composition that provides a cured product with improved toughness or strength. [Prior art] Conventionally, phenolic resin or epoxy resin was
It is used in a wide range of applications such as various molding materials, adhesives, paints, plywood, and laminates, but a common problem with these applications is that the cured product is brittle. On the other hand, rubber-based organic polymers with reactive silicon groups have the interesting property of curing even at room temperature and becoming rubber elastic bodies, but they usually have the disadvantage that the strength of the cured product is low. , its uses are limited. [Problems to be Solved by the Invention] The present invention solves the problem that a cured product of a phenolic resin or a cured epoxy resin is brittle, or that a cured product of a rubber-based organic polymer having a reactive silicon group lacks strength. It was made for the purpose of [Means for Solving the Problems] The present invention provides a rubber-based organic polymerization method containing (A) a phenolic resin, (B) an epoxy resin, (C) a rubber-based organic polymerization method containing at least one reactive silicon group in the molecule, and ( D) Contains a curing agent for epoxy resin as an active ingredient, ((A) +
(B))/(C) is 1/100 to 100/1 (weight ratio), a rubber-based organic polymer having a reactive silicon group, an epoxy resin, a phenol It was discovered that the four components of the resin and the curing agent for epoxy resins are well compatible with each other, and the above-mentioned problems can be greatly improved, leading to the completion of the present invention. [Example] There are no particular limitations on the phenolic resin that is component (A) used in the present invention, and any commonly used phenolic resin can be used. Specific examples of such phenolic resins include phenolic compounds such as phenol, cresol, xylele, resorcinol, alkylphenol, modified phenol (e.g., cashew oil modified phenol, tall oil modified phenol, etc.), formalin,
A resol type or novolak type phenolic resin obtained by a condensation reaction with an aldehyde compound such as paraformaldehyde, or a condensation reaction using ammonia or an amine compound as a catalyst during the reaction of the phenol compound and an aldehyde compound. Examples include phenolic resins containing a nitrogen atom, which can be obtained by oxidation, and these may be used alone or in combination of two or more. In addition, when a novolac type phenolic resin is used, a curing agent generally known as a curing agent for phenolic resins such as aldehyde or hexamethylenetetramine may be used in combination for curing. Examples of the epoxy resin as component (B) used in the present invention include flame-retardant epoxy resins such as epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, and glycidyl ether of tetrabromobisphenol A; Novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, p-oxybenzoic acid-glycidyl ether ester type epoxy resin, m-
Aminophenol epoxy resin, diaminodiphenylmethane epoxy resin, urethane modified epoxy resin, various alicyclic epoxy resins, N,N-
diglycidylaniline, N,N-diglycidyl-
Examples include glycidyl ethers of polyhydric alcohols such as O-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether, and glycerin, epoxidized products of unsaturated polymers such as hydantoin type epoxy resins, and petroleum resins. However, the present invention is not limited to these, and any generally known epoxy resin can be used. Among these epoxy resins the formula:

【式】で示されるエポキシ基 を少なくとも分子中に2個含有するものが好まし
く、ビスフエノールA型エポキシ樹脂類やノボラ
ツク型エポキシ樹脂がさらに好ましい。 本発明においては、エポキシ樹脂を硬化させる
硬化剤であるエポキシ樹脂用硬化剤が(D)成分とし
て使用される。このようなエポキシ樹脂用硬化剤
にはとくに限定はなく、一般に使用されるエポキ
シ樹脂用硬化剤であれば使用しうるが、たとえば
トリエチレンテトラミン、テトラエチレンペンタ
ミン、ジエチルアミノプロピルアミン、N−アミ
ノエチルピペラジン、メタキシリレンジアミン、
メタフエニレンジアミン、ジアミノジフエニルメ
タン、ジアミノジフエニルスルホン、イソホロン
ジアミン、2,4,6−トリス(ジメチルアミノ
メチル)フエノールなどのごときアミン類;3級
アミン塩;ポリアミド樹脂;イミダゾール類,ジ
シアンジアミド;3フツ化ホウ素醋化合物;無水
フタル酸、ヘキサヒドロ無水フタル酸、テトラヒ
ドロ無水フタル酸、エンドメチレンテトラヒドロ
無水フタル酸、ドデシニル無水コハク酸、無水ピ
ロメリツト酸、無水クロレン酸などのごとき無水
カルボン酸類;アルコール類;フエノール類;カ
ルボン酸類などのごとき化合物を例示することが
てきるが、これらに限定されるものではない。 (D)成分であるエポキシ樹脂用硬化剤の使用量
は、エポキシ樹脂および該硬化剤の種類により異
なるが、(B)成分100部(重量部、以下同様)に対
し、目的に応じて(D)成分を0.1〜300部の範囲で使
用すればよい。 本発明に用いる(C)成分である分子中に少なくと
も1つの反応性ケイ素基を含有するゴム系有機重
合体としては、主鎖が本質的に−R−0−(式中、
Rは炭素数2〜4の2価のアルキレン基を表わ
す)で示される化学的に結合している繰返し単位
を有するポリエーテル、たとえばプロピレンオキ
シド、エチレンオキシド、テトラヒドロフランな
どの環状エーテルの重合によりえられるポリエー
テル系重合体、アジピン酸などの2塩基酸とグリ
コールとの縮合またはラクトン類の開環重合でえ
られるポリエステル系重合体、エチレン−プロピ
レン系共重合体、ポリイソブチレン、イソブチレ
ンとイソプレンなどとの共重合体、ポリクロロプ
レン、ポリイソプレン、イソプレンとブタジエ
ン、アクリロニトリル、スチレンなどとの共重合
体、ポリブタジエン、ブタジエンとスチレン、ア
クリロニトリルなどとの共重合体、ポリイソプレ
ン、ポリブタジエン、イソプレンとあるいはブタ
ジエンとアクリロニトリル、スチレンなどとの共
重合体を水素添加してえられるポリオレフイン系
重合体、エチルアクリレート、ブチルアクリレー
トなどのモノマーをラジカル重合してえられるポ
リアクリル酸エステル、エチルアクリレートある
いはブチルアクリレートなどのアクリル酸エステ
ルと酢酸ビニル、アクリロニトリル、メチルメタ
クリレート、スチレンなどとのアクリル酸エステ
ル系共重合体、前記ゴム系有機重合体中でビニル
モノマーを重合しててえられるグラフト重合体、
ポリサルフアイド系重合体などであつて、それら
の重合体分子中に少なくとも1つの反応性ケイ素
基を有する重合体があげられる。これらのうちで
はとくにポリプロピレンオキシド系ポリエーテ
ル、ポリプロピレンオキシド中でビニルモノマー
を重合させてえられるグラフト重合体、ポリアク
リル酸エステルあるいはアクリル酸エステルと酢
酸ビニル、アクリロニトリル、メチルメタクリレ
ート、スチレンなどとの共重合体であつて、それ
らの重合体分子中に少なくとも1つの反応性ケイ
素基を有する重合体などとの共重合体が好まし
い。さらに耐水性がよくて安価であり、また液状
物として取扱い易いという点から、とくに重合体
分子中に少なくとも1つの反応性ケイ素基を有す
るポリプロピレンオキシドが好ましい。 前記ゴム系有機重合体中に含有されている反応
性ケイ素基としては、たとえば加水分解性ケイ素
基あるいはシラノール基があげられる。 本明細書にいう加水分解性ケイ素基とは、シラ
ノール縮合触媒の存在下または非存在下で、水分
により加水分解をうける加水分解性基がケイ素原
子に結合している基を意味し、加水分解性基の具
体例としては、たとえば水素原子、ハロゲン原
子、アルコキシ基、アシルオキシ基、ケトキシメ
ート基、アミノ基、アミド基、アミノオキシ基、
メルカプト基、アルケニルオキシ基などの一般に
知られている基があげられる。これらのうちでは
アルコキシ基が、加水分解性がマイルドであり取
扱い易いという点からとくに好ましい。該加水分
解性基は、1個のケイ素原子に1〜3個の範囲で
結合しうる。 前記加水分解性ケイ素基を形成するケイ素原子
は1個でもよく、2個以上であつてもよいが、シ
ロキサン結合などにより連結されたケイ素原子の
ばあいには、20個のものまでであれば自由に使用
しうる。 反応性ケイ素基の1種である加水分解性ケイ素
基をゴム系有機重合体中に導入する方法として
は、たとえば以下の方法が具体例としてあげられ
る。 (1) ビニルトリアルコキシシラン、メタクリロキ
シプロピルメチルジアルコキシシラン、メタク
リロキシプロピルトリアルコキシシランなどの
ような共重合可能な不飽和基と加水分解性ケイ
素基とを分子中に有するモノマーを、エチレ
ン、プロピレン、イソブチレン、クロロプレ
ン、イソプレン、ブタジエン、アクリル酸エス
テルなどの重合性モノマーと共重合させる方
法、あるいはγ−グリシドキシプロピルトリメ
トキシシラン、γ−グリシドキシプロピルメチ
ルジメトキシシランなどのような共重合可能な
エポキシ基および加水分解性ケイ素基を分子中
に有するモノマーをプロピレンオキシドやエチ
レンオキシドなどと共重合させる方法。 これらの方法により、分子側鎖に加水分解性
ケイ素基を導入することができる。 (2) ラジカル重合において連鎖移動反応をおうし
うるメルカプトプロピルトリアルコキシシラ
ン、メルカプトプロピルメチルジアルコキシシ
ランなどのようなメルカプト基やジスルフイド
基などと加水分解性ケイ素基とを分子中に有す
るケイ素化合物を連鎖移動剤として使用してラ
ジカル重合性モノマーを重合させる方法。 (3) アゾビス−2−(6−メチルジエトキシシリ
ル−2−シアノヘキサン)などのような加水分
解性ケイ素基を含有するアゾ系開始剤や過酸化
物系開始剤を使用してラジカル重合性モノマー
を重合させる方法。 なお(2)、(3)の方法では、加水分解性ケイ素基を
重合体分子末端に導入することができる。 (4) 重合体の側鎖および(または)末端に水酸
