[go: up one dir, main page]

JPH0442848A - Production of inorganic board - Google Patents

Production of inorganic board

Info

Publication number
JPH0442848A
JPH0442848A JP2149024A JP14902490A JPH0442848A JP H0442848 A JPH0442848 A JP H0442848A JP 2149024 A JP2149024 A JP 2149024A JP 14902490 A JP14902490 A JP 14902490A JP H0442848 A JPH0442848 A JP H0442848A
Authority
JP
Japan
Prior art keywords
cement
fluidized bed
ash
quartz sand
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2149024A
Other languages
Japanese (ja)
Other versions
JP2521562B2 (en
Inventor
Hiroshi Teramoto
博 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14902490A priority Critical patent/JP2521562B2/en
Publication of JPH0442848A publication Critical patent/JPH0442848A/en
Application granted granted Critical
Publication of JP2521562B2 publication Critical patent/JP2521562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To efficiently utilize burnt ash generating in a fluidized combustion furnace as a production raw material of an inorganic board material by molding a cement-mixed composition containing quartz sand and ash in fluidized bed to a board-like in the presence of water and hardening by curing. CONSTITUTION:In a cement mixture in which a mixing ratio of quartz sand as a silica source and cement is about 1:1 and the necessary adding materials such as a reinforcing fiber and a light weight aggregate are added, 5-50wt.% of said quartz sand is substituted with ash in a fluidized bed. Said cement-mixed composition is molded to a board-like in the presence of water and hardened by curing to afford the objective inorganic board. A substituted amount of said ash in a fluidized bed is set as 5-50wt.% of mixing amount of quartz sand because, in a case of <=5wt.%, reaction by quartz sand becomes more stronger and hardness of a product is higher, then the improving effect on workability becomes insufficient. On the other hand, in a case of >=50wt.%, degree of strength impartment by the silica source becomes lower and necessary strength as a building material is not obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無機質板の製造方法に関し、詳しくは流動床
燃焼炉で生じる燃焼灰を用いた無機質板の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an inorganic board, and more particularly to a method for manufacturing an inorganic board using combustion ash produced in a fluidized bed combustion furnace.

〔従来の技術〕[Conventional technology]

従来、シリカ源としては天然珪砂、又は硝子製品製造時
に発生する廃珪砂が広く用いられている。
Conventionally, natural silica sand or waste silica sand generated during the production of glass products has been widely used as a silica source.

他に、微粉炭燃焼ボイラーの廃ガス中に含まれる灰の微
粉粒子であるフライアッシュをシリカ源として利用して
、無機質板材を製造する手段が種々開示されている(例
えば特開昭59−92956号公報、同59−9295
7号公報)。
In addition, various means have been disclosed for producing inorganic board materials by using fly ash, which is fine particles of ash contained in the waste gas of pulverized coal-fired boilers, as a silica source (for example, Japanese Patent Laid-Open No. 59-92956 Publication No. 59-9295
Publication No. 7).

ところで、燃焼炉として、上述のような高温燃焼炉の他
に、流動床燃焼炉が知られている。
By the way, in addition to the above-mentioned high-temperature combustion furnace, a fluidized bed combustion furnace is known as a combustion furnace.

この流動床燃焼によって得られた灰は前述のフライアッ
シュに較べ粘結炭が低く、比表面積が大きく、かつ反応
性が高いから無機質製品のシリカ源として使用可能であ
り、産業廃棄物の有効利用を目的として広範に普及しつ
つある。
The ash obtained by this fluidized bed combustion has a lower amount of coking coal than the above-mentioned fly ash, a larger specific surface area, and higher reactivity, so it can be used as a silica source for inorganic products, making it an effective use of industrial waste. It is becoming widespread for this purpose.

〔従来技術の問題点〕[Problems with conventional technology]

しかし、上記流動床灰は燃焼温度が低いため、未然カー
ボンを多量に含み(15〜20%通常のフライアッシュ
は5%以下)、相対的にS iO*含有率が少なくなる
ので、セメントマトリックスの硬化反応に必要なS i
ox量が不足する傾向にあり、また、脱硫剤として石灰
石を用いるため灰中にかなり多量の石こうを含み、これ
が成形体の耐水性や強度を劣化させる要因となる他、脱
硫剤として用いる石灰石に含有するCaCO5の配合量
は石炭中の硫黄との反応当量の5倍以上となっているの
で燃焼後の灰中に生石灰(Cab)を多量に含み、これ
がセメントの硬化反応に消費されずに成形体中にCa0
O形として残ると養生工程時に消化反応によるポツプア
ウト現象や膨張破壊を生せしめる問題が有り、製品の強
度等の特性を考慮した場合、流動床法の使用は積極的に
は採用し難い問題があった。
However, since the above fluidized bed ash has a low combustion temperature, it contains a large amount of unresolved carbon (15-20%, normal fly ash is 5% or less) and has a relatively low SiO* content, so S i required for curing reaction
Ox content tends to be insufficient, and since limestone is used as a desulfurizing agent, the ash contains a considerable amount of gypsum, which causes deterioration of the water resistance and strength of the molded product. The amount of CaCO5 contained is more than five times the reaction equivalent with sulfur in coal, so the ash after combustion contains a large amount of quicklime (Cab), which is not consumed in the cement hardening reaction and is formed into cement. Ca0 in the body
If it remains in the O-form, there is a problem of pop-out phenomenon and expansion failure due to digestive reactions during the curing process, and when considering the characteristics such as the strength of the product, it is difficult to actively use the fluidized bed method. Ta.

