JPH0441300B2 - - Google Patents
Info
- Publication number
- JPH0441300B2 JPH0441300B2 JP57219074A JP21907482A JPH0441300B2 JP H0441300 B2 JPH0441300 B2 JP H0441300B2 JP 57219074 A JP57219074 A JP 57219074A JP 21907482 A JP21907482 A JP 21907482A JP H0441300 B2 JPH0441300 B2 JP H0441300B2
- Authority
- JP
- Japan
- Prior art keywords
- section
- excitation
- output signal
- detection
- frequencies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/904—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
【発明の詳細な説明】
本発明は、複数個の検出コイルと複数の励振周
波数を有する渦流探傷装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current flaw detection device having a plurality of detection coils and a plurality of excitation frequencies.
従来渦流探傷装置(ECT)にて疵識別を行う
場合同一コイルであれば疵信号の位相角に着目
し、各種コイルを使用する場合には検出対象疵に
対して検出感度の高いコイルを用いる等の工夫を
行つている。又疵識別を行う今一つの方法とし励
振周波数を変えることも有効であることが最近明
らかになり、貫通コイル型ECTにおいてはパイ
プ内外面の疵判定にも応用されている。 When identifying flaws using conventional eddy current flaw detection equipment (ECT), we focus on the phase angle of the flaw signal if the same coil is used, and when using various coils, we use a coil with high detection sensitivity for the flaw to be detected. We are working on ways to improve this. In addition, it has recently become clear that changing the excitation frequency is another effective method for identifying flaws, and this has been applied to through-coil type ECT to determine flaws on the inner and outer surfaces of pipes.
鉄鋼業においてもプローブコイル型ECTが厚
板やスラブ等の広幅機の表面疵探傷に導入されて
おり、疵種類識別が重要な検討項目となつてい
る。特に経済性については現状のECT装置を広
幅材に導入した場合精度良く疵検出を行なおうと
すればコイル及び信号処理部のチヤンネル数の極
端な増加(〜1000チヤンネル)を必要とし、高価
となるという導入の際の最大のネツクになつてい
る。本発明はかくのごとき広幅被検材の表面疵検
出を精度よくかつ経剤的に行うための有効な手段
を提供するものであり、その特徴は複数個のプロ
ーブ型検出コイルと該複数個の検出コイルを順次
時分割で励振する励振部と、該励振部の複数の励
振周波数を制御する周波数制御部と検出コイル及
び装置のスイツチングタイミングを制御するスイ
ツチング制御部と、複数の検出コイルをいずれか
の周波数に分類するプログラム部とを信号処理回
路に設けたことにある。 In the steel industry, probe coil type ECT has been introduced to detect surface flaws on wide machines such as thick plates and slabs, and flaw type identification has become an important consideration. In particular, regarding economic efficiency, if the current ECT device is introduced to wide materials, it would require an extremely large increase in the number of channels in the coil and signal processing section (up to 1000 channels) in order to accurately detect defects, making it expensive. This has become the biggest hurdle in the introduction. The present invention provides an effective means for accurately and conveniently detecting surface flaws on such wide specimen materials, and its features include a plurality of probe-type detection coils and a plurality of An excitation unit that sequentially excites the detection coils in a time-sharing manner, a frequency control unit that controls a plurality of excitation frequencies of the excitation unit, a switching control unit that controls switching timing of the detection coils and the device, and a plurality of detection coils This is because the signal processing circuit is provided with a program section for classifying the frequencies.