基、カルボキシル基、メルカプト基、エポキシ
基、イソシアネート基などの官能性(以下、Y
官能基という)を有する重合体を使用し、該Y
官能基と反応しうるY′官能基を分子中に含有
し、かつ加水分解性ケイ素基を有するケイ素化
合物をY官能基と反応させる方法。具体的な反
応例を次表に示すがこれらに限定されるもので
はない。
Those containing at least two epoxy groups represented by the formula in the molecule are preferred, and bisphenol A type epoxy resins and novolac type epoxy resins are more preferred. In the present invention, a curing agent for epoxy resin, which is a curing agent for curing epoxy resin, is used as component (D). There are no particular limitations on such curing agents for epoxy resins, and any commonly used curing agents for epoxy resins can be used, such as triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethyl piperazine, metaxylylene diamine,
Amines such as metaphenylene diamine, diaminodiphenylmethane, diaminodiphenyl sulfone, isophorone diamine, 2,4,6-tris(dimethylaminomethyl)phenol, etc.; tertiary amine salts; polyamide resins; imidazoles, dicyandiamide; Boron trifluoride compounds; Carboxylic acid anhydrides such as phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecynylsuccinic anhydride, pyromellitic anhydride, chlorenic anhydride, etc.; Alcohols; Examples include compounds such as phenols and carboxylic acids, but are not limited to these. The amount of curing agent for epoxy resin, which is component (D), varies depending on the type of epoxy resin and the curing agent, but depending on the purpose (D) ) component may be used in a range of 0.1 to 300 parts. As the rubber-based organic polymer containing at least one reactive silicon group in the molecule, which is component (C) used in the present invention, the main chain is essentially -R-0- (in the formula,
R represents a divalent alkylene group having 2 to 4 carbon atoms. Ether polymers, polyester polymers obtained by condensation of dibasic acids such as adipic acid with glycols or ring-opening polymerization of lactones, ethylene-propylene copolymers, polyisobutylene, co-conjugates of isobutylene and isoprene, etc. Polymers, polychloroprene, polyisoprene, copolymers of isoprene and butadiene, acrylonitrile, styrene, etc., polybutadiene, copolymers of butadiene and styrene, acrylonitrile, etc., polyisoprene, polybutadiene, isoprene and or butadiene and acrylonitrile, styrene Polyolefin polymers obtained by hydrogenating copolymers with ethyl acrylate, polyacrylic esters obtained by radical polymerization of monomers such as butyl acrylate, acrylic esters such as ethyl acrylate or butyl acrylate, and acetic acid. Acrylic acid ester copolymers with vinyl, acrylonitrile, methyl methacrylate, styrene, etc.; graft polymers obtained by polymerizing vinyl monomers in the rubber organic polymers;
Examples include polysulfide polymers having at least one reactive silicon group in their polymer molecules. Among these, polypropylene oxide polyethers, graft polymers obtained by polymerizing vinyl monomers in polypropylene oxide, polyacrylic esters or copolymers of acrylic esters with vinyl acetate, acrylonitrile, methyl methacrylate, styrene, etc. Copolymers with polymers having at least one reactive silicon group in their polymer molecules are preferred. Furthermore, polypropylene oxide having at least one reactive silicon group in the polymer molecule is particularly preferred because it has good water resistance, is inexpensive, and is easy to handle as a liquid. Examples of the reactive silicon group contained in the rubber-based organic polymer include a hydrolyzable silicon group and a silanol group. The term "hydrolyzable silicon group" as used herein means a group in which a hydrolyzable group that undergoes hydrolysis by moisture is bonded to a silicon atom in the presence or absence of a silanol condensation catalyst, and Specific examples of the functional group include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group,
Examples include commonly known groups such as mercapto group and alkenyloxy group. Among these, alkoxy groups are particularly preferred because they are mildly hydrolyzable and easy to handle. The hydrolyzable group may be bonded to one silicon atom in a range of 1 to 3. The number of silicon atoms forming the hydrolyzable silicon group may be one or two or more, but in the case of silicon atoms connected by siloxane bonds etc., up to 20 silicon atoms may be used. Can be used freely. Specific examples of methods for introducing a hydrolyzable silicon group, which is a type of reactive silicon group, into a rubber-based organic polymer include the following method. (1) A monomer having a copolymerizable unsaturated group and a hydrolyzable silicon group in the molecule, such as vinyltrialkoxysilane, methacryloxypropylmethyldialkoxysilane, methacryloxypropyltrialkoxysilane, etc., in ethylene, Copolymerization with polymerizable monomers such as propylene, isobutylene, chloroprene, isoprene, butadiene, acrylic ester, or copolymerization with γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, etc. A method of copolymerizing a monomer having a possible epoxy group and a hydrolyzable silicon group in the molecule with propylene oxide, ethylene oxide, etc. These methods allow the introduction of hydrolyzable silicon groups into molecular side chains. (2) Silicon compounds that have a mercapto group, disulfide group, etc. and a hydrolyzable silicon group in the molecule, such as mercaptopropyltrialkoxysilane and mercaptopropylmethyldialkoxysilane, which can undergo a chain transfer reaction in radical polymerization. A method of polymerizing radically polymerizable monomers using them as chain transfer agents. (3) Radical polymerization using an azo initiator or peroxide initiator containing a hydrolyzable silicon group such as azobis-2-(6-methyldiethoxysilyl-2-cyanohexane) A method of polymerizing monomers. Note that in methods (2) and (3), a hydrolyzable silicon group can be introduced at the end of the polymer molecule. (4) Functionality such as hydroxyl group, carboxyl group, mercapto group, epoxy group, isocyanate group (hereinafter referred to as Y
A polymer having a functional group) is used, and the Y
A method in which a silicon compound containing a Y' functional group capable of reacting with a functional group in its molecule and having a hydrolyzable silicon group is reacted with a Y functional group. Specific reaction examples are shown in the following table, but are not limited thereto.