また、シリカ源にフライアンシュを用いる方法も上述し
たほどではないが程度の問題として製品強度が充分に得
られない問題があった。
Further, the method of using fly ash as a silica source also has the problem that sufficient strength of the product cannot be obtained, although it is not as severe as the above-mentioned problem.

一方、シリカ源として天然珪石等のみを用いた製品は上
述の流動床法またはフライアンシュの使用に較べ硬度は
あるが、釘打性、切断性等の施工性が悪く、建材として
の配合には改良すべき点があった。
On the other hand, products using only natural silica stone as a silica source are harder than those using the fluidized bed method or fly ash described above, but have poor workability such as nailing and cutting properties, making them difficult to mix as building materials. There were points that needed improvement.

〔発明が解決しようとする!l[B〕[Invention tries to solve it! l[B]

この発明は上記問題点に鑑み、流動床燃焼炉より生じる
燃焼灰のを効利用、とりわけ無機質板材の製造原料とし
て有効利用出来る無機質板の製造方法を得ることを目的
としてなされたものである。
In view of the above-mentioned problems, the present invention has been made with the object of providing a method for manufacturing an inorganic board that can effectively utilize combustion ash produced in a fluidized bed combustion furnace, particularly as a raw material for manufacturing inorganic board materials.

〔課題を解決するための技術〕[Technology to solve problems]

即ち、この発明の無IR質板の製造方法はシリカ源とし
ての珪砂とセメントとの混合比を略1:1とし、これに
必要な補強繊維、軽量骨材等の添加材を添加した常法に
よるセメント配合において、上記珪砂の5〜50重量%
を流動床法で置換し、該セメント配合組成物を水の存在
下で板状に成形し、養生硬化することを特徴とするもの
である。
That is, the method for manufacturing the IR-free board of the present invention is a conventional method in which the mixing ratio of silica sand and cement as a silica source is approximately 1:1, and necessary additives such as reinforcing fibers and lightweight aggregate are added. 5 to 50% by weight of the above silica sand in the cement formulation according to
is replaced by a fluidized bed method, and the cement composition is formed into a plate shape in the presence of water and cured.

C作用〕 この発明において使用されるセメント配合のシリカ源と
しては既述のように流動床燃焼炉より多量に排出される
燃焼灰と天然または廃珪砂の混合物が使用される。
C Effect] As described above, a mixture of combustion ash discharged in large quantities from a fluidized bed combustion furnace and natural or waste silica sand is used as the silica source for the cement mixture used in this invention.

流動床法は、S ioz −A j! Js 、F e
z03、CaOが主たる成分である。
The fluidized bed method is S ioz -A j! Js, Fe
z03, CaO is the main component.

流動床法に含有されているS +0.はセメントの硬化
反応に消費されるが、同CaOは硬化反応に消費されず
にそのまま残留する。
S +0. contained in the fluidized bed method. is consumed in the hardening reaction of cement, but CaO is not consumed in the hardening reaction and remains as it is.

また、セメントの硬化反応に消費されずに残留した酸化
カルシウム(Cab)は徐々に水分を吸収して水酸化カ
ルシウム(CaOHt)に変化する。
Further, calcium oxide (Cab) remaining without being consumed in the cement hardening reaction gradually absorbs water and changes into calcium hydroxide (CaOHt).

この水酸化カルシウムは水分の存在でCa”となりマト
リックス中にはカルシウム−シリケート化合物を形成す
る。このカルシウム−シリケート化合物は極めて安定な
化合物であり、変化を受けない。
This calcium hydroxide becomes Ca'' in the presence of water and forms a calcium-silicate compound in the matrix. This calcium-silicate compound is an extremely stable compound and does not undergo changes.