以下本発明を実施例を示す図面に基づき詳細に
説明する。第1図は本発明ECT装置の信号処理
回路の電気ブロツク図である。図中B,C及びE
の各列は異なつた3つの励振周波数に対応する部
分である。実施例は3つの場合について示した
が、本発明はこれに限定されるものでない。以下
励振周波数がBの周波数に選択された場合につい
て説明する。励振部1はスイツチング制御部2の
バーストゲート(図示しない)によつてコイル励
振用パワーをバースト発振している。励振部出力
である間欠発振正弦波はスイツチ部3を介して例
えば15チヤンネルのコイル部4に印加される。コ
イル部4にて得られた被検材のインピーダンス変
化情報は今1組のスイツチ部5を介してバランス
部6に入力される。15チヤンネルコイルを切換え
るスイツチ部5は間欠発振正弦波の切れ目、切れ
目に切換動作を行なつているため、スイツチング
ノイズの発生はほとんどない。 The present invention will be described in detail below based on drawings showing embodiments. FIG. 1 is an electrical block diagram of the signal processing circuit of the ECT device of the present invention. B, C and E in the diagram
Each column corresponds to three different excitation frequencies. Although three cases are shown in the embodiment, the present invention is not limited thereto. The case where the excitation frequency is selected as frequency B will be described below. The excitation section 1 generates burst oscillation of coil excitation power using a burst gate (not shown) of the switching control section 2. The intermittent oscillating sine wave which is the output of the excitation section is applied to the coil section 4 of, for example, 15 channels via the switch section 3. The impedance change information of the test material obtained by the coil section 4 is inputted to the balance section 6 via a set of switch sections 5. Since the switch unit 5 for switching the 15 channel coils performs the switching operation at the breaks in the intermittent oscillation sine wave, almost no switching noise is generated.
バランス部6の出力はスイツチ部7を経由して
カツトオフ周波数を励振周波数に選んだローパス
フイルター2台をカスケードに接続したフイルタ
ー部8に入力される。各ローパスフイルターの出
力であるフイルター部出力は差動アンプより成る
波形補正部9の各入力端に入力される。波形補正
部出力は位相検波部10に入力され、互に90°異
つた位相関係を有する180°の検波角を持つ2組の
ゲートにて位相検波される。 The output of the balance section 6 is input via a switch section 7 to a filter section 8, which is a cascade connection of two low-pass filters with the cut-off frequency selected as the excitation frequency. Filter unit outputs, which are the outputs of each low-pass filter, are input to each input terminal of a waveform correction unit 9 consisting of a differential amplifier. The output of the waveform correction section is input to the phase detection section 10, and the phase is detected by two sets of gates having a detection angle of 180 degrees and having a phase relationship different from each other by 90 degrees.
位相検波部10の出力は完全積分回路より成る
積分処理部11に入力され、1励振期間毎の積分
値に変換される。積分処理部11の出力の一部は
スイツチ部12を介して増幅部13及びアツテネ
ーター部14にて適当な電圧に変換され、スイツ
チ部15を介してメモリー部に入力される。メモ
リー部はデイジタルメモリー部16とアナログメ
モリー部17より構成されている。メモリー部の
出力は、スイツチ部18を介してバランス制御部
19に入力される。バランス制御部19は入力し
た信号変化をバランス状態に引きもどすべくバラ
ンス部6に制御信号を出力する。積分処理部11
の出力信号の他の1部は極座標回転部20に入力
される。極座標回転部20の出力信号はスイツチ
部21を介してサンプルアンドホールド(SH)
回路22に入力され、積分最終値が保持される。
SH部回路22の出力信号は零点収束部23に入
力され、バランス状態における15チヤンネルコイ
ル出力のバラツキを補正される。零点収束部23
の出力の一部は直接モニター部24にて波形が
XY表示され、他の一部は二乗回路部25を介し
て同じくXY表示される。モニター部24の入力
信号の1部は5チヤンネルパラレル出力部26に
入力され、1〜5チヤンネル(ch)目までの信
号が並列出力される。これは1〜5chの信号をチ
ヤート紙上に記録するためのものであり、1〜
15chを全部チヤート紙上に記録する時は1〜
15chを並列出力する必要がある。以上はB,C
及びE部の回路がそれらの内のどれかに選ばれて
いたときの動作であるが次にマルチ周波数動作に
ついて述べる。 The output of the phase detection section 10 is input to an integration processing section 11 consisting of a complete integration circuit, and is converted into an integral value for each excitation period. A part of the output of the integral processing section 11 is passed through a switch section 12, converted into an appropriate voltage by an amplification section 13 and an attenuator section 14, and inputted into a memory section via a switch section 15. The memory section is composed of a digital memory section 16 and an analog memory section 17. The output of the memory section is input to the balance control section 19 via the switch section 18. The balance control section 19 outputs a control signal to the balance section 6 in order to return the input signal change to a balanced state. Integral processing section 11
The other part of the output signal is input to the polar coordinate rotation unit 20. The output signal of the polar coordinate rotation unit 20 is sampled and held (SH) via the switch unit 21.