【表】【table】

【表】 前記表において出発原料または中間原料として
使用されるY官能基を有する重合体の好ましい具
体例としては、ポリプロピレンポリオール、ポリ
エチレンポリオール、ポリテトラメチレンジオー
ルなど、主鎖が本質的に−R−O−(式中、Rは
炭素数2〜4の2価のアルキレン基を表わす)で
示されるポリエーテルポリオール類、アジピン酸
などの2塩基酸とグリコールとの縮合またはラク
トン類の開環重合でえられるポリエステルポリオ
ール類、ポリイソブチレンのポリオールまたはポ
リカルボン酸類、ポリブタジエンまたはブタジエ
ンとスチレン、アクリロニトリルなどとの共重合
体のポリオールまたはポリカルボン酸類、ポリイ
ソプレンまたはポリブタジエンを水素添加してえ
られるポリオレフインのポリオール類などのポリ
オールまたはポリカルボン酸とポリイソシアネー
トとを反応させてえられるイソシアネート官能基
含有前記重合体類;前記ポリオール類を多価ハロ
ゲン化合物およびビニル型不飽和基含有ハロゲン
化合物などと反応させてえられるビニル型不飽和
基を含有する前記重合体類などがあげられ、さら
にY官能基が重合体分子末端にあるのがより好ま
しい。 また、Y′官能基を有するケイ素基化合物とし
ては、γ−(2−アミノエチル)プロピルトリメ
トキシシラン、γ−(2−アミノエチル)アミノ
プロピルメチルジメトキシシラン、γ−アミノプ
ロピルトリエトキシシランなどのようなアミノシ
ラン類;γ−メルカプトプロピルトリメトキシシ
ラン、γ−メルカプトプロピルメチルジメトキシ
シランなどのようなメルカプトシラン類;γ−グ
リシドキシプロピルトリメトキシシラン、β−
(3,4−エポキシシクロヘキシル)エチルトリ
メトキシシランなどのようなエポキシシラン類;
ビニルトリエトキシシラン、γ−メタクリロキシ
プロピルトリメトキシシラン、γ−アクリロキシ
プロピルメトキシシランなどのようなビニル型不
飽和基含有シラン類;γ−クロロプロピルトリメ
トキシシランなどのような塩素原子含有シラン
類;γ−イソシアネートプロピルトリエトキシシ
ラン、γ−イソシアネートプロピルメチルジメト
キシシランなどのようなイソシアネートシラン
類;メチルジメトキシシラン、トリメトキシシラ
ン、メチルジエトキシシランなどのようなハイド
ロシラン類なとが具体的に例示されうるが、これ
らに限定されるものではない。 Y官能基を含有する重合体とY′官能基を含有
するケイ素化合物との組合わせとしては、とくに
()イソシアネート基を有する重合体とアミノ
シラン類またはメルカプトシラン類との組合せ、
()ビニル型不飽和基含有重合体とハイドロシ
ラン類との組合せが好ましい。さらに()にお
いて、アリルエーテル基を分子末端に有するポリ
プロピレンオキシドとハイドロシラン類との組合
せが、とくに好ましい。このばあいには、白金系
化合物などを触媒に使用してヒドロシリル化反応
させることにより、ビニル基とハイドロシリル基
とを反応させ、シリル基を重合体中に導入するこ
とができる。 本発明においては、反応性ケイ素基として加水
分解性ケイ素以外にシラノール基も好適に使用し
うるが、シラノール基は加水分解性ケイ素基を加
水分解することによつてもうることができる。 本発明に用いる(C)成分である分子中に少なくと
も1個、好ましくは1.2〜6個の反応性ケイ素基
を有するゴム系有機重合体の分子量は500〜50000
程度、とくに分子量1000〜20000程度の液状物が
取扱い易いという点から好ましい。分子中に含ま
れる反応性ケイ素基の数が1個未満になると、硬
化が不充分になつたりして改質硬化がはつきりと
えられなくなる。 本発明に用いる分子中に少なくとも1個の反応
性ケイ素基を有するゴム系有機重合体において、
反応性ケイ素基は分子末端に存在することが好ま
しい。分子末端に反応性ケイ素基が存在するばあ
いには、形成される硬化物に含まれる(C)成分の有
効網目鎖量が多くなるため、ゴム弾性があらわれ
やすく、したがつてフエノール樹脂やエポキシ樹
脂の硬化物の脆さが改善されやすくなり、一方、
(C)成分主体のゴム硬化物のばあいには、高強度物
がえられ易くなる。 前記のごとき(C)成分の具体例としては、たとえ
ば特公昭45−36319号、同46−12154号、同49−
32673号、特開昭50−156599号、同51−73561号、
同54−6096号、同55−13767号、同54−13768号、
同55−82123号、同55−123620号、同55−125121
号、同55−131021号、同55−131022号、同55−
135135号、同55−137129号、同57−179210号、同
58−191703号、同59−78220号、同59−78221号、
同59−78222号、同59−78223号、同59−78223号
などに開示されているものがあげられ、有用であ
るが、これらに限定されるものではない。 本発明においては、(A)成分であるフエノール樹
脂、(B)成分であるエポキシ樹脂、(C)成分である分
子中に少なくとも1つの反応性ケイ素基を有する
ゴム系有機重合体および(D)成分であるエポキシ樹
脂用硬化剤を有効成分として、硬化性樹脂組成物
が調製される。 (A)成分と(B)成分とをあわせた混合物に対する(C)
成分の割合である((A)+(B))/(C)は、重量比で
1/100〜100/1の範囲で使用しうる。((A)+
(B))/(C)の割合が1/100より小さくなるとゴム
硬化物の強度改善効果が不充分になり、また((A)
+(B))/(C)の割合が100/1より大きくなると、
衝撃強度や強靱性などの改良効果がえられがたく
なる。((A)+(B))/(C)の好ましい使用割合は、硬
化性樹脂組成物の用途などにより異なるため一概
にはきめられないが、たとえばフエノール樹脂と
エポキシ樹脂からなる樹脂の硬化物の耐衝撃性、
可撓性、強靱性、剥離強度などを改善するばあに
は、((A)+(B))/(C)=100/1〜50/100、さらに
好ましく((A)+(B))/(C)=100/2〜100/100で
使用するのがよい。一方、(C)成分である分子中に
少なくとも1つの反応性ケイ素基を有するゴム系
有機重合体の硬化物強度を改善するばあいには、
((A)+(B))/(C)=100/50〜1/100、好ましくは
((A)+(B))/(C)=100/100〜5/100で使用するの
がよい。(A)成分と(B)成分の重量比については(A)/
(B)=1/100〜100/1の範囲で使用しうるが、室
温硬化という観点からは((A)+(B))=1/100〜
100/50の範囲で使用するのが好ましい。 (A)成分、(B)成分、(C)成分および(D)成分を有効成
分とする硬化性樹脂組成物の調製法にはとくに限
定はなく、たとえば(A)成分、(B)成分、(C)成分およ
び(D)成分を配合し、ロールやニーダーなどを用い
て加熱下で混練したり、適した溶剤を少量使用し
て両成分を溶解させ、混合したりするなどの通常
の方法が使用されうる。また、これら成分を適当
に組合わせることにより、1液型や2液型の配合
物をつくり使用することもできる。 本発明の硬化性樹脂組成物には、有効成分であ
る(A)成分、(B)成分、(C)成分および(D)成分のほか
に、各種フイラー、可塑剤、(C)成分を硬化させる
ために通常使用されるシラノール縮合触媒、老化
防止剤、紫外線吸収剤、滑剤、アミノシラン、メ
ルカプトシラン、エポキシシランなどのような通
常使用されるシランカツプリング剤、顔料、発泡
剤などを必要に応じて添加してもよい。 たとえば添加剤としてフイラーを使用するばあ
いには、木粉、パルプ、木綿チツプ、アスベス
ト、ガラス繊維、マイカ、クルミ殻粉、もみ殻
粉、グラフアイト、ケイソウ土、白土などフエノ
ール樹脂に一般に使用されているフイラー類が有
効に使用されうる。またその他のフイラーである
ヒユームシリカ、沈降性シリカ、無水ケイ酸、カ
ーボンブラツク、炭酸カルシウム、クレー、タル
ク、酸化チタン、炭酸マグネシウム、石英、アル
ミニウム、微粉末、フリント粉末、亜鉛末などを
使用してもよい。これらのフイラーは単独で用い
てもよく、2種以上混合して用いてもよい。 本発明の硬化性樹脂組成物は室温というような
低温でも硬化可能であり、また高温にして速硬化
させることも可能であるので、目的に応じて低温
から高温までの広い温度範囲で硬化させ、使用す
ることができる。とくにエポキシ樹脂/エポキシ
樹脂硬化剤の組合せで室温硬化しうるものを選べ
ば、本発明の硬化性樹脂組成物から室温硬化で高
強度硬化物がえられたりするという興味ある特徴
が生ずる。さらに、液状タイプのエポキシ樹脂を
使用すれば、無溶剤型の硬化性樹脂組成物を容易
に製造することができる。 本発明の硬化性樹脂組成物の成形方法にはとく
に限定はないが、((A)+(B))成分が(C)成分より多
いばあいには、圧縮成形法、トランスフアー成形
法、射出成形法などのフエノール樹脂やエポキシ
樹脂の成形法として一般的に用いられている方法
で成形することが好ましく、このような方法で成
形すると、耐衝撃性、可撓性、強靱性などの改善
された成形品、銅張積層板や強化木などのような
積層成形加工品などがえられる。また前記のごと
き組成のばあいには、剥離強度の改善された接着
剤、可撓性の改善されたフエノール樹脂系フオー
ム、フアイバーボードまたはパーテイクルボード
