[go: up one dir, main page]

JPH0441270B2 - - Google Patents

Info

Publication number
JPH0441270B2
JPH0441270B2 JP9168684A JP9168684A JPH0441270B2 JP H0441270 B2 JPH0441270 B2 JP H0441270B2 JP 9168684 A JP9168684 A JP 9168684A JP 9168684 A JP9168684 A JP 9168684A JP H0441270 B2 JPH0441270 B2 JP H0441270B2
Authority
JP
Japan
Prior art keywords
absorption liquid
heat
concentrated
regenerator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9168684A
Other languages
Japanese (ja)
Other versions
JPS60233473A (en
Inventor
Kenji Oooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaju Reinetsu Kogyo KK
Original Assignee
Kawaju Reinetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaju Reinetsu Kogyo KK filed Critical Kawaju Reinetsu Kogyo KK
Priority to JP9168684A priority Critical patent/JPS60233473A/en
Publication of JPS60233473A publication Critical patent/JPS60233473A/en
Publication of JPH0441270B2 publication Critical patent/JPH0441270B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収ヒートポンプに関し、詳しくは、
再生器から吸収器に向かう濃吸収液の濃度を高め
ると共に加熱用吸収器で取得した高温の熱媒によ
り蒸発器での冷媒蒸気の温度を高め、吸収器での
熱回収温度を高めるようにした吸収ヒートポンプ
に関する。これは、廃熱等の温度の低い熱源を用
いて廃熱源温度より高い温度の熱を取り出すよう
にした吸収ヒートポンプの分野で利用されるもの
である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an absorption heat pump, and more specifically,
In addition to increasing the concentration of the concentrated absorption liquid heading from the regenerator to the absorber, the high temperature heat medium obtained in the heating absorber raises the temperature of the refrigerant vapor in the evaporator, increasing the heat recovery temperature in the absorber. Regarding absorption heat pumps. This is used in the field of absorption heat pumps that use a low-temperature heat source such as waste heat to extract heat at a temperature higher than the waste heat source temperature.

〔従来技術〕[Prior art]

従来の吸収ヒートポンプとして第1図に示すよ
うな装置がある。その作動を略述すると、蒸発器
1内で冷媒液が、外部から供給された廃熱により
加熱されて冷媒蒸気となる。管路2を介して吸収
器3に導入されたこの冷媒蒸気は、再生器4から
熱交換器5を介して導入されてきた濃吸収液に吸
収され、その際、凝縮潜熱が発生する。この凝縮
潜熱により温水用コイル6に供給された温水が加
熱され、高温水または飽和蒸気となつて取り出さ
れて熱回収が行なわれる。一方、冷媒蒸気を吸収
した稀吸収液は、熱交換器5で再生器4から吸収
器3に向かう濃吸収液を加熱した後、圧力の低い
再生器4の液溜り4aに流れ込む。再生器4で
は、外部から熱源用コイル7に供給された廃熱
が、稀吸収液を加熱して冷媒蒸気を発生させると
共に稀吸収液を濃吸収液に再生する。管路8を介
して冷媒蒸気が導入される中間吸収器9内では、
冷却水用コイル10に冷却水が供給される一方、
ポンプ11により中間再生器12から濃吸収液管
路13を介して移送されてきた濃吸収液が、散布
装置14により散布される。その結果、濃吸収液
は冷却水用コイル10の表面で冷却されながら冷
媒蒸気を吸収するので、中間吸収器9の内部圧力
は低下する。この中間吸収器9には管路8で再生
器4が連通されているので、その中の圧力も低下
してその圧力に対する飽和温度も低下する。した
がつて、再生器4では供給される熱源が比較的低
くても充分冷媒蒸気を発生させることができるよ
うになる。また、中間吸収器9では冷媒蒸気を供
給した濃吸収液は、稀吸収液となつて稀吸収液管
路15を介して熱交換器16で前述の濃吸収液管
路13内を移送される濃吸収液によつて加熱さ
れ、中間再生器12の液溜り12aに流れ込む。
この稀吸収液は中間再生器12内で外部から熱源
用コイル17を介して供給される廃熱により加熱
され、その一部は冷媒蒸気となつて管路18を流
過して凝縮器19に導入される。この冷媒蒸気
は、外部から冷却水用コイル20に導入された冷
却水により冷却されて冷媒液となり、ポンプ21
によつて管路22を介して蒸発器1の液溜り1a
に移送される。液溜り1aの冷媒液は散布装置2
3により散布され、上述の作動が返される。
There is a device as shown in FIG. 1 as a conventional absorption heat pump. To briefly describe its operation, refrigerant liquid is heated in the evaporator 1 by waste heat supplied from the outside and becomes refrigerant vapor. This refrigerant vapor introduced into the absorber 3 via the pipe line 2 is absorbed by the concentrated absorption liquid introduced from the regenerator 4 via the heat exchanger 5, at which time latent heat of condensation is generated. The hot water supplied to the hot water coil 6 is heated by this latent heat of condensation, and is taken out as high temperature water or saturated steam for heat recovery. On the other hand, the dilute absorption liquid that has absorbed the refrigerant vapor heats the concentrated absorption liquid heading from the regenerator 4 to the absorber 3 in the heat exchanger 5, and then flows into the liquid reservoir 4a of the regenerator 4 where the pressure is low. In the regenerator 4, waste heat supplied from the outside to the heat source coil 7 heats the dilute absorption liquid to generate refrigerant vapor and regenerates the dilute absorption liquid into a concentrated absorption liquid. In the intermediate absorber 9 into which refrigerant vapor is introduced via the pipe 8,
While cooling water is supplied to the cooling water coil 10,
The concentrated absorption liquid transferred by the pump 11 from the intermediate regenerator 12 via the concentrated absorption liquid pipe line 13 is sprayed by the spraying device 14. As a result, the concentrated absorption liquid absorbs refrigerant vapor while being cooled on the surface of the cooling water coil 10, so that the internal pressure of the intermediate absorber 9 decreases. Since the intermediate absorber 9 is connected to the regenerator 4 through a pipe line 8, the pressure therein also decreases, and the saturation temperature with respect to that pressure also decreases. Therefore, the regenerator 4 can generate sufficient refrigerant vapor even if the supplied heat source is relatively low. Further, in the intermediate absorber 9, the concentrated absorption liquid to which the refrigerant vapor has been supplied becomes a diluted absorption liquid and is transferred through the diluted absorption liquid pipe 15 to the heat exchanger 16 in the concentrated absorption liquid pipe 13 described above. It is heated by the concentrated absorption liquid and flows into the liquid reservoir 12a of the intermediate regenerator 12.
This dilute absorption liquid is heated in the intermediate regenerator 12 by waste heat supplied from the outside via the heat source coil 17, and a part of it becomes refrigerant vapor and flows through the pipe 18 to the condenser 19. be introduced. This refrigerant vapor is cooled by cooling water introduced into the cooling water coil 20 from the outside and becomes a refrigerant liquid.
The liquid reservoir 1a of the evaporator 1 is
will be transferred to. The refrigerant liquid in the liquid reservoir 1a is distributed to the spraying device 2.
3, and the operation described above is returned.