The final integrated value is input to the circuit 22 and held.
The output signal of the SH section circuit 22 is input to the zero point convergence section 23, and variations in the outputs of the 15 channel coils in a balanced state are corrected. Zero point convergence section 23
The waveform of a part of the output is directly monitored by the monitor section 24.
The other part is displayed in XY via the squaring circuit section 25. A portion of the input signal of the monitor section 24 is input to a 5-channel parallel output section 26, and signals from the first to fifth channels (ch) are output in parallel. This is for recording the signals of channels 1 to 5 on chart paper.
When recording all 15 channels on chart paper, select 1~
It is necessary to output 15 channels in parallel. The above are B and C
The multi-frequency operation will be described next when the circuit of the section E and the section E are selected.
まずスイツチング制御部2の出力信号はプログ
ラム部27に入力され15チヤンネルの各コイルは
例えば1ブロツク5チヤンネルとして3ブロツク
が3周波のいずれかにピン接続にて分類される。
プログラム部27の出力信号は周波数制御部28
に入力される。周波数制御部28はプログラム部
27出力信号に応じて3種類のVCO電圧を時系
列的に出力する。周波数制御部出力であるVCO
電圧は励振部1に入力される。周波数制御部28
の今1つの出力信号はB,C及びEの各スイツチ
部7,12及び21(C,Eのそれは同じ符号
に′、″を付して示す)に入力され、各コイルのプ
ログラムされた周波数に応じてB,CまたはEの
いずれか1つのスイツチがオンして3種類の各周
波数用に調整されたフイルター部8,8′,8″、
位相検波部10,10′,10″が選ばれる。モニ
ター表示信号の極座標回転も各周波数独立に行な
えるよう極座標回転部20,20′,20″も三組
設けられている。 First, the output signal of the switching control section 2 is input to the program section 27, and each of the 15 channels of coils is classified into, for example, 1 block and 5 channels, and 3 blocks are classified into one of the 3 frequencies by pin connection.
The output signal of the program section 27 is transmitted to the frequency control section 28.
is input. The frequency control unit 28 outputs three types of VCO voltages in time series according to the output signal of the program unit 27. VCO which is the frequency control section output
The voltage is input to the excitation section 1. Frequency control section 28
Another output signal is input to each switch section 7, 12, and 21 of B, C, and E (those of C and E are shown with the same symbols followed by ``,''), and the programmed frequency of each coil is Depending on the frequency, one of the switches B, C, or E is turned on, and the filter sections 8, 8', and 8'' are adjusted for each of the three frequencies.
Phase detection units 10, 10', and 10'' are selected. Three sets of polar coordinate rotation units 20, 20', and 20'' are also provided so that polar rotation of the monitor display signal can be performed independently for each frequency.
上記実施例においては3つの異つた励振周波数
に対してフイルター部8、波形補正部9、位相検
波部10、積分処理部11、極座標回転20等を
3組持つて各周波数に対応したが、最近のデイジ
タル技術を駆使すればフイルター部8、波形補正
部9、位相検波部10、静分処理部11、極座標
回転20等は各週波数に対応するのにデイジタル
的にプログラムすることで瞬時に対応可能となる
ので本質的に同一のものを3組(複数組)持つ必
要はなく、1組ですむことになる。 In the above embodiment, three sets of filter section 8, waveform correction section 9, phase detection section 10, integral processing section 11, polar coordinate rotation 20, etc. were provided for three different excitation frequencies to correspond to each frequency. By making full use of digital technology, the filter section 8, waveform correction section 9, phase detection section 10, static processing section 11, polar coordinate rotation 20, etc. can correspond to each weekly wave number instantly by digitally programming. Therefore, there is no need to have three sets (multiple sets) of essentially the same items, and only one set is sufficient.