用の結合剤、塗料、シエルモールド用粘結剤、ブ
レーキライニング用結合剤、砥石用結合剤、ガラ
ス繊維用結合剤などとしても好適に使用しうる。 一方、(C)成分が((A)+(B))成分より多いばあい
には、天然ゴムなどの固形ゴムまたはポリウレタ
ンのようなゴム系液状ポリマーの成形で通常使用
されている方法なとで成形することが好ましく、
このような方法で成形すると、強度などの改善さ
れたゴム成形品、ゴム状発泡体などがえられる。
また(C)成分が((A)+(B))成分より多いばあいに
は、ゴム系接着剤、シール剤などとしても好適に
使用しうる。 つぎに本発明の硬化性樹脂組成物を実施例にも
とづき説明する。 製造例 1 平均分子量3000のポリプロピレンオキシド300
gを撹拌機付フラスコに仕込み、ついでトルエン
ジイソシアネート26gとジブチルスズジラウレー
ト0.2gとを加え、100℃で5時間チツ素ガス気流
下にて撹拌しながら反応させた。そののちγ−ア
ミノプロピルトリエトキシシラン22.1gを加え、
100℃で3時間撹拌しながら反応させ、平均分子
量約6600、末端にトリエトキシシリル基を有し、
分子中に約2個の反応性ケイ素基を有するポリエ
ーテルをえた。 製造例 2 アリルエーテル基を全末端の97%に導入した平
均分子量8000のポリプロピレンオキシド800gを
撹拌機付耐圧反応容器に入れ、メチルジメトキシ
シラン19gを加えた。ついで塩化白金酸触媒溶液
(H2PtCl6・6H2Oの8.9gをイソプロピルアルコ
ール18mlおよびテトラヒドロフラン160mlに溶解
させた溶液)0.34mlを加えたのち、80℃で6時間
反応させた。 反応溶液中の残存水素化ケイ素基の量をIRス
ペクトル分析法により定量したところ、ほとんど
残存していなかつた。またNMR法によりケイ素
基の定量をしたところ、分子末端に
[Table] Preferred specific examples of polymers having a Y functional group used as starting materials or intermediate materials in the above table include polypropylene polyols, polyethylene polyols, polytetramethylene diols, etc. in which the main chain is essentially -R- Polyether polyols represented by O- (wherein R represents a divalent alkylene group having 2 to 4 carbon atoms), condensation of a dibasic acid such as adipic acid with glycol, or ring-opening polymerization of lactones. polyester polyols obtained by hydrogenation, polyisobutylene polyols or polycarboxylic acids, polybutadiene or copolymer polyols or polycarboxylic acids of butadiene and styrene, acrylonitrile, etc., polyolefin polyols obtained by hydrogenating polyisoprene or polybutadiene. The above-mentioned polymers containing isocyanate functional groups obtained by reacting polyols or polycarboxylic acids such as polyisocyanates with polyisocyanates; obtained by reacting the above-mentioned polyols with polyvalent halogen compounds and halogen compounds containing vinyl-type unsaturated groups, etc. Examples include the above-mentioned polymers containing vinyl-type unsaturated groups, and it is more preferable that the Y functional group is located at the end of the polymer molecule. In addition, examples of silicon-based compounds having a Y′ functional group include γ-(2-aminoethyl)propyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, and γ-aminopropyltriethoxysilane. Aminosilanes such as γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, etc.; γ-glycidoxypropyltrimethoxysilane, β-
Epoxysilanes such as (3,4-epoxycyclohexyl)ethyltrimethoxysilane;
Vinyl-type unsaturated group-containing silanes such as vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropylmethoxysilane, etc.; Chlorine atom-containing silanes such as γ-chloropropyltrimethoxysilane, etc. Specific examples include isocyanate silanes such as γ-isocyanatepropyltriethoxysilane, γ-isocyanatepropylmethyldimethoxysilane, etc.; hydrosilanes such as methyldimethoxysilane, trimethoxysilane, methyldiethoxysilane, etc. However, it is not limited to these. Examples of the combination of a polymer containing a Y functional group and a silicon compound containing a Y' functional group include () a combination of a polymer containing an isocyanate group and aminosilanes or mercaptosilanes;
() A combination of a vinyl-type unsaturated group-containing polymer and a hydrosilane is preferred. Furthermore, in (), a combination of polypropylene oxide having an allyl ether group at the molecular end and hydrosilanes is particularly preferred. In this case, by carrying out a hydrosilylation reaction using a platinum-based compound or the like as a catalyst, the vinyl group and the hydrosilyl group can be reacted, and the silyl group can be introduced into the polymer. In the present invention, in addition to hydrolyzable silicon, silanol groups can also be suitably used as reactive silicon groups, but silanol groups can also be obtained by hydrolyzing hydrolyzable silicon groups. The molecular weight of the rubber-based organic polymer having at least 1, preferably 1.2 to 6 reactive silicon groups in the molecule, which is component (C) used in the present invention, is 500 to 50,000.