このような吸収ヒートポンプでは、再生器の圧
力を低下させることができるので、低い熱源で冷
媒蒸気の発生を助長させることができ、その結
果、再生器の濃吸収液の濃度を高めることが可能
となつて吸収器での取り出し温度を高めることが
できる。ところで、この取り出し温度を高めるに
は、吸収器に導入される再生器からの濃吸収液の
濃度を高めることによつて可能となるほかに、吸
収器に導入される蒸発器からの冷媒蒸気の温度を
高めることによつても可能となる。したがつて、
両者を兼ね備えると一層吸収器での取り出し温度
を高めることができる。このように吸収器での取
り出し温度を高めることは熱の利用用途が大幅に
拡大できるので、上述の例のように濃吸収液の濃
度を高めることに加えて、冷媒蒸気の温度を高め
ることにも要望される。
In such an absorption heat pump, the pressure in the regenerator can be lowered, so the generation of refrigerant vapor can be promoted with a low heat source, and as a result, the concentration of concentrated absorption liquid in the regenerator can be increased. As a result, the extraction temperature in the absorber can be increased. By the way, this extraction temperature can be increased by increasing the concentration of the concentrated absorption liquid from the regenerator introduced into the absorber, as well as by increasing the concentration of refrigerant vapor from the evaporator introduced into the absorber. This is also possible by increasing the temperature. Therefore,
If both are combined, the extraction temperature in the absorber can be further increased. Increasing the extraction temperature in the absorber in this way can greatly expand the uses of heat, so in addition to increasing the concentration of the concentrated absorption liquid as in the example above, it is also possible to increase the temperature of the refrigerant vapor. is also requested.

〔発明の目的〕[Purpose of the invention]

本発明は上述の要望に応えるためになされたも
ので、蒸発器での冷媒蒸気の温度を高め、しか
も、その温度の向上に利用される熱源を有効な熱
サイクルの応用で達成させることのできる吸収ヒ
ートポンプを提供することを目的とする。
The present invention has been made in response to the above-mentioned needs, and it is possible to increase the temperature of refrigerant vapor in an evaporator, and to achieve this by applying an effective heat cycle to the heat source used to increase the temperature. The purpose is to provide an absorption heat pump.

〔発明の構成〕[Structure of the invention]

本発明の特徴とするところを図面を参照して説
明する。
The features of the present invention will be explained with reference to the drawings.

第1の発明は、第2図に示すように、凝縮器1
9で凝縮した冷媒液を蒸発させる蒸発器1と、再
生器4との間で循環される吸収液により冷媒蒸気
を吸収するときに生じる凝縮潜熱を外部に取出す
吸収器3と、再生器4で蒸発した冷媒蒸気を濃吸
収液管路40を介して導入された濃吸収液により
吸収する中間吸収器9と、この中間吸収器9で稀
薄となつた稀吸収液が稀吸収液管路41を介して
導入されると共に凝縮器19に冷媒蒸気を導出
し、濃吸収液を濃吸収液管路40に導出する中間
再生器35とを備え廃熱等の温度の低い熱源を用
いて廃熱源温度より高い温度の熱を取り出すよう
にした吸収ヒートポンプであつて、凝縮器19で
凝縮した冷媒液の一部を廃熱等の低温の熱で加熱
して蒸発させる中間蒸発器26と、この中間蒸発
器26で蒸発した冷媒蒸気が導入され、中間再生
器35で凝縮された濃吸収液が濃吸収液管路34
を介して導入され、冷媒蒸気が濃吸収液に吸収さ
れることによつて発生する高い温度の熱で加熱さ
れた熱媒を蒸発器1に循環供給し、中濃吸収液を
中濃吸収液管路39を介して中間再生器35に供
給する加熱用吸収器27とを有する吸収ヒートポ
ンプとしたことである。
The first invention has a condenser 1 as shown in FIG.
an evaporator 1 that evaporates the refrigerant liquid condensed in step 9; an absorber 3 that extracts latent heat of condensation generated when refrigerant vapor is absorbed by an absorption liquid circulated between the regenerator 4; An intermediate absorber 9 absorbs the evaporated refrigerant vapor with a concentrated absorption liquid introduced through a concentrated absorption liquid pipe 40, and a diluted absorption liquid that has become diluted in this intermediate absorber 9 passes through a diluted absorption liquid pipe 41. and an intermediate regenerator 35 for introducing the refrigerant vapor into the condenser 19 and directing the concentrated absorption liquid to the concentrated absorption liquid pipe line 40. It is an absorption heat pump designed to extract heat at a higher temperature, and includes an intermediate evaporator 26 that heats and evaporates a part of the refrigerant liquid condensed in the condenser 19 using low-temperature heat such as waste heat, and this intermediate evaporator. The refrigerant vapor evaporated in the vessel 26 is introduced, and the concentrated absorption liquid condensed in the intermediate regenerator 35 is transferred to the concentrated absorption liquid pipe 34.
A heating medium heated by high-temperature heat generated by absorption of refrigerant vapor into the concentrated absorption liquid is circulated and supplied to the evaporator 1, and the medium-concentrated absorption liquid is converted into a medium-concentrated absorption liquid. This is an absorption heat pump having a heating absorber 27 which is supplied to an intermediate regenerator 35 via a conduit 39.