次に実施例における具体的なコイルの配列、励
振方法等について述べる。第2図は5チヤンネル
のコイル幅を異つた周波数f1,f2及びf3で検査す
るときのコイルの配列例である。5chのコイルを
被検材30の進行方向に対して直角方向にならべ
たのに検出コイルを静止させたままで1定の検査
幅を確保するのである。実施例においては1つの
コイルの探傷幅を20mmとすれば、20mm×5=100
mmカバーすることができ、たとえば1m幅のスラ
ブであれば幅方向に5チヤンネルのものを10個な
らべて測定することになる。また周波数f1,f2,
f3は疵深さを定量化するものであり、周波数のよ
り低い検出コイルに感度のよい疵信号を得ること
は、疵の深さの深いことを意味しており、異なる
周波数によつて、ヘゲ疵31やワレ疵32等を精
度良く識別が出来るものである。次に検出コイル
の励振順序であるが、これはf11ch→5ch、次に
f21ch→5ch、次にf31ch→5chという方法が1つ考
えられる。また1chのf1→f3、2chのf1→f3、3chの
f1→f3、4chのf1→f3、5chのf1→f3も考えられる。
さらにまつたくランダムに15chのコイルとその
励振周波数を選ぶことも考えられるが、これは全
てスイツチング制御部2とプログラム27で対応
することが出来る。 Next, specific coil arrangement, excitation method, etc. in the embodiment will be described. FIG. 2 is an example of a coil arrangement when inspecting five channels of coil width at different frequencies f 1 , f 2 and f 3 . Although the 5-channel coils are arranged in a direction perpendicular to the traveling direction of the specimen 30, a constant inspection width is secured by keeping the detection coil stationary. In the example, if the flaw detection width of one coil is 20 mm, 20 mm x 5 = 100
For example, if a slab is 1 m wide, 10 slabs with 5 channels are lined up in the width direction and measured. Also, the frequencies f 1 , f 2 ,
f3 quantifies the flaw depth, and obtaining a sensitive flaw signal with a detection coil with a lower frequency means that the flaw is deep. It is possible to accurately identify bald spots 31, cracked spots 32, and the like. Next is the excitation order of the detection coil, which is f 1 1ch → 5ch, then
One possible method is f 2 1ch → 5ch, then f 3 1ch → 5ch. Also, 1ch f 1 → f 3 , 2ch f 1 → f 3 , 3ch
f 1 → f 3 , 4ch f 1 →f 3 , and 5ch f 1 →f 3 are also considered.
Furthermore, it is conceivable to randomly select the 15 channels of coils and their excitation frequencies, but this can all be handled by the switching control section 2 and the program 27.
上述したごとく本発明によれば複数個の検出コ
イルと複数の励振周波数の組合せ動作が可能で経
済的なECT装置を提供することができ、広幅材
の表面疵を精度よく識別することが可能となり、
製品の品質及び信頼性を向上させる上で極めて有
益な発明である。 As described above, according to the present invention, it is possible to provide an economical ECT device that can operate in combination with a plurality of detection coils and a plurality of excitation frequencies, making it possible to accurately identify surface flaws on wide materials. ,
This invention is extremely useful in improving the quality and reliability of products.
第1図は本発明の実施例を示す電気ブロツク
図、第2図はコイルの配置例を示す説明図であ
る。
1……励振部、2……スイツチング制御部、
3,5,7,12,21,15,18……スイツ
チ部、4……コイル部、6……バランス部、8…
…フイルター部、9……波形補正部、10……位
相検波部、11……積分処理部、13……増幅
部、14……アツテネーター部、16……デイジ
タルメモリー部、17……アナログメモリー部、
19……バランス制御部、20……極座標回転
部、22……サンプルアンドホールド部、23…
…零点収束部、24……モニター部、25……2
乗処理部、26……5chパラレル出力部、27…
…プログラム部、28……周波数制御部。
FIG. 1 is an electrical block diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an example of arrangement of coils. 1...excitation section, 2...switching control section,
3, 5, 7, 12, 21, 15, 18...Switch section, 4...Coil section, 6...Balance section, 8...
... Filter section, 9 ... Waveform correction section, 10 ... Phase detection section, 11 ... Integral processing section, 13 ... Amplification section, 14 ... Attenuator section, 16 ... Digital memory section, 17 ... Analog memory section ,
19...Balance control section, 20...Polar coordinate rotation section, 22...Sample and hold section, 23...
...Zero point convergence section, 24...Monitor section, 25...2
Multiplication processing section, 26...5ch parallel output section, 27...
...Program section, 28...Frequency control section.