従ってセメントマトリックス中に生しるマイクロクラン
クはこめ化合物により発達が防止され靭性向上に寄与し
同時にポンプアンプ現象や膨張破壊現象も防止できる。
Therefore, the growth of microcranks generated in the cement matrix is prevented by the cement compound, contributing to improved toughness, and at the same time, the pump-amp phenomenon and expansion failure phenomenon can be prevented.

この結果セメントと珪砂と流動床法との混合物に水を添
加して硬化反応を生じさせた場合、珪砂により付与され
る硬度と共に適度な靭性を付与できることとなる。
As a result, when water is added to a mixture of cement, silica sand, and a fluidized bed method to cause a hardening reaction, it is possible to impart appropriate toughness in addition to the hardness imparted by silica sand.

このため流動床法の珪砂に対する置換量を増して行くに
従って製品の硬度が減少し釘打性、切断性等の施工性が
向上していく。
For this reason, as the amount of replacement of silica sand in the fluidized bed method is increased, the hardness of the product decreases and workability such as nailing performance and cutting performance improves.

この発明において流動床法の置換量を珪砂の配合量の5
〜50重置%としたのは5重量%より少ないと珪砂によ
る反応がより強くなる結果製品硬度が高くなり施工性の
改善効果が乏しく、50%より多いとシリカ源による強
度付与の程度が低くなり建材として必要な強度が得られ
なくなるからである。なおこの置換率は添加すべき珪砂
の10〜40重量%の範囲が好ましい。
In this invention, the replacement amount in the fluidized bed method is 5% of the blended amount of silica sand.
~50% by weight is used because if it is less than 5% by weight, the reaction with silica sand will be stronger, resulting in higher product hardness and poor workability improvement effect, and if it is more than 50%, the degree of strength imparted by the silica source will be low. This is because the strength required as a building material cannot be obtained. Note that this substitution rate is preferably in the range of 10 to 40% by weight of the silica sand to be added.

なお、流動床灰中に含まれる生石灰の消化によるポンプ
アウト現象あるいは膨張破壊を防ぐため、流動床法を予
備水和させ、これを用いても良い。
In addition, in order to prevent the pump-out phenomenon or expansion failure due to digestion of quicklime contained in the fluidized bed ash, the fluidized bed method may be prehydrated and used.

なお、他のセメントパルプ及びパーライト押出助剤等は
従来周知の配合と同一とされる。
Note that the other cement pulp, pearlite extrusion aid, etc. are the same as the conventionally known formulations.

〔実施例〕〔Example〕

次に、この発明の詳細な説明する。 Next, the present invention will be explained in detail.

流動床法として表1に示した成分含有量のものを用い表
2の配合で厚さ5m、長さ1m、幅451の試験板を圧
力8kg/−で成型し、オートクレーブ養li後、曲げ
強度(kg/c+J)絶乾比重(g/口3)及び釘打限
界合格率(20X20m)の試験を行ったところ、表2
の結果となった。
As a fluidized bed method, a test plate with a thickness of 5 m, a length of 1 m, and a width of 451 cm was molded with the composition shown in Table 2 using the ingredients shown in Table 1 at a pressure of 8 kg/-, and after autoclave curing, the bending strength was measured. (kg/c+J) Absolute dry specific gravity (g/mouth 3) and nailing limit pass rate (20x20m) were tested and the results were shown in Table 2.
The result was

釘打限界・・・・・・テストピースの隅から表に示した
長さは入った所に手打ちで釘を打ち、生じた割れ欠けを
目視でチエツクした表2より明らかなようにこの発明の
実施例の場合釘打限界試験合格率は殆ど100χである
のに対し流動床法を含まないものは40%と極めて低い
値を示し、一方強度の面では上記と逆に流動床法を多量
に含むものは著しく強度に不足することが判明した。
Nailing limit: As is clear from Table 2, where a nail is manually driven into the length shown in the table from the corner of the test piece and the cracks and chips that occur are visually checked, the limits of this invention are In the case of the examples, the passing rate of the nail driving limit test is almost 100χ, whereas the one that does not include the fluidized bed method shows an extremely low value of 40%.On the other hand, in terms of strength, contrary to the above, the fluidized bed method is used in large quantities It was found that the strength was significantly lacking.

〔効果] この発明は以上説明したように、多量に排出される流動
床法の有効利用が可能となると共に、製品の釘打性、切
断性等の施工性が製品強度を損なうことな(改良され、
建材としての特性に優れた製品を大量に製造することが
可能となるなどの効果を有する。
[Effects] As explained above, this invention enables the effective use of the fluidized bed method, which discharges a large amount, and improves workability such as nailing and cutting properties of the product without impairing product strength. is,
This has the effect of making it possible to mass-produce products with excellent properties as building materials.