A liquid material having a molecular weight of about 1,000 to 20,000 is preferred because it is easy to handle. If the number of reactive silicon groups contained in the molecule is less than one, curing may become insufficient and modification curing cannot be achieved. In the rubber-based organic polymer having at least one reactive silicon group in the molecule used in the present invention,
Preferably, the reactive silicon group is present at the end of the molecule. When a reactive silicon group is present at the end of the molecule, the amount of effective network chains of component (C) in the cured product increases, making it more likely to exhibit rubber elasticity. The brittleness of the cured resin is likely to be improved, and on the other hand,
In the case of a cured rubber product mainly consisting of component (C), a high-strength product can be easily obtained. Specific examples of the above component (C) include, for example, Japanese Patent Publications No. 45-36319, No. 46-12154, No. 49-
32673, JP-A No. 50-156599, JP-A No. 51-73561,
No. 54-6096, No. 55-13767, No. 54-13768,
No. 55-82123, No. 55-123620, No. 55-125121
No. 55-131021, No. 55-131022, No. 55-
No. 135135, No. 55-137129, No. 57-179210, No.
No. 58-191703, No. 59-78220, No. 59-78221,
Those disclosed in No. 59-78222, No. 59-78223, No. 59-78223, etc. are useful, but are not limited thereto. In the present invention, component (A) is a phenolic resin, component (B) is an epoxy resin, component (C) is a rubber-based organic polymer having at least one reactive silicon group in the molecule, and (D) A curable resin composition is prepared using a curing agent for epoxy resin as an active ingredient. (C) for a mixture of components (A) and (B)
The ratio of the components ((A)+(B))/(C) may be used in a weight ratio of 1/100 to 100/1. ((A)+
If the ratio of (B))/(C) is less than 1/100, the strength improvement effect of the cured rubber product will be insufficient, and ((A)
When the ratio of +(B))/(C) is greater than 100/1,
It becomes difficult to obtain improvement effects such as impact strength and toughness. The preferred ratio of ((A) + (B)) / (C) cannot be determined unconditionally as it varies depending on the use of the curable resin composition, but for example, for cured resins made of phenolic resin and epoxy resin. impact resistance,
In order to improve flexibility, toughness, peel strength, etc., ((A) + (B)) / (C) = 100/1 to 50/100, more preferably ((A) + (B) )/(C)=100/2 to 100/100. On the other hand, when improving the strength of the cured product of the rubber-based organic polymer having at least one reactive silicon group in the molecule, which is component (C),
((A) + (B)) / (C) = 100/50 to 1/100, preferably ((A) + (B)) / (C) = 100/100 to 5/100. good. Regarding the weight ratio of component (A) and component (B), see (A)/
(B) can be used in the range of 1/100 to 100/1, but from the viewpoint of room temperature curing, ((A) + (B)) = 1/100 to
It is preferable to use a range of 100/50. There is no particular limitation on the method for preparing a curable resin composition containing component (A), component (B), component (C), and component (D) as active ingredients; for example, component (A), component (B), Conventional methods such as blending component (C) and component (D) and kneading under heat using a roll or kneader, or using a small amount of a suitable solvent to dissolve and mix both components. can be used. Furthermore, by appropriately combining these components, one-pack type or two-pack type formulations can be created and used. In addition to the active ingredients (A) component, (B) component, (C) component, and (D) component, the curable resin composition of the present invention contains various fillers, plasticizers, and curing component (C). If necessary, commonly used silane coupling agents such as silanol condensation catalysts, anti-aging agents, ultraviolet absorbers, lubricants, aminosilanes, mercaptosilanes, epoxysilanes, etc., pigments, blowing agents, etc. It may also be added. For example, when using fillers as additives, fillers commonly used in phenolic resins include wood flour, pulp, cotton chips, asbestos, glass fiber, mica, walnut shell powder, rice husk powder, graphite, diatomaceous earth, and white clay. fillers can be used effectively. Other fillers such as fume silica, precipitated silica, anhydrous silicic acid, carbon black, calcium carbonate, clay, talc, titanium oxide, magnesium carbonate, quartz, aluminum, fine powder, flint powder, and zinc powder may also be used. good. These fillers may be used alone or in combination of two or more. The curable resin composition of the present invention can be cured at low temperatures such as room temperature, and can also be rapidly cured at high temperatures, so it can be cured at a wide temperature range from low to high temperatures depending on the purpose. can be used. In particular, if a combination of epoxy resin/epoxy resin curing agent that can be cured at room temperature is selected, the curable resin composition of the present invention has the interesting feature that a high-strength cured product can be obtained by curing at room temperature. Furthermore, if a liquid type epoxy resin is used, a solvent-free curable resin composition can be easily produced. There are no particular limitations on the method of molding the curable resin composition of the present invention, but if the ((A) + (B)) component is greater than the (C) component, compression molding, transfer molding, It is preferable to mold by a method commonly used for molding phenolic resins or epoxy resins, such as injection molding, and molding by such a method can improve impact resistance, flexibility, toughness, etc. The resulting products include molded products made of copper clad laminates, reinforced wood, etc. In addition, in the case of the above-mentioned compositions, adhesives with improved peel strength, phenolic resin foams with improved flexibility, binders for fiber boards or particle boards, paints, and caking agents for shell molds are used. It can also be suitably used as a binder for brake linings, a binder for grinding wheels, a binder for glass fibers, etc. On the other hand, if the (C) component is greater than the ((A) + (B)) components, the method usually used for molding solid rubber such as natural rubber or rubber-based liquid polymers such as polyurethane may be used. It is preferable to mold with
When molded by such a method, rubber molded products, rubber-like foams, etc. with improved strength and the like can be obtained.
Furthermore, when the component (C) is greater than the components ((A)+(B)), it can be suitably used as a rubber adhesive, a sealant, etc. Next, the curable resin composition of the present invention will be explained based on Examples. Production example 1 Polypropylene oxide 300 with an average molecular weight of 3000
Then, 26 g of toluene diisocyanate and 0.2 g of dibutyltin dilaurate were added, and the mixture was reacted at 100° C. for 5 hours with stirring under a nitrogen gas stream. After that, 22.1g of γ-aminopropyltriethoxysilane was added,
The reaction was carried out at 100℃ for 3 hours with stirring, and the average molecular weight was about 6,600, which had a triethoxysilyl group at the end.