第2の発明は、第3図に示すように、凝縮器1
9で凝縮した冷媒液を蒸発させる蒸発器1と、再
生器4との間で循環される吸収液により冷媒蒸気
を吸収するときに生じる凝縮潜熱を外部に取出す
吸収器3と、再生器4で蒸発した冷媒蒸気を濃吸
収液管路40を介して導入された濃吸収液により
吸収する中間吸収器9と、この中間吸収器9で稀
薄となつた稀吸収液が稀吸収液管路41を介して
導入されると共に凝縮器19に冷媒蒸気を導出
し、濃吸収液を濃吸収液管路40に導出する中間
再生器35とを備え、廃熱等の温度の低い熱源を
用いて廃熱源温度より高い温度の熱を取り出すよ
うにした吸収ヒートポンプであつて、凝縮器19
で凝縮した冷媒液の一部を廃熱等の低温の熱で加
熱して蒸発させる中間蒸発器26と、この中間蒸
発器26で蒸発した冷媒蒸気が導入され、中間再
生器35で凝縮された濃吸収液が濃吸収液管路3
4を介して導入され、冷媒蒸気が濃吸収液に吸収
されることによつて発生する高い温度の熱で加熱
された熱媒を蒸発器1に循環供給し、中濃吸収液
を中濃吸収液管路39を介して中間再生器35に
供給する加熱用吸収器27と、中間再生器35か
ら加熱用吸収器27への濃吸収液管路34と中濃
吸収液管路39との間で熱交換を行なわせる熱交
換器48と、中間再生器35から中間吸収器9へ
の濃吸収液管路40と稀吸収液管路41との間で
熱交換を行なわせる熱交換器49とを有する吸収
ヒートポンプとしたことである。
The second invention has a condenser 1 as shown in FIG.
an evaporator 1 that evaporates the refrigerant liquid condensed in step 9; an absorber 3 that extracts latent heat of condensation generated when refrigerant vapor is absorbed by an absorption liquid circulated between the regenerator 4; An intermediate absorber 9 absorbs the evaporated refrigerant vapor with a concentrated absorption liquid introduced through a concentrated absorption liquid pipe 40, and a diluted absorption liquid that has become diluted in this intermediate absorber 9 passes through a diluted absorption liquid pipe 41. and an intermediate regenerator 35 for introducing refrigerant vapor into the condenser 19 and directing the concentrated absorption liquid to the concentrated absorption liquid pipe line 40. The absorption heat pump extracts heat at a temperature higher than the condenser 19.
An intermediate evaporator 26 heats and evaporates a part of the refrigerant liquid condensed in the intermediate evaporator 26 using low-temperature heat such as waste heat, and the refrigerant vapor evaporated in the intermediate evaporator 26 is introduced and condensed in the intermediate regenerator 35. The concentrated absorption liquid is connected to the concentrated absorption liquid pipe line 3.
A heating medium introduced through 4 and heated by high temperature heat generated when the refrigerant vapor is absorbed by the concentrated absorption liquid is circulated and supplied to the evaporator 1, and the medium-concentrated absorption liquid is converted into a medium-concentrated absorption liquid. Between the heating absorber 27 supplied to the intermediate regenerator 35 via the liquid pipe line 39, the concentrated absorption liquid pipe line 34 from the intermediate regenerator 35 to the heating absorber 27, and the intermediate concentrated absorption liquid pipe line 39. and a heat exchanger 49 that performs heat exchange between the concentrated absorption liquid pipe line 40 and the dilute absorption liquid pipe line 41 from the intermediate regenerator 35 to the intermediate absorber 9. This is an absorption heat pump with

〔実施例〕〔Example〕

以下に本発明の吸収ヒートポンプを、その実施
例を示す図面に基づいて詳細に説明する。
EMBODIMENT OF THE INVENTION Below, the absorption heat pump of this invention is demonstrated in detail based on the drawing which shows the Example.