Claims (1)

【特許請求の範囲】[Claims] (1)シリカ源としての珪砂とセメントとの混合比を略
1:1とし、これに必要な補強繊維、軽量骨材等の添加
材を添加した常法によるセメント配合において、上記珪
砂の5〜50重量%を流動床灰で置換し、該セメント配
合組成物を水の存在下で板状に成形し、養生硬化するこ
とを特徴とする無機質板の製造方法。
(1) When mixing cement using a conventional method in which the mixing ratio of silica sand as a silica source and cement is approximately 1:1, and necessary additives such as reinforcing fibers and lightweight aggregates are added, A method for producing an inorganic board, which comprises replacing 50% by weight with fluidized bed ash, forming the cement composition into a board in the presence of water, and curing and hardening.
JP14902490A 1990-06-06 1990-06-06 Method for manufacturing inorganic plate Expired - Lifetime JP2521562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14902490A JP2521562B2 (en) 1990-06-06 1990-06-06 Method for manufacturing inorganic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14902490A JP2521562B2 (en) 1990-06-06 1990-06-06 Method for manufacturing inorganic plate

Publications (2)

Publication Number Publication Date
JPH0442848A true JPH0442848A (en) 1992-02-13
JP2521562B2 JP2521562B2 (en) 1996-08-07

Family

ID=15466004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14902490A Expired - Lifetime JP2521562B2 (en) 1990-06-06 1990-06-06 Method for manufacturing inorganic plate

Country Status (1)

Country Link
JP (1) JP2521562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182339A (en) * 1990-11-16 1992-06-29 Kubota Corp Production of inorganic product
CN108658531A (en) * 2017-03-27 2018-10-16 北新集团建材股份有限公司 The manufacturing process of fiber cement board
JP6940836B1 (en) * 2021-01-12 2021-09-29 株式会社リュウクス Concrete admixtures, concrete admixture manufacturing methods and concrete products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136164A (en) * 1979-04-04 1980-10-23 Showa Denko Kk Manufacture of fiber reinforced cement product
JPS63185848A (en) * 1987-01-28 1988-08-01 株式会社クボタ Manufacture of inorganic board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136164A (en) * 1979-04-04 1980-10-23 Showa Denko Kk Manufacture of fiber reinforced cement product
JPS63185848A (en) * 1987-01-28 1988-08-01 株式会社クボタ Manufacture of inorganic board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182339A (en) * 1990-11-16 1992-06-29 Kubota Corp Production of inorganic product
CN108658531A (en) * 2017-03-27 2018-10-16 北新集团建材股份有限公司 The manufacturing process of fiber cement board
JP6940836B1 (en) * 2021-01-12 2021-09-29 株式会社リュウクス Concrete admixtures, concrete admixture manufacturing methods and concrete products
JP2022108246A (en) * 2021-01-12 2022-07-25 株式会社リュウクス Concrete admixture, manufacturing method of concrete admixture, and concrete product

Also Published As

Publication number Publication date
JP2521562B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US5601643A (en) Fly ash cementitious material and method of making a product
US8518176B2 (en) Suppression of antagonistic hydration reactions in blended cements
US4310486A (en) Compositions of cementitious mortar, grout and concrete
KR101121724B1 (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
KR101018009B1 (en) Manufacturing Method of Cemented Concrete Using Waste Glass Fine Powder and Fly Ash as Binder
KR102181104B1 (en) Cement for hardening accelerated secondary concrete product using industrial by-products
EP3733628A1 (en) Autoclaved cement compositions
JPH0442848A (en) Production of inorganic board
JPH0131466B2 (en)
JPH04182339A (en) Production of inorganic product
FR2882748A1 (en) CEMENT COMPOSED WITH CFL AND CONCRETE ASH CONTAINING SAME ASH
KR20220089454A (en) Slag mixed cement having steel slag, mortar, and concrete
KR100406218B1 (en) cement blend compound furtherance to do the chief ingredient for slag powder
RU2806398C2 (en) Repair mixture
SU796214A1 (en) Light-weigh concrete mix
KR100658965B1 (en) Cement Admixtures and Cement Compositions Using the Same
KR102629613B1 (en) Concrete composition containing OLED waste glass, and concrete structure manufactured therefrom and method for manufacturing the same
US1185775A (en) Composite strength-accelerating material.
JP2000351659A (en) Method for modifying glass material-mixed concrete for producing secondary concrete product
KR100368643B1 (en) hydraulic composition using incinerated waste products
JP2023163710A (en) Method for producing hydraulic cured body and cement composition for carbonation curing
KR890001995B1 (en) Manufacturing method of building materials using briquettes
US1185773A (en) Plastic material and composite accelerating material therefor.
SU998416A1 (en) Concrete mix
SU579252A1 (en) Concrete mix