A polyether having approximately 2 reactive silicon groups in the molecule was obtained. Production Example 2 800 g of polypropylene oxide having an average molecular weight of 8000 in which allyl ether groups were introduced into 97% of all terminals was placed in a pressure-resistant reaction vessel equipped with a stirrer, and 19 g of methyldimethoxysilane was added thereto. Then, 0.34 ml of a chloroplatinic acid catalyst solution (a solution of 8.9 g of H 2 PtCl 6 .6H 2 O dissolved in 18 ml of isopropyl alcohol and 160 ml of tetrahydrofuran) was added, and the mixture was reacted at 80° C. for 6 hours. When the amount of silicon hydride groups remaining in the reaction solution was determined by IR spectroscopy, it was found that almost no silicon hydride groups remained. In addition, when we quantified the silicon group by NMR method, we found that at the end of the molecule,

【式】基を1分子当り 約1.7個有するポリプロピレンオキシドがえられ
た。 製造例 3 平均分子量3000のポリプロピレンオキシドトリ
オール300gを撹拌機付フラスコに仕込み、つい
で金属ナトリウム9.2gおよびキシレン600mlを仕
込み、チツ素気流下で120℃×5時間処理した。
そののち80℃にし、ジブロモメタン17.4gを添加
し、5時間反応させた。ついでアクリル酸クロラ
イド36.2gを添加し、80℃で6時間反応させたの
ち室温に冷却し、濾過により塩を除去した。エバ
ツポレーターでキシレンを除去し、平均分子量約
6100、ヨウ素価分析の結果、1分子当り約4個の
CH2=CHCO−基を分子末端に有する重合体をえ
た。 えられた重合体61gを撹拌機付フラスコに仕込
み、γ−アミノプロピルトリメトキシシラン5.4
gを加え、110℃で10時間反応させ、平均分子量
約6600、分子末端に1分子当り約3個のトリメト
キシシリル基を有するポリエーテルをえた。 製造例 4 全末端の90%がCH2=CHCH2O−基である平
均分子量が8000であるポリプロピレンオキシド
100gを反応容器にとり、ジメトキシメチルシラ
ン1.77g、塩化白金酸(H2PtCl6・6H2O)の10
重量%イソプロパノール溶液0.013gを添加した
のち、80℃に昇温し、4時間反応させた。IRス
ペクトルをとり、2100cm-1付近のSi−H吸収の消
失を確認したのち反応を終了させた。 反応物のヨウ素価は2.0であり、この値から計
算すると、えられた反応物1分子当り平均して
1.2個の反応性シリコン官能基と0.6個の重合性不
飽和基が含有されていた。 該反応物100gを反応容器にとり、減圧下で脱
揮し、チツ素置換を行ない、90℃まで加温、撹拌
したのち、別に調製しておいたn−ブチルアクリ
レート95.4g、トリス(2−ヒドロキシエチル)
イソシアヌル酸トリアクリレート1.8g、γ−メ
タクリルオキシプロピルジメトキシメチルシラン
1.5g、γ−メルカプトプロピルジメトキシメチ
ルシラン2.3gおよび2,2′−アゾビスイソブチ
ロニトリル(以下、AIBNという)0.5gとから
なる混合溶液をチツ素雰囲気下で2時間かけて滴
下した。滴下終了後、15分後および30分後にそれ
ぞれAIBN0.25gずつを4重量倍のアセトンに溶
解して追加した。追加終了後、30分間撹拌を続け
重合反応を終了させた。 えられた反応物は微黄色の透明に粘稠な液体で
ガスクロマトグラフ分析(以下、GC分析という)
による残存モノマー量0.6%、粘度460ポイズ(23
℃)であつた。 製造例 5 ブチルアクリレート80g、酢酸ビニル20g、γ
−メタクリロキシプロピルメチルジエトキシシラ
ン2.3g、γ−メルカプトプロピルメチルジメト
キシシラン1.8gおよびアゾビス−2−(6−メチ
ルジエトキシシリル−2−シアノヘキサン)1.0
gを混合・撹拌し、均一に溶解させた。該混合物
25gを撹拌機および冷却管付の200ml4つ口フラ
スコに入れ、チツ素ガスを通じながら油浴で80℃
に加熱した。数分後重合が始まり発熱したが、そ
の発熱が穏やかになつてから残りの混合液を滴下
ロートを用いて、3時間かけて徐々に滴下し重合
させた。発熱が認められなくなつた時点で重合を
終了した。 えられた液状ポリマーをゲルパーミエイシヨン
クロマトグラフ(GPC)で分析したところ、平
均分子量が約11000であつた。 実施例 1 スミライトレジンPR−12687(住友ベークライ
ト(株)製のヘキサメチレンテトラミン含有カシユー
変成ノボラツク型フエノール樹脂)25部をメチル
エチルケトン25部に溶解し、さらに製造例2でえ
られたポリマー100部および2,2′−メチレン−
ビス−(4−メチル−6−t−ブチルフエノール)
1部と混合した。エバツポレーターにて加熱減圧
下でメチルエチルケトンを除去すると、スミライ
トレジンPR−12687、製造例2でえられたポリマ
ーおよび2,2′−メチレン−ビス−(4−メチル
−6−t−ブチルフエノール)が良く相溶した透
明な溶液がえられた。 該溶液126部に対し、ジグリシジルエーテルビ
スフエノールA型エポキシ樹脂(油化シエルエポ
キシ(株)製のエピコート828)50部、トリエチレン
テトラミン3部、ジブチルスズジラウレート0.5
部を添加してよく混合したのち、ポリエチレン製
の型枠に気泡がはいらないように流し込み、23℃
で7日間硬化させ、厚さ2mmの硬化物シートをえ
た。 該硬化物シートからJIS K6301に準拠して3号
形ダンベルを打抜き、引張速度500mm/分で破断
強度(TB)、破断時伸び(EB)を測定したとこ
ろ、TB=84Kg/cm2、EB=480%という高強度のゴ
ム硬化物が室温という低温硬化でえられた。 ちなみに、スミライトレジンPR−12687を使用
しない以外は全く同じ条件で硬化物をつくり、同
じ操作で硬化物のTBを測定すると、TB=6.2Kg/
cm2、またスミライトレジンPR−12687は使用する
がエピコート828およびトリエチレンテトラミン
を使用しない以外は全く同じ条件で硬化物をつく
り、同じ操作で硬化物のTBを測定すると、TB
5.8Kg/cm2といずれも低強度の硬化物しかえられ
なかつた。 実施例 2〜5 実施例1において用いた製造例2でえられたポ
リマーのかわりに、製造例1、製造例3、製造例
4および製造例5でえられたポリマーをそれぞれ
使用した以外は実施例1と同様にして硬化物シー
トを作製し、TBおよびEBを測定した(それぞれ
実施例2〜5に相当)。それらの結果を第1表に
示す。
A polypropylene oxide having approximately 1.7 groups per molecule was obtained. Production Example 3 300 g of polypropylene oxide triol having an average molecular weight of 3000 was charged into a flask equipped with a stirrer, and then 9.2 g of metallic sodium and 600 ml of xylene were charged, and the flask was treated at 120° C. for 5 hours under a nitrogen gas flow.
Thereafter, the temperature was raised to 80°C, 17.4 g of dibromomethane was added, and the mixture was reacted for 5 hours. Next, 36.2 g of acrylic acid chloride was added, and the mixture was reacted at 80°C for 6 hours, then cooled to room temperature, and the salt was removed by filtration. Xylene is removed using an evaporator and the average molecular weight is approx.
6100, as a result of iodine value analysis, approximately 4 pieces per molecule.
A polymer having a CH 2 =CHCO- group at the end of the molecule was obtained. 61 g of the obtained polymer was charged into a flask with a stirrer, and 5.4 g of γ-aminopropyltrimethoxysilane was added.
A polyether having an average molecular weight of about 6,600 and having about 3 trimethoxysilyl groups per molecule at the end of the molecule was obtained. Production Example 4 Polypropylene oxide with an average molecular weight of 8000, in which 90% of all terminals are CH 2 =CHCH 2 O- groups
Place 100 g in a reaction vessel, add 1.77 g of dimethoxymethylsilane, and 10 g of chloroplatinic acid (H 2 PtCl 6 6H 2 O).
After adding 0.013 g of a wt% isopropanol solution, the temperature was raised to 80°C and the mixture was reacted for 4 hours. After taking an IR spectrum and confirming the disappearance of Si--H absorption near 2100 cm -1 , the reaction was terminated. The iodine value of the reactant is 2.0, and when calculated from this value, on average, per molecule of the reactant obtained
It contained 1.2 reactive silicon functional groups and 0.6 polymerizable unsaturated groups. 100 g of the reactant was placed in a reaction vessel, devolatilized under reduced pressure, replaced with nitrogen, heated to 90°C, and stirred. ethyl)
Isocyanuric triacrylate 1.8g, γ-methacryloxypropyldimethoxymethylsilane
A mixed solution consisting of 1.5 g of γ-mercaptopropyldimethoxymethylsilane, 2.3 g of γ-mercaptopropyldimethoxymethylsilane, and 0.5 g of 2,2'-azobisisobutyronitrile (hereinafter referred to as AIBN) was added dropwise over 2 hours under a nitrogen atmosphere. 15 minutes and 30 minutes after the completion of the dropwise addition, 0.25 g of AIBN was dissolved in 4 times the weight of acetone and added. After the addition was completed, stirring was continued for 30 minutes to complete the polymerization reaction. The resulting reaction product was a slightly yellow, transparent and viscous liquid that was analyzed by gas chromatography (hereinafter referred to as GC analysis).