Claims (1)
ルを順次時分割で励振しかつコイル励振用パワー
をバースト発振している励振部と、該励振部の複
数の励振周波数をVCO電圧で制御する周波数制
御部と、該バースト発振の停止期間に信号の切換
えを行うスイツチ部と、各検出コイルのインピー
ダンス変化をバランス状態に引きもどすバランス
部と、該バランス部の出力信号を処理する、カツ
トオフ周波数を励振周波数に選んだローパスフイ
ルタ2台をカスケードに接続したフイルター部
と、該2台のフイルター部の出力を入力とする差
動アンプより成る波形補正部と、該波形補正部の
出力信号を励振周波数に対して互いに90°異つた
位相関係を有する180°の検波角を持つ2組のゲー
トにて位相検波する位相検波部と、該位相検波部
の出力信号を完全積分する積分処理部と、該積分
処理部の出力電圧を調整する増巾部及びアツテネ
ーター部よりなる出力電圧調整部と、該電圧調整
部の出力信号を該複数個の検出コイルと1対1で
対応させて記憶するメモリー部と、該メモリー部
の出力信号でバランス部を制御するバランス制御
部と、検出コイル及び装置のスイツチングタイミ
ングを制御するスイツチング制御部と、複数の検
出コイルをいずれかの周波数に分類するプログラ
ム部より成る事を特徴とするマルチプローブコイ
ルマルチ周波数渦流探傷装置。 2 上記装置においてフイルター部、波形補正
部、位相検波部及び積分処理部を異る励振周波数
の種類数だけ有することを特徴とする特許請求の
範囲第1項記載のマルチプローブコイルマルチ周
波数渦流探傷装置。 3 上記装置においてフイルター部、波形補正
部、位相検波部及び積分処理部を1組だけ有し、
異る周波数に対応するため各構成部の電子的設定
機能を有することを特徴とする特許請求の範囲第
1項記載のマルチプローブコイルマルチ周波数渦
流探傷装置。[Claims] 1. A plurality of detection coils, an excitation section that sequentially excites the plurality of detection coils in a time-sharing manner and oscillates coil excitation power in bursts, and a plurality of excitation frequencies of the excitation section. a frequency control section that controls the output signal using the VCO voltage, a switch section that switches the signal during the stop period of the burst oscillation, a balance section that returns the impedance change of each detection coil to a balanced state, and an output signal of the balance section. a filter section in which two low-pass filters with cut-off frequencies selected as excitation frequencies are connected in cascade; a waveform correction section consisting of a differential amplifier that receives the outputs of the two filter sections; and the waveform correction section. A phase detection unit that detects the phase of the output signal of the output signal with two sets of gates having a detection angle of 180° and a phase relationship that is 90° different from each other with respect to the excitation frequency, and a phase detection unit that completely integrates the output signal of the phase detection unit. an output voltage adjustment section comprising an integral processing section, an amplification section and an attenuator section that adjust the output voltage of the integral processing section; and an output signal of the voltage adjustment section is made to correspond one-to-one with the plurality of detection coils. a balance control section that controls the balance section using the output signal of the memory section; a switching control section that controls the switching timing of the detection coils and the device; A multi-probe coil multi-frequency eddy current flaw detection device comprising a classification program section. 2. The multi-probe coil multi-frequency eddy current flaw detection device according to claim 1, characterized in that the device has a filter section, a waveform correction section, a phase detection section, and an integral processing section as many as the number of different excitation frequencies. . 3 The above device has only one set of filter section, waveform correction section, phase detection section, and integral processing section,
The multi-probe coil multi-frequency eddy current flaw detection device according to claim 1, characterized in that it has an electronic setting function for each component in order to correspond to different frequencies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57219074A JPS59108955A (en) | 1982-12-13 | 1982-12-13 | Multiprobe-coil multifrequency eddy current type flaw detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57219074A JPS59108955A (en) | 1982-12-13 | 1982-12-13 | Multiprobe-coil multifrequency eddy current type flaw detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59108955A JPS59108955A (en) | 1984-06-23 |
JPH0441300B2 true JPH0441300B2 (en) | 1992-07-07 |
Family
ID=16729849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57219074A Granted JPS59108955A (en) | 1982-12-13 | 1982-12-13 | Multiprobe-coil multifrequency eddy current type flaw detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59108955A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000131287A (en) * | 1998-10-23 | 2000-05-12 | Japan Science & Technology Corp | Method and device for detecting flaw using magnetic measurement |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7518359B2 (en) | 2005-03-09 | 2009-04-14 | General Electric Company | Inspection of non-planar parts using multifrequency eddy current with phase analysis |
US7206706B2 (en) * | 2005-03-09 | 2007-04-17 | General Electric Company | Inspection method and system using multifrequency phase analysis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5554446A (en) * | 1978-06-15 | 1980-04-21 | Nippon Steel Corp | Signal processing method of eddy-current check unit |
JPS5611351A (en) * | 1979-07-10 | 1981-02-04 | Hara Denshi Sokki Kk | Time division-type multifrequency eddy current |
JPS56119845A (en) * | 1980-02-26 | 1981-09-19 | Mitsubishi Heavy Ind Ltd | Multifrequency eddy current defectoscope |
JPS56137151A (en) * | 1980-02-29 | 1981-10-26 | Electric Power Res Inst | Multi-frequency type apparatus for and method of testing eddy current |
JPS5817353A (en) * | 1981-06-12 | 1983-02-01 | Kobe Steel Ltd | Multifrequency eddy current flaw detection method and apparatus by multiple coil system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625652Y2 (en) * | 1980-11-29 | 1987-02-09 |
-
1982
- 1982-12-13 JP JP57219074A patent/JPS59108955A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5554446A (en) * | 1978-06-15 | 1980-04-21 | Nippon Steel Corp | Signal processing method of eddy-current check unit |
JPS5611351A (en) * | 1979-07-10 | 1981-02-04 | Hara Denshi Sokki Kk | Time division-type multifrequency eddy current |
JPS56119845A (en) * | 1980-02-26 | 1981-09-19 | Mitsubishi Heavy Ind Ltd | Multifrequency eddy current defectoscope |
JPS56137151A (en) * | 1980-02-29 | 1981-10-26 | Electric Power Res Inst | Multi-frequency type apparatus for and method of testing eddy current |
JPS5817353A (en) * | 1981-06-12 | 1983-02-01 | Kobe Steel Ltd | Multifrequency eddy current flaw detection method and apparatus by multiple coil system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000131287A (en) * | 1998-10-23 | 2000-05-12 | Japan Science & Technology Corp | Method and device for detecting flaw using magnetic measurement |
Also Published As
Publication number | Publication date |
---|---|
JPS59108955A (en) | 1984-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0107844B1 (en) | Eddy-current defect-detecting system for metal tubes | |
US5689183A (en) | Electromagnetic-induction type inspection device employing two induction coils connected in opposite phase relation | |
US3332278A (en) | Ultrasonic flaw detection | |
US3343079A (en) | Apparatus and method for electromagnetically distinguishing between outside and inside flaws in magnetizable members utilizing a leakage field detector | |
US2511564A (en) | Distortion analysis | |
US4564809A (en) | Eddy current test method with degree of amplification selected in accordance with a compensation signal | |
JPS6111654A (en) | Method of forming color band type display | |
JPH0441300B2 (en) | ||
US5747989A (en) | Apparatus for non-destructively detecting a nugget for spot welding | |
US3701941A (en) | Magnetic anomaly detector with means for obtaining different test frequencies | |
JP2510289B2 (en) | Multi-channel eddy current flaw detector | |
JP2001059836A (en) | Method and apparatus for eddy-current flaw detection | |
CA1124328A (en) | Multifrequency eddy current testing device | |
JPH0149899B2 (en) | ||
JPS586458A (en) | Hot eddy current testing method for steel materials | |
JP2610424B2 (en) | Eddy current flaw detector | |
SU1613941A1 (en) | Method of checking parameter of electric conducting layer | |
SU1035494A1 (en) | Electric contact flow detector | |
SU1580244A1 (en) | Method of tuning away from clearance in eddy current inspection | |
JPH01248050A (en) | Leakage magnetic flux flaw detection device | |
SU1585739A1 (en) | Method of eddy-current inspection of articles and eddy transducer for effecting same | |
SU868563A1 (en) | Method of non-destructive testing of ferromagnetic articles | |
SU1260835A1 (en) | Device for eddy current flaw detection of low-conducting materials | |
RU2034235C1 (en) | Method for m depth of flaw in ferromagnetic object and device for implementation of said method | |
SU1610423A1 (en) | Combined measuring device |