第2図は本発明の一実施例である吸収ヒートポ
ンプ24の系統図を示す。これは、第1図で説明
した吸収ヒートポンプ25に中間蒸発器26と加
熱用吸収器27とを付加したものである。図中の
中間蒸発器26は、凝縮器19から蒸発器1に向
かう冷媒液の管路22の分岐点22Aから枝路2
8を、その先端が内部の液溜り26aの上方近傍
に突入した状態で有している。また、この中間蒸
発器26には、液溜り26aの冷媒液を移送ポン
プ29で移送してその内部で散布させるための散
布装置30が内蔵されている。さらに、散布され
た冷媒液を加熱して冷媒蒸気を発生させる熱源用
コイル31もその内部に備えられている。その冷
媒蒸気を加熱用吸収器27に導入する冷媒蒸気管
路32が中間蒸発器26の上部に設けられ、その
他端は加熱用吸収器27の上部に連結されてい
る。この加熱用吸収器27には、移送ポンプ33
により濃吸収液管路34を介して移送されてきた
中間再生器35の濃吸収液を、その内部で散布す
る散布装置36が備えられている。散布された濃
吸収液は、導入された冷媒蒸気を吸収して凝縮潜
熱を発生するようになつている。この発生した凝
縮潜熱を吸収する熱媒が循環する循環供給路37
の一端部37Aが加熱用吸収器27の内部に装着
され、その他端部37Bは蒸発器1の内部に設け
られている。なお、この循環供給路37には熱媒
を循環させる循環ポンプ38が介在されている。
さらに、加熱用吸収器27の液溜り27aに貯留
する中濃吸収液を、中間再生器35の液溜り35
aに流入させる中濃吸収液管路39が設けられ、
その先端は液溜り35aの上方近傍に設けられて
いる。また、前述の濃吸収液管路34における分
岐点34Aから別の濃吸収液管路40は設けら
れ、その先端は中間吸収器9に内蔵されている散
布装置14に接続されている。中間吸収器9の液
溜り9aに貯留する稀吸収液が中間再生器35の
液溜り35aに流過するための稀吸収液管路41
が中間吸収器9の底部に連結され、その他端は前
述の中濃吸収液管路39の分岐点39Aに接続さ
れている。
FIG. 2 shows a system diagram of an absorption heat pump 24 which is an embodiment of the present invention. This is the absorption heat pump 25 described in FIG. 1 with an intermediate evaporator 26 and a heating absorber 27 added thereto. The intermediate evaporator 26 in the figure is connected to a branch 2 from a branch point 22A of a refrigerant liquid pipe 22 heading from the condenser 19 to the evaporator 1.
8, with its tip protruding into the upper vicinity of the internal liquid reservoir 26a. Further, the intermediate evaporator 26 has a built-in dispersion device 30 for transferring the refrigerant liquid in the liquid reservoir 26a using a transfer pump 29 and dispersing the refrigerant liquid therein. Furthermore, a heat source coil 31 for heating the dispersed refrigerant liquid to generate refrigerant vapor is also provided inside. A refrigerant vapor pipe line 32 for introducing the refrigerant vapor into the heating absorber 27 is provided at the upper part of the intermediate evaporator 26, and the other end is connected to the upper part of the heating absorber 27. This heating absorber 27 includes a transfer pump 33.
A dispersion device 36 is provided for dispersing the concentrated absorption liquid from the intermediate regenerator 35 transferred via the concentrated absorption liquid pipe line 34 therein. The sprayed concentrated absorption liquid absorbs the introduced refrigerant vapor and generates latent heat of condensation. A circulation supply path 37 in which a heating medium that absorbs the generated latent heat of condensation circulates.
One end 37A is installed inside the heating absorber 27, and the other end 37B is installed inside the evaporator 1. Note that a circulation pump 38 for circulating the heat medium is interposed in the circulation supply path 37.
Furthermore, the medium-concentrated absorption liquid stored in the liquid reservoir 27a of the heating absorber 27 is transferred to the liquid reservoir 35 of the intermediate regenerator 35.
A medium-concentrated absorption liquid pipe line 39 is provided to flow into a,
The tip thereof is provided near the top of the liquid reservoir 35a. Further, another concentrated absorbent liquid pipe 40 is provided from the branch point 34A of the concentrated absorbent liquid pipe 34 described above, and its tip is connected to the dispersion device 14 built in the intermediate absorber 9. A dilute absorption liquid pipe line 41 through which the dilute absorption liquid stored in the liquid reservoir 9a of the intermediate absorber 9 flows to the liquid reservoir 35a of the intermediate regenerator 35.
is connected to the bottom of the intermediate absorber 9, and the other end is connected to the branch point 39A of the aforementioned intermediate concentrated absorption liquid pipe line 39.

このような構成によれば、次のように作動させ
ることができる。
According to such a configuration, it can be operated as follows.

まず、蒸発器1の液溜り1aに貯留する冷媒液
は、ポンプ42により散布装置43に移送され散
布される。このとき、循環供給路37の他端部3
7Bを流過する高温の熱媒に散布された冷媒液が
加熱され高温の冷媒蒸気となる。この冷媒蒸気が
管路2より吸収器3に導入される一方、吸収器3
内では、低圧の再生器4からポンプ44により濃
吸収液管路45を介して移送されてきた濃吸収液
が散布装置46に散布され、導入された冷媒蒸気
が吸収されて凝縮潜熱が発生する。凝縮潜熱は温
水用コイル6内の温水に吸収され、温水は高温と
なつて高温水あるいは飽和蒸気となり取り出され
る。冷媒蒸気を吸収した濃吸収液は稀吸収液とな
り低圧の再生器4に流入する途中、熱交換器5で
前述の低圧の再生器4における飽和温度に相当す
る低温の濃吸収液を加熱して再生器4の液溜り4
aに流れ込む。熱交換器5で加熱された濃吸収液
は再生器4より高圧の吸収器3の飽和温度近くま
で加熱されて吸収器3内で散布され、前述したよ
うに冷媒蒸気を吸収する。その結果、発生する凝
縮潜熱は、濃吸収液の温度が吸収器3の飽和温度
近くまで達しているので、濃吸収液の温度を高め
るために殆ど使われることなく供給された温水の
温度を高めるために利用される。ところで、再生
器4に流入された稀吸収液は、液溜り4aに貯留
されると共に外部から供給される廃熱により熱源
用コイル7を介して加熱される。その一部は冷媒
蒸気として管路8を介して中間吸収器9に導入さ
れ、残部は冷媒蒸気となつた分だけ濃度が濃くな
つて濃吸収液として液溜り4aに溜る。中間吸収
器9に導入された冷媒蒸気は、冷却水用コイル1
0の表面で冷却されながら中間再生器35から濃
吸収液管路34、分岐点34A,濃吸収液管路4
0を介して移送されてくる濃吸収液に吸収され
る。その結果、低温のもとで冷媒蒸気が濃吸収液
に吸収されるので、吸収能率は高まり中間吸収器
9内の圧力は低下し、再生器4の圧力も管路8を
通して下がる。再生器4内の圧力が低圧となるの
で、飽和温度は低下し、比較的低い供給熱源で冷
媒蒸気の発生が助長される。その結果、液溜り4
aに貯留する濃吸収液の濃度は高くなる。ところ
で、中間吸収器9内で冷媒蒸気を吸収した濃吸収
液は、稀吸収液となり液溜り9aに溜る。液溜り
9aの稀吸収液は、稀吸収液管路41を介して後
述する加熱用吸収器27からの中濃吸収液と中濃
吸収液管路39の分岐点39Aで合流し、低圧の
中間再生器35の液溜り35aに流れ込む。液溜
り35aでは、熱源用コイル17を通して供給さ
れる廃熱により吸収液は加熱され、一部は冷媒蒸
気となつて管路18より凝縮器19へ導入され、
残部は濃吸収液となつて液溜り35aに貯留され
る。凝縮器19に導入された冷媒蒸気は、冷却水
用コイル20より供給される冷水に冷却され冷媒
液となつて液溜り19aに溜る。冷媒液はポンプ
47により管路22を介して蒸発器1の液溜り1
aに移送される途中で、その一部は分岐点22A
で分流され、枝路28より中間蒸発器26の液溜
り26aに流れ込む。流れ込んだ冷媒液は移送ポ
ンプ29により移送され散布装置30により散布
される。このとき熱源用コイル31に廃熱が供給
されるので、この廃熱によつて冷媒液は加熱され
冷媒蒸気となつて、冷媒蒸気管路32より加熱用
吸収器27に導入される。加熱用吸収器27内で
は前述の中間再生器35の濃吸収液が、移送ポン
プ33により移送され散布装置36より循環供給
路37の一端部37Aに向けて散布される。その
結果、濃吸収液は導入された冷媒蒸気を一端部3
7Aの表面で吸収し、凝縮潜熱を発生して循環供
給路37内の熱媒を加熱する。加熱されて高温と
なつた熱媒は、循環ポンプ38により循環供給路
37内を循環する。この高温の熱媒が循環して蒸
発器1内の他端部37Bを流過するときに、散布
装置43より散布される冷媒液を加熱して冷媒蒸
気とする。その結果、低温となつた熱媒は、循環
供給路37内を循環し他端部37Bで前述と同様
に凝縮潜熱により加熱され再び高温となる。とこ
ろで、加熱用吸収器27内で冷媒蒸気を吸収した
濃吸収液は、高温の中濃吸収液となつて液溜り2
7aに落下して溜る。溜つた中濃吸収液は、中濃
吸収液管路39内を流過し、中間吸収器9からの
稀吸収液と合流して中間再生器35の液溜り35
aに流れ込むことは、前述した通りである。な
お、前述の管路22の分岐点22Aで分流しなか
つた残りの冷媒液はそのまま蒸発器1の液溜り1
aに流れ込む。以後、上述の作動が繰り返され
る。
First, the refrigerant liquid stored in the liquid reservoir 1a of the evaporator 1 is transferred to the spraying device 43 by the pump 42 and is sprayed thereon. At this time, the other end 3 of the circulation supply path 37
The refrigerant liquid sprinkled on the high-temperature heat medium flowing through 7B is heated and becomes high-temperature refrigerant vapor. This refrigerant vapor is introduced into the absorber 3 from the pipe line 2, while the absorber 3
Inside, the concentrated absorption liquid transferred from the low-pressure regenerator 4 via the concentrated absorption liquid pipe line 45 by the pump 44 is sprayed to the dispersion device 46, and the introduced refrigerant vapor is absorbed to generate condensation latent heat. . The latent heat of condensation is absorbed by the hot water in the hot water coil 6, and the hot water becomes high temperature and is extracted as high temperature water or saturated steam. The concentrated absorption liquid that has absorbed the refrigerant vapor becomes a dilute absorption liquid, and while flowing into the low-pressure regenerator 4, the heat exchanger 5 heats the concentrated absorption liquid at a low temperature corresponding to the saturation temperature in the low-pressure regenerator 4. Regenerator 4 liquid pool 4
flows into a. The concentrated absorption liquid heated in the heat exchanger 5 is heated by the regenerator 4 to near the saturation temperature of the high-pressure absorber 3, and is dispersed within the absorber 3 to absorb refrigerant vapor as described above. As a result, the generated latent heat of condensation increases the temperature of the supplied hot water, which is hardly used to raise the temperature of the concentrated absorption liquid, since the temperature of the concentrated absorption liquid has reached near the saturation temperature of the absorber 3. used for. By the way, the dilute absorption liquid that has flowed into the regenerator 4 is stored in the liquid reservoir 4a and is heated via the heat source coil 7 by waste heat supplied from the outside. A part of the refrigerant vapor is introduced into the intermediate absorber 9 via the pipe line 8, and the remaining part is concentrated as a refrigerant vapor and accumulates in the liquid reservoir 4a as a concentrated absorption liquid. The refrigerant vapor introduced into the intermediate absorber 9 is transferred to the cooling water coil 1
While being cooled on the surface of
It is absorbed by the concentrated absorption liquid that is transported through the 0. As a result, the refrigerant vapor is absorbed into the concentrated absorption liquid at low temperatures, so that the absorption efficiency increases and the pressure in the intermediate absorber 9 decreases, and the pressure in the regenerator 4 also decreases through the pipe 8. Since the pressure inside the regenerator 4 becomes low, the saturation temperature decreases, and the generation of refrigerant vapor is promoted with a relatively low supply heat source. As a result, liquid puddle 4
The concentration of the concentrated absorption liquid stored in a becomes higher. By the way, the concentrated absorption liquid that has absorbed the refrigerant vapor in the intermediate absorber 9 becomes a dilute absorption liquid and accumulates in the liquid reservoir 9a. The dilute absorption liquid in the liquid reservoir 9a joins the medium-concentration absorption liquid from the heating absorber 27, which will be described later, through the dilute absorption liquid pipe line 41 at a branch point 39A of the medium-concentration absorption liquid pipe line 39, and forms a low-pressure intermediate liquid. The liquid flows into the liquid reservoir 35a of the regenerator 35. In the liquid reservoir 35a, the absorption liquid is heated by waste heat supplied through the heat source coil 17, and a part of the liquid is converted into refrigerant vapor and introduced into the condenser 19 through the pipe line 18.
The remainder becomes a concentrated absorption liquid and is stored in the liquid reservoir 35a. The refrigerant vapor introduced into the condenser 19 is cooled by the cold water supplied from the cooling water coil 20, becomes refrigerant liquid, and accumulates in the liquid reservoir 19a. The refrigerant liquid is delivered to the liquid reservoir 1 of the evaporator 1 via the pipe 22 by the pump 47.
A part of it is transferred to branch point 22A.
The liquid is divided into two streams and flows into the liquid reservoir 26a of the intermediate evaporator 26 from the branch 28. The refrigerant liquid that has flowed in is transferred by a transfer pump 29 and sprayed by a spraying device 30. At this time, waste heat is supplied to the heat source coil 31, so the refrigerant liquid is heated by this waste heat, becomes refrigerant vapor, and is introduced into the heating absorber 27 through the refrigerant vapor pipe line 32. Inside the heating absorber 27, the concentrated absorption liquid from the intermediate regenerator 35 described above is transferred by the transfer pump 33 and sprayed by the spraying device 36 toward one end 37A of the circulation supply path 37. As a result, the concentrated absorption liquid absorbs the introduced refrigerant vapor at one end 3.
It is absorbed on the surface of 7A, generates latent heat of condensation, and heats the heat medium in the circulation supply path 37. The heat medium heated to a high temperature is circulated within the circulation supply path 37 by the circulation pump 38. When this high-temperature heat medium circulates and passes through the other end 37B in the evaporator 1, the refrigerant liquid sprayed by the sprayer 43 is heated and turned into refrigerant vapor. As a result, the low-temperature heating medium circulates within the circulation supply path 37, and is heated at the other end 37B by the latent heat of condensation in the same manner as described above, and becomes high again. By the way, the concentrated absorption liquid that has absorbed the refrigerant vapor in the heating absorber 27 turns into a high-temperature medium-concentrated absorption liquid and flows into the liquid pool 2.
It falls and accumulates at 7a. The accumulated medium-concentration absorption liquid flows through the medium-concentration absorption liquid pipe 39 and joins with the dilute absorption liquid from the intermediate absorber 9 to form the liquid reservoir 35 of the intermediate regenerator 35.
The flow into a is as described above. Note that the remaining refrigerant liquid that was not separated at the branch point 22A of the pipe line 22 described above is directly transferred to the liquid reservoir 1 of the evaporator 1.
flows into a. Thereafter, the above-described operation is repeated.

第3図は上述の構成に加えて、中間再生器35
から加熱用吸収器27への濃吸収液管路34と中
濃吸収液管路39との間で熱交換を行なわせる熱
交換器48と、中間再生器35から中間吸収器9
への濃吸収液管路40と稀吸収液管路41との間
で熱交換を行なわせる熱交換器49とが設けられ
た第2の発明の概略系統図である。なお、上述の
発明と同様の構成には同一の符号を付してその説
明を省略する。
In addition to the above-mentioned configuration, FIG. 3 shows an intermediate regenerator 35
A heat exchanger 48 that performs heat exchange between the concentrated absorption liquid pipe line 34 and the medium concentrated absorption liquid line 39 from the intermediate regenerator 35 to the heating absorber 9;
FIG. 4 is a schematic system diagram of a second invention in which a heat exchanger 49 for exchanging heat between a concentrated absorption liquid pipe line 40 and a dilute absorption liquid line 41 is provided. In addition, the same code|symbol is attached|subjected to the structure similar to the above-mentioned invention, and the description is abbreviate|omitted.

このような構成によつても、上述の発明と同様
に作動させることができると共に、熱交換器48
を介在させることにより中間再生器35の濃吸収
液が、移送ポンプ33により加熱用吸収器27に
移送される途中、加熱用吸収器27の高温の中濃
吸収液によつて加熱される。その結果、濃吸収液
は加熱用吸収器27のほぼ飽和温度とされてその
内部で散布され、そのときに発生する凝縮潜熱は
殆どすべて循環供給路37の一端部37Aにおい
て熱媒に吸収される。一方、熱交換器49を介在
させることにより中間再生器35から中間吸収器
9へ向かう濃吸収液によつて中間吸収器9から中
間再生器35への稀吸収液が加熱されるので、中
間吸収器9の低温の稀吸収液はその温度を高めら
れ、中間再生器35内で冷媒蒸気になることが助
長される。その結果、中間再生器35内の濃吸収
液の濃度が高まるので、加熱用吸収器27で発生
する熱量が高まつて循環供給路37の一端部37
A内を循環する熱媒の吸収熱量が増大され、蒸発
器1での冷媒蒸気の温度が高まる。
Even with such a configuration, it can be operated in the same manner as the above-described invention, and the heat exchanger 48
By interposing the intermediate regenerator 35, the concentrated absorption liquid in the intermediate regenerator 35 is heated by the high temperature intermediate concentration absorption liquid in the heating absorber 27 while being transferred to the heating absorber 27 by the transfer pump 33. As a result, the concentrated absorption liquid is brought to almost the saturation temperature of the heating absorber 27 and is dispersed therein, and almost all of the latent heat of condensation generated at this time is absorbed by the heating medium at one end 37A of the circulation supply path 37. . On the other hand, by interposing the heat exchanger 49, the concentrated absorption liquid flowing from the intermediate regenerator 35 to the intermediate absorber 9 heats the dilute absorption liquid flowing from the intermediate absorber 9 to the intermediate regenerator 35. The temperature of the low-temperature dilute absorption liquid in vessel 9 is increased to encourage it to turn into refrigerant vapor in intermediate regenerator 35 . As a result, the concentration of the concentrated absorption liquid in the intermediate regenerator 35 increases, so the amount of heat generated in the heating absorber 27 increases and the one end 37 of the circulation supply path 37
The amount of heat absorbed by the heat medium circulating in A is increased, and the temperature of the refrigerant vapor in the evaporator 1 is increased.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳細に説明したように、第1の発
明では、蒸発器で冷媒液を蒸発させる熱源を、加
熱用吸収器内で発生した凝縮潜熱により高温にし
た熱媒を介して供給するようにしたので、吸収ヒ
ートポンプの熱回収温度を高める要素の1つであ
る蒸発器における冷媒蒸気の温度を高めることが
できる。したがつて、再生器の濃吸収液の濃度を
高めることと相まつて熱回収温度を高くすること
ができる。第2の発明においては、熱交換器を介
在させたので、前述の効果をより高い熱効率でも
つて発揮させることができる。
As described in detail above, in the first aspect of the present invention, the heat source for evaporating the refrigerant liquid in the evaporator is supplied via a heat medium heated to a high temperature by the latent heat of condensation generated in the heating absorber. Therefore, the temperature of the refrigerant vapor in the evaporator, which is one of the elements for increasing the heat recovery temperature of the absorption heat pump, can be increased. Therefore, in addition to increasing the concentration of the concentrated absorption liquid in the regenerator, the heat recovery temperature can be increased. In the second invention, since a heat exchanger is interposed, the above-mentioned effects can be exhibited with higher thermal efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の吸収ヒートポンプの系統図、第
2図は第1の発明の吸収ヒートポンプの系統図、
第3図は第2の発明の吸収ヒートポンプの系統図
である。 1……蒸発器、3……吸収器、4……再生器、
9……中間吸収器、19……凝縮器、24……吸
収ヒートポンプ、26……中間蒸発器、27……
加熱用吸収器、34,40……濃吸収液管路、3
5……中間再生器、39……中濃吸収液管路、4
1……稀吸収液管路、47,48……熱交換器。
Figure 1 is a system diagram of a conventional absorption heat pump, Figure 2 is a system diagram of an absorption heat pump according to the first invention,
FIG. 3 is a system diagram of the absorption heat pump of the second invention. 1... Evaporator, 3... Absorber, 4... Regenerator,
9... Intermediate absorber, 19... Condenser, 24... Absorption heat pump, 26... Intermediate evaporator, 27...
Heating absorber, 34, 40... Concentrated absorption liquid pipe line, 3
5...Intermediate regenerator, 39...Intermediate concentrated absorption liquid pipe line, 4
1... Dilute absorption liquid pipe line, 47, 48... Heat exchanger.

Claims (1)

【特許請求の範囲】 1 凝縮器で凝縮した冷媒液を蒸発させる蒸発器
と、再生器との間で循環される吸収液により冷媒
蒸気を吸収するときに生じる凝縮潜熱を外部に取
出す吸収器と、前記再生器で蒸発した冷媒蒸気を
濃吸収液管路を介して導入された濃吸収液により
吸収する中間吸収器と、この中間吸収器で稀薄と
なつた稀吸収液が稀吸収液管路を介して導入され
ると共に前記凝縮器に冷媒蒸気を導出し、濃吸収
液を前記濃吸収液管路に導出する中間再生器とを
備え、廃熱等の温度の低い熱源を用いて廃熱源温
度より高い温度の熱を取り出すようにした吸収ヒ
ートポンプにおいて、 前記凝縮器で凝縮した冷媒液の一部を廃熱等の
低温の熱で加熱して蒸発させる中間蒸発器と、 この中間蒸発器で蒸発した冷媒蒸気が導入さ
れ、前記中間再生器で凝縮された濃吸収液が濃吸
収液管路を介して導入され、冷媒蒸気が濃吸収液
に吸収されることによつて発生する高い温度の熱
で加熱された熱媒を前記蒸発器に循環供給し、中
濃吸収液を中濃吸収液管路を介して中間再生器に
供給する加熱用吸収器と、 を有し、この加熱用吸収器で加熱された温度の高
い熱媒で、前記蒸発器の冷媒蒸発温度を高めるよ
うにしたことを特徴とする吸収ヒートポンプ。 2 凝縮器で凝縮した冷媒液を蒸発させる蒸発器
と、再生器との間で循環される吸収液により冷媒
蒸気を吸収するときに生じる凝縮潜熱を外部に取
出す吸収器と、前記再生器で蒸発した冷媒蒸気を
濃吸収液管路を介して導入された濃吸収液により
吸収する中間吸収器と、この中間吸収器で稀薄と
なつた稀吸収液が稀吸収液管路を介して導入され
ると共に前記凝縮器に冷媒蒸気を導出し、濃吸収
液を前記濃吸収液管路に導出する中間再生器とを
備え、廃熱等の温度の低い熱源を用いて廃熱源温
度より高い温度の熱を取り出すようにした吸収ヒ
ートポンプにおいて、 前記凝縮器で凝縮した冷媒液の一部を廃熱等の
低温の熱で加熱して蒸発させる中間蒸発器と、 この中間蒸発器で蒸発した冷媒蒸気が導入さ
れ、前記中間再生器で凝縮された濃吸収液が濃吸
収液管路を介して導入され、冷媒蒸気が濃吸収液
に吸収されることによつて発生する高い温度の熱
で加熱された熱媒を前記蒸発器に循環供給し、中
濃吸収液を中濃吸収液管路を介して中間再生器に
供給する加熱用吸収器と、 前記中間再生器から加熱用吸収器への濃吸収液
管路と前記中濃吸収液管路との間で熱交換を行な
わせる熱交換器と、 前記中間再生器から中間吸収器への濃吸収液管
路と前記稀吸収液管路との間で熱交換を行なわせ
る熱交換器と、 を有し、前記加熱用吸収器で加熱された温度の高
い熱媒で、前記蒸発器の冷媒蒸発温度を高めるよ
うにしたことを特徴とする吸収ヒートポンプ。
[Claims] 1. An evaporator that evaporates refrigerant liquid condensed in a condenser, and an absorber that extracts latent heat of condensation generated when refrigerant vapor is absorbed by an absorption liquid circulated between the regenerator and the regenerator. , an intermediate absorber that absorbs the refrigerant vapor evaporated in the regenerator with a concentrated absorption liquid introduced through a concentrated absorption liquid pipe; and an intermediate regenerator for introducing the refrigerant vapor into the condenser and directing the concentrated absorption liquid to the concentrated absorption liquid pipe line, and a waste heat source using a low temperature heat source such as waste heat. In an absorption heat pump that extracts heat at a temperature higher than the temperature, an intermediate evaporator that heats and evaporates a part of the refrigerant liquid condensed in the condenser using low-temperature heat such as waste heat; The evaporated refrigerant vapor is introduced, and the concentrated absorption liquid condensed in the intermediate regenerator is introduced through the concentrated absorption liquid line, and the high temperature generated by the absorption of the refrigerant vapor into the concentrated absorption liquid is reduced. a heating absorber that circulates and supplies a heat medium heated by heat to the evaporator and supplies a medium-concentration absorption liquid to an intermediate regenerator via a medium-concentration absorption liquid pipe line; An absorption heat pump characterized in that the refrigerant evaporation temperature of the evaporator is raised using a high temperature heat medium heated in the evaporator. 2. An evaporator that evaporates the refrigerant liquid condensed in the condenser, an absorber that extracts to the outside the latent heat of condensation generated when refrigerant vapor is absorbed by an absorption liquid circulated between the regenerator, and the evaporator that evaporates the refrigerant liquid in the regenerator. An intermediate absorber that absorbs the refrigerant vapor by a concentrated absorption liquid introduced through a concentrated absorption liquid pipe, and a diluted absorption liquid that has become diluted in this intermediate absorber is introduced through the diluted absorption liquid pipe. It also includes an intermediate regenerator that delivers refrigerant vapor to the condenser and directs concentrated absorption liquid to the concentrated absorption liquid pipe, and uses a low temperature heat source such as waste heat to generate heat at a temperature higher than the waste heat source temperature. In an absorption heat pump designed to take out water, there is an intermediate evaporator that heats and evaporates a part of the refrigerant liquid condensed in the condenser using low-temperature heat such as waste heat, and the refrigerant vapor evaporated in the intermediate evaporator is introduced. The concentrated absorption liquid condensed in the intermediate regenerator is introduced through the concentrated absorption liquid pipe, and the refrigerant vapor is heated by the high temperature heat generated by being absorbed into the concentrated absorption liquid. a heating absorber that circulates a medium to the evaporator and supplies a medium-concentrated absorption liquid to an intermediate regenerator via a medium-concentration absorption liquid pipeline; a heat exchanger for performing heat exchange between the pipe line and the medium-concentrated absorbent liquid pipe line; and a heat exchanger that performs heat exchange between the pipe line and the concentrated absorbent liquid line from the intermediate regenerator to the intermediate absorber and the dilute absorbent liquid pipe line. An absorption heat pump comprising: a heat exchanger for performing heat exchange; and the absorption heat pump is characterized in that the refrigerant evaporation temperature of the evaporator is raised by a high-temperature heat medium heated by the heating absorber.
JP9168684A 1984-05-07 1984-05-07 Absorption heat pump Granted JPS60233473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9168684A JPS60233473A (en) 1984-05-07 1984-05-07 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9168684A JPS60233473A (en) 1984-05-07 1984-05-07 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPS60233473A JPS60233473A (en) 1985-11-20
JPH0441270B2 true JPH0441270B2 (en) 1992-07-07

Family

ID=14033385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9168684A Granted JPS60233473A (en) 1984-05-07 1984-05-07 Absorption heat pump

Country Status (1)

Country Link
JP (1) JPS60233473A (en)

Also Published As

Publication number Publication date
JPS60233473A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
JPH06503413A (en) Absorption coolant device with triple effect due to double capacitor coupling
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
US5857355A (en) Ammonia generator absorber heat exchanger cycle
JPS5849781B2 (en) Absorption heat pump
JP2001082821A (en) Absorption heat pump
JPH0379626B2 (en)
JPH0441270B2 (en)
JPH0441269B2 (en)
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
CN115371285B (en) Absorption heat exchange system
JPH0350373Y2 (en)
JPH05256535A (en) Sorption heat pump system
KR20100091312A (en) Absorption type refrigerator having the solution heating condensor
KR840000451B1 (en) Absorption chiller
JPS58219371A (en) Double effect absorption type heat pump
JPS5849780B2 (en) Absorption heat pump
JPH0583831B2 (en)
JPH0429339Y2 (en)
JPH0355741B2 (en)
JPS6125986B2 (en)
JPH0694972B2 (en) Absorption heat pump device
JPH0354378Y2 (en)
KR0113790Y1 (en) Absorption refrigeration machine
JPH029340Y2 (en)
JPS6018771Y2 (en) absorption refrigerator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term