Residual monomer content 0.6%, viscosity 460 poise (23
℃). Production example 5 Butyl acrylate 80g, vinyl acetate 20g, γ
- 2.3 g of methacryloxypropylmethyldiethoxysilane, 1.8 g of γ-mercaptopropylmethyldimethoxysilane and 1.0 g of azobis-2-(6-methyldiethoxysilyl-2-cyanohexane)
g was mixed and stirred to uniformly dissolve. the mixture
Put 25g into a 200ml four-necked flask equipped with a stirrer and condenser, and heat to 80℃ in an oil bath while passing nitrogen gas.
heated to. Polymerization started a few minutes later and generated heat, but after the heat generation became mild, the remaining mixed solution was gradually added dropwise using a dropping funnel over a period of 3 hours to effect polymerization. Polymerization was terminated when no heat generation was observed. When the obtained liquid polymer was analyzed by gel permeation chromatography (GPC), it was found to have an average molecular weight of about 11,000. Example 1 25 parts of Sumilite Resin PR-12687 (a hexamethylenetetramine-containing cashew-modified novolak type phenolic resin manufactured by Sumitomo Bakelite Co., Ltd.) was dissolved in 25 parts of methyl ethyl ketone, and further 100 parts of the polymer obtained in Production Example 2 and 2,2'-methylene-
Bis-(4-methyl-6-t-butylphenol)
1 part. When methyl ethyl ketone was removed under heating and reduced pressure in an evaporator, Sumilight Resin PR-12687, the polymer obtained in Production Example 2, and 2,2'-methylene-bis-(4-methyl-6-t-butylphenol) were recovered. A clear solution with good miscibility was obtained. To 126 parts of the solution, 50 parts of diglycidyl ether bisphenol A type epoxy resin (Epicote 828 manufactured by Yuka Ciel Epoxy Co., Ltd.), 3 parts of triethylenetetramine, and 0.5 parts of dibutyltin dilaurate.
After adding 50% of the total amount and mixing well, pour it into a polyethylene mold without creating any air bubbles, and heat it at 23°C.
After curing for 7 days, a cured sheet with a thickness of 2 mm was obtained. A No. 3 dumbbell was punched out from the cured sheet in accordance with JIS K6301, and the breaking strength (T B ) and elongation at break (E B ) were measured at a tensile speed of 500 mm/min. T B = 84 Kg/cm 2 , E B =480%, a high-strength cured rubber product was obtained by curing at a low temperature of room temperature. By the way, when we made a cured product under the same conditions except without using Sumilight Resin PR-12687 and measured the T B of the cured product using the same procedure, we found that T B = 6.2Kg/
cm 2 , and when a cured product is made under exactly the same conditions except that Sumilite Resin PR-12687 is used but Epicote 828 and triethylenetetramine are not used, and T B of the cured product is measured using the same procedure, T B =
In both cases, only low-strength cured products were obtained at 5.8 Kg/cm 2 . Examples 2 to 5 The same procedure was carried out except that the polymers obtained in Production Example 1, Production Example 3, Production Example 4, and Production Example 5 were used in place of the polymer obtained in Production Example 2 used in Example 1. A cured product sheet was produced in the same manner as in Example 1, and T B and E B were measured (corresponding to Examples 2 to 5, respectively). The results are shown in Table 1.

【表】 実施例 6〜9 実施例1において用いたフエノール樹脂、エポ
キシ樹脂およびエポキシ樹脂用硬化剤の種類と量
とをかえた以外は実施例1と同様にして、硬化物
シートを作製し、TBおよびEBを測定した。それ
らの結果を第2表に示す。
[Table] Examples 6 to 9 A cured product sheet was prepared in the same manner as in Example 1 except that the types and amounts of the phenol resin, epoxy resin, and curing agent for epoxy resin used in Example 1 were changed, T B and E B were measured. The results are shown in Table 2.

【表】【table】

【表】 実施例 10 実施例1の系に無機補強剤として無水ケイ酸25
部(日本アエロジル(株)製の疎水性シリカR−972)
をさらに添加し、えられた配合物を3本ペイント
ロールで3回混練してから、ポリエチレン製型枠
に充填し、硬化物シートを作製した以外は実施例
1と同様にしてTBおよびEBを求めたところ、TB
=102Kg/cm2、EB=420%であつた。 実施例 11 実施例1の系にN−B−(アミノエチル)γ−
アミノプロピルトリメトキシシラン3部を添加し
た以外は実施例と同様にして、硬化物シートを作
製し、TBおよびEBを求めたところ、TB=98Kg/
cm2、EB=460Kg/cm2であつた。 実施例 12 製造例1でえられたポリマー50部、2,2′−メ
チレン−ビス−(4−メチル−6−t−ブチルフ
エノール)0.5部、スミライトレジンPR−12687
25部、エポキシ樹脂(エピコート828)100部およ
びメチルエチルケトン25部を配合し、スミライト
レジンPR−12687をよく溶解したのち、エバツポ
レーターで加熱減圧下にメチルエチルケトンを除
去した。えられた溶液175.5部に対し、イソホロ
ンジアミン25部、水0.05部、ジブチルスズジラウ
レート1部およびN−β−(アミノエチル)γ−
アミノプロピルトリメトキシシラン2部を添加し
てよく混合したのち脱泡し、ポリエチレン製型枠
に流し込み、50℃で1日硬化させ、さらに150℃
で2時間硬化させ、アイゾツト衝撃強度を測定し
たところ、6.5であつた。 実施例 13 製造例3でえられたポリマー100部、2,2′−
メチレン−ビス−(4−メチル−6−t−ブチル
フエノール)1部、エピコート828 30部、スミラ
イトレンジPR−12687 100部、トリメチレンテト
ラミン3部、ジブチルスズジラウレート2部、メ
チルハイドロジエンポリシロオキサン(東芝シリ
コーン(株)製のTSF 484)5部、水0.1部および
無水ケイ酸(疎水性シリカR−972)10部をよく
混合し、50℃の乾燥器にて3日間硬化させ、発泡
体を製造し、ついで150℃の乾燥器で2時間熱処
理を行なつたところ、比重0.2で90度程度折り曲
げ可能な可撓性のある強靱な発泡体がえられた。 [発明の効果] 本発明の硬化性樹脂組成物を用いて硬化物を製
造すると、フエノール樹脂やエポキシ樹脂から製
造される硬化物の欠点である脆さを解消すること
ができ、また反応性ケイ素基を有するゴム系有機
重合体硬化物の欠点である強度不足を解消するこ
とができる。また本発明の硬化性樹脂組成物の硬
化は、室温程度の低温でも行なうことができ、こ
のような条件で硬化させた硬化物特性も良好であ
る。
[Table] Example 10 Silicic anhydride 25 was added to the system of Example 1 as an inorganic reinforcing agent.
Part (hydrophobic silica R-972 manufactured by Nippon Aerosil Co., Ltd.)
T B and E were prepared in the same manner as in Example 1, except that the resulting mixture was kneaded three times with three paint rolls, and then filled into a polyethylene mold to produce a cured product sheet. When I asked for B , I found that T B
=102Kg/ cm2 , E B =420%. Example 11 N-B-(aminoethyl)γ- was added to the system of Example 1.
A cured sheet was prepared in the same manner as in the example except that 3 parts of aminopropyltrimethoxysilane was added, and T B and E B were determined. T B = 98 Kg/
cm 2 , E B =460Kg/cm 2 . Example 12 50 parts of the polymer obtained in Production Example 1, 0.5 part of 2,2'-methylene-bis-(4-methyl-6-t-butylphenol), Sumilite Resin PR-12687
After thoroughly dissolving Sumilite Resin PR-12687, methyl ethyl ketone was removed under heating and reduced pressure using an evaporator. To 175.5 parts of the resulting solution, 25 parts of isophoronediamine, 0.05 part of water, 1 part of dibutyltin dilaurate, and N-β-(aminoethyl)γ-
After adding 2 parts of aminopropyltrimethoxysilane and mixing well, it was degassed, poured into a polyethylene mold, cured at 50℃ for 1 day, and further heated to 150℃.
After curing for 2 hours, the Izot impact strength was measured to be 6.5. Example 13 100 parts of the polymer obtained in Production Example 3, 2,2'-
1 part of methylene-bis-(4-methyl-6-t-butylphenol), 30 parts of Epicote 828, 100 parts of Sumilight Range PR-12687, 3 parts of trimethylenetetramine, 2 parts of dibutyltin dilaurate, methylhydrodiene polysiloxane 5 parts of TSF 484 (manufactured by Toshiba Silicone Corporation), 0.1 part of water, and 10 parts of silicic anhydride (hydrophobic silica R-972) were thoroughly mixed and cured in a dryer at 50°C for 3 days to form a foam. When this was produced and then heat treated in a dryer at 150°C for 2 hours, a flexible and tough foam with a specific gravity of 0.2 and capable of being bent at approximately 90 degrees was obtained. [Effects of the Invention] When a cured product is produced using the curable resin composition of the present invention, it is possible to eliminate the brittleness that is a drawback of cured products produced from phenolic resins and epoxy resins, and it is also possible to eliminate the brittleness that is a drawback of cured products produced from phenolic resins and epoxy resins. The lack of strength, which is a drawback of cured rubber-based organic polymers having groups, can be overcome. Further, the curable resin composition of the present invention can be cured at a low temperature of about room temperature, and the properties of the cured product cured under such conditions are also good.

Claims (1)

【特許請求の範囲】 1 (A) フエノール樹脂、 (B) エポキシ樹脂、 (C) 分子中に少なくとも1つの反応性ケイ素基を
含有するゴム系有機重合体、および (D) エポキシ樹脂用硬化剤 を有効成分として含有し、 ((A)+(B))/(C)が1/100〜100/1(重量比)
であることを特徴とする硬化性樹脂組成物。 2 (C)成分中の反応性ケイ素基がアルコキシシリ
ル基である特許請求の範囲第1項記載の硬化性樹
脂組成物。 3 (C)成分の主鎖が、本質的に−R−O−(式中、
Rは炭素数2〜4の2価のアルキレン基を表わ
す)で示される化学的に結合している繰返し単位
を有するポリエーテルである特許請求の範囲第1
項記載の硬化性樹脂組成物。 4 (C)成分の主鎖が、アクリル酸エステル重合体
またはアクリル酸エステル系共重合体である特許
請求の範囲第1項記載の硬化性樹脂組成物。 5 (C)成分の主鎖が、ポリエーテル中でビニルモ
ノマーを重合させてえられた重合体である特許請
求の範囲第1項記載の硬化性樹脂組成物。
[Scope of Claims] 1 (A) phenolic resin, (B) epoxy resin, (C) rubber-based organic polymer containing at least one reactive silicon group in the molecule, and (D) curing agent for epoxy resin. Contains as an active ingredient, ((A) + (B)) / (C) is 1/100 to 100/1 (weight ratio)
A curable resin composition characterized by: 2. The curable resin composition according to claim 1, wherein the reactive silicon group in component (C) is an alkoxysilyl group. 3 The main chain of component (C) is essentially -R-O- (in the formula,
Claim 1, which is a polyether having chemically bonded repeating units represented by (R represents a divalent alkylene group having 2 to 4 carbon atoms)
The curable resin composition described in . 4. The curable resin composition according to claim 1, wherein the main chain of component (C) is an acrylic ester polymer or an acrylic ester copolymer. 5. The curable resin composition according to claim 1, wherein the main chain of component (C) is a polymer obtained by polymerizing a vinyl monomer in polyether.
JP20599484A 1984-10-01 1984-10-01 Curable resin composition Granted JPS6183220A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20599484A JPS6183220A (en) 1984-10-01 1984-10-01 Curable resin composition
CN 85104433 CN1007988B (en) 1984-10-01 1985-06-11 Curable compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20599484A JPS6183220A (en) 1984-10-01 1984-10-01 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS6183220A JPS6183220A (en) 1986-04-26
JPH0443087B2 true JPH0443087B2 (en) 1992-07-15

Family

ID=16516146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20599484A Granted JPS6183220A (en) 1984-10-01 1984-10-01 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS6183220A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273222A (en) * 1986-05-21 1987-11-27 Mitsui Toatsu Chem Inc Resin composition for sealing semiconductor
JP2835401B2 (en) * 1988-11-25 1998-12-14 鐘淵化学工業株式会社 Two-component adhesive
JP2004076911A (en) * 2002-08-22 2004-03-11 Nok Corp Rubber metal laminate gasket
JP5338058B2 (en) * 2007-09-28 2013-11-13 住友ベークライト株式会社 Phenolic resin composition
JP5258466B2 (en) * 2008-09-08 2013-08-07 日東電工株式会社 Thermosetting adhesive composition, thermosetting adhesive tape or sheet, and flexible circuit board
JP5539670B2 (en) * 2009-05-22 2014-07-02 株式会社カネカ Modified silicone resin foam and bedding comprising the modified silicone resin foam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857458A (en) * 1981-09-29 1983-04-05 Kanegafuchi Chem Ind Co Ltd Room temperature curing composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857458A (en) * 1981-09-29 1983-04-05 Kanegafuchi Chem Ind Co Ltd Room temperature curing composition

Also Published As

Publication number Publication date
JPS6183220A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
EP0186191B1 (en) Curable resinous composition comprising epoxy resin and silicon-containing elastomeric polymer
JP2644861B2 (en) Two-part curable composition
JPH02140220A (en) Curable resin composition
US4952643A (en) Curable polymer composition
JPH07242737A (en) Curable resin composition
US5336703A (en) Two pack type curable composition comprising epoxy resin and silicon-containing elastomeric polymer
JPH02202972A (en) Method of adhesion
EP0159605B1 (en) Curable composition
JP2000109676A (en) Curable composition
JP2964340B2 (en) Curable composition
JP2694995B2 (en) Two-part curable composition with improved storage stability
JPH0443087B2 (en)
JP2008239809A (en) Curable composition
JPS61247723A (en) Curable resin composition
JP2612485B2 (en) Two-component adhesive
JPH0762205A (en) Curing composition
JPH0562887B2 (en)
JP2835401B2 (en) Two-component adhesive
JP2002088148A (en) Method for producing oxyalkylene polymer containing hydrolyzable silyl group and curable composition
JPH04309519A (en) Curable composition
JPH0796606B2 (en) Method for producing curable composition
JPH0859961A (en) Curable composition
JPS6284134A (en) Thermosetting resin composition
JPH0562888B2 (en)
JP2007291292A (en) 2-pot type curable composition, adhesive consisting of the same and composite material obtained by using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees