JPH0438503B2 - - Google Patents
Info
- Publication number
- JPH0438503B2 JPH0438503B2 JP63298046A JP29804688A JPH0438503B2 JP H0438503 B2 JPH0438503 B2 JP H0438503B2 JP 63298046 A JP63298046 A JP 63298046A JP 29804688 A JP29804688 A JP 29804688A JP H0438503 B2 JPH0438503 B2 JP H0438503B2
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- short side
- casting
- layer
- refractory layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0648—Casting surfaces
- B22D11/066—Side dams
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
(産業上の利用分野)
この発明は溶融金属から薄鋳片を直接製造する
薄鋳片連続鋳造機における鋳造空間を1対の循環
体とともに形成する短辺側板に関する。
(従来の技術)
溶融金属(以下は「溶鋼」の例で説明する)か
ら直接シートバーの如き薄鋳片を連続的に製造す
る連続鋳造機(すなわちベルトキヤスター)とし
て、最近種々の形式のものが提案されている。第
3図にその代表的な一例を示す。例示の同期式ベ
ルトキヤスターは、絞り込み方式のもので、所定
の距離にわたつて溶鋼や凝固シエル等の鋳造材料
を保持するための間〓を維持しつつ、それぞえ複
数個のガイドロール3a,3b,3cを介して輪
回移動する対向配置とした1対の長辺面を支持す
る金属ベルト1,2と、それら両金属ベルト相互
間にあつて各々の側縁近傍で緊密に接している短
辺面を支持するための上広下すぼまり状の短辺側
板4,5とで4方を限局して鋳造空間とするしく
みになつている。
該鋳造空間に浸漬ノズル6から溶鋼を給湯する
と、冷却パツド7a,7bによつて冷却された金
属ベルト1,2に接触した溶鋼は凝固殻を形成し
ながら下方に引き抜かれる。
ここで短辺面での凝固を遅らせるため、短辺側
板の溶鋼に接する内面を耐火物で形成することが
有利であり、特開昭58−218360号公報には金属ベ
ルトと接する側縁に額縁部をそなえる金属板に、
耐火物を額縁部で支持させて設けた短辺側板につ
いて開示されている。
該額縁部を設けることは耐火物の支持のほか、
鋳造空間のコーナ部における凝固を促進し短辺側
板と金属ベルトとの間に溶鋼が浸入するのを防ぐ
のに有効であるが、耐火物面の溶損が極めて大き
く長時間の鋳造には不利である。
(発明が解決しようとする課題)
短辺側板の中央部の耐火物は断熱性および耐熱
衝撃性の高いことが有利で、具体的には溶融シリ
カおよび新素材、すなわち窒化けい素、サイアロ
ンまたはこれらと窒化ボロンとの混合物などが適
合する。
しかしながら耐火物全体を新素材で構成する
と、素材の熱伝導が大きいため溶融金属が短辺側
板の表面上で凝固して鋳片の引抜抵抗を増大させ
る上、凝固シエルの強度が低いときにはシエルが
破断し最終的にブレークアウトをまねくこと、線
膨張率が大きいため耐火物を保持している額縁部
などが変形することおよびコスト高をまねくこ
と、の不利があり、その適用は難しい。
また耐火物として熱伝導率の低い、たとえば溶
融シリカ質レンガを使用した場合、鋳片の端部は
耐火物を保持している額縁部で凝固を開始する
が、凝固層は耐火物面にも発達し、この凝固層は
耐火物を容易に削りとり、ついには耐火物を破損
させることになるため、長時間の鋳造に耐えられ
ない。
なお耐火物面での溶鋼の凝固は、鋳込み開始時
には不可避である。すなわち鋳込み開始時の耐火
物温度は低く一旦は溶鋼が凝固するため、鋳造初
期の操業が不安定になる上、鋳片表面の品質も著
しく阻害され、とくに問題となる。
一方特開昭58−218356号公報には耐火物内に発
熱体を埋めて耐火物を積極的に加熱する、耐火物
面での凝固を防止する上で有効な手段について開
示されているが、コスト高および感電などの災害
をまねくおそれがあるところに問題が残る。
この発明は、耐火物の摩耗および耐火物面での
溶鋼の凝固を回避し得る短辺側板について提案す
ることを目的とする。
(課題を解決するための手段)
この発明は、一定の距離にわたつて溶融金属を
保持するための関〓を維持しつつ循環する1対の
対向配置にかかる循環体と、それらの循環体相互
間の両側縁部に位置させた1対の上広下すぼまり
形状で中間部が絞り込まれてなる短辺側板とで鋳
造空間を構成する薄鋳片連続鋳造機の短片側にお
いて、上記循環体と接する両側縁に形成した額縁
部と、この額縁部間で支持される耐火物とをそな
え、耐火物は断熱性耐火物層とこの断熱性耐火物
層上に設けた耐摩耗性耐火物層とこの耐摩耗性耐
火物層上にさらに、少なくともメニスカス直下か
ら絞り込み終了部までの領域で断熱性耐火物層を
設けた薄鋳片連続鋳造機の短片側板である。
ここで断熱性耐火物は熱伝導率が0.002cal/
cm・s・℃以下の低熱伝導率の材料が推奨され、
例えばMgOボード、SiO2系ボードおよび溶融シ
リカ質レンガ等が適合する。
なお耐摩耗性耐火物層上に設ける断熱性耐火物
は、上記したMgOボード、SiO2系ボードおよび
溶融シリカ質レンガのほかアスベルト布、ガラス
繊維布、ロツクウール等が適合する。またその厚
さは1〜3mmが好ましく、なぜなら1mm未満では
断熱効果が不十分で一方3mmをこえると溶解した
際のスラグ量が増えるためである。
また耐摩耗性耐火物は耐食性、耐スポーリング
性および機械的強度が高く、そして鋳造直後の鋳
片のシヨアー硬さが10以下であるところから、シ
ヨアー硬さがこれ以上であればよく、好ましくは
1200℃でのシヨアー硬さが15以上の素材、例えば
窒化けい素、サイアロン、アルミナ、ムライトお
よびジルコニウムボライドの単品またはこれらの
いずれか少なくとも1つと窒化ボロンとの複合材
などが有利に適合する。
(作用)
薄鋳片連続鋳造機の鋳造空間に供給された溶融
金属は、長辺側は循環体にて短辺側は短辺側板の
額縁部にてそれぞれ冷却され凝固シエルが生成す
る。
従来、短辺側の凝固シエルが成長すると額縁部
から断熱性耐火物へ伸び、凝固シエルは短辺側板
と同形状の上広下すぼまり状に成長するため、凝
固シエルがアンカーとなつて循環耐とともに移動
できずにその位置にとどまり、最終的にはモール
ド下端までアンカーとなつたシエルが成長しブレ
ークアウトに至る。
またアンカーが発生すると、鋳片表面に凝固遅
れ部が生じて表面割れの原因となる。
したがつて短辺面上での凝固を最小限に抑制し
てアンカーの発生を防止することが、安定操業の
実現に極めて有効である。
この発明に従う短辺側板では、まず断熱性耐火
物層とこの断熱性耐火物層上に設けた耐摩耗性耐
火物層とを組み合わせた耐火物を適用した。この
耐火物は、鋳片および溶鋼と接触する表面は耐摩
耗性、耐食性および耐スポーリング性に優れた特
性をそなえかつ、背面は断熱性の高い特性をそな
え、総合的には熱伝導の低い高強度の耐火物とな
つている。したがつて凝固シエルと接する部分で
の摩耗を抑制し、さらに溶鋼と接する部分での溶
損を防ぎ、またこの部分での溶鋼の凝固を防いで
アンカーの発生を回避し安定操業を実現する。
さらにこの発明では鋳造初期の状況に対処する
ため、耐火物の耐摩耗性耐火物層上の少なくとも
メニスカス直下から絞り込み終了部までの領域、
すなわち溶鋼と接する面に断熱性耐火物層(以下
表面層と示す)を設ける。この表面層によつて、
少なくとも鋳造初期において耐摩耗性耐火物層に
溶鋼が直接触れることはなく、耐火物面での溶鋼
の凝固を回避し得るわけである。
すなわち溶鋼が接触する、表面層は耐食性に劣
るが熱容量が小さいため、この面上での溶鋼の凝
固は発生しない。また鋳造の進行とともに徐々に
表面層が溶損されるが、同時に表面層下の耐摩耗
性耐火物層は溶鋼との熱伝達によつて十分に加熱
されるため、表面層が全て溶損し耐摩耗性耐火物
層と溶鋼が直接触れるときには耐摩耗性耐火物層
上で溶鋼が凝固するこのはない。
(実施例)
第1図にこの発明に従う短辺側板を示す。
図中8は両側縁に額縁部9をそなえる側板本
体、10は額縁部9にて支持される耐火物、11
は水などが循環する冷媒通路である。耐火物10
は側板本体8側に設けた耐熱性耐火物層10aと
この断熱性耐火物層10a上に設けた耐火物層1
0bとこの耐摩耗性耐火物層10b上に設けた断
熱性耐火物層10cとを組み合わせてなる。
額縁部9は冷媒通路11内を流れる冷却水によ
り表面が十分に冷却され、常に必要な特性、すな
わち高強度、高熱伝導度が付与されており、ここ
で溶鋼は冷却されて凝固シエルが生成する。また
この額縁部9に保持されている3層構造の耐火物
10はその表面が溶鋼に接するが、耐火物10の
表層は熱伝導率が低いため、耐火物10では溶鋼
の凝固は生じない。
額縁部9にて生成した凝固シエルは成長して一
部は耐火物10の面まで伸びるが、耐火物10の
表層には耐摩耗性耐火物層10bを形成してある
ため、この耐摩耗性耐火物層10bが凝固シエル
によつて削られることはほとんどない。
なお耐摩耗性耐火物層10bの厚みは2〜10mm
が好適であり、すなわち2mm未満では取扱い上困
難であり又熱衝撃を受けたときに割れが発生する
などのトラブルをまねき、また10mmをこえると鋳
造初期に耐火物層での吸熱によつてシエルが生成
し、鋳造初期トラブルが生じる。
なお耐摩耗性耐火物層10b上に設けた断熱性
耐火物層10cは、第2図に示すように、メニス
カスM直下から絞り込み終了部Eまでの領域に配
設することが肝要である。
次にこの発明に従う短辺側板を用いた連続鋳造
について、具体的に説明する。
第3図のベルトキヤスターに、第1図に従う構
造の短辺側板を用い、低炭素アルミキルド鋼を鋳
造速度12m/minで厚さ25mm、幅1350mmの鋳片に
鋳造した。なお短辺側板の額縁部にはAg入りCu
材を、断熱性耐火物層10a(15mm厚)にはMgO
ボードを、また耐摩耗性耐火物層10b(5mm厚)
にはサイアロン−BN(20%)材を、さらに断熱
性耐火物層10c(2.0厚)にはアスベスト布をそ
れぞれ用いた。各耐火物の特性は、下表の通りで
ある。
(Industrial Application Field) The present invention relates to a short side plate that forms a casting space together with a pair of circulation bodies in a continuous thin slab casting machine that directly produces thin slabs from molten metal. (Prior Art) Recently, various types of continuous casting machines (i.e., belt casters) have been used to continuously produce thin slabs such as sheet bars directly from molten metal (the following will be explained using the example of "molten steel"). something is proposed. Figure 3 shows a typical example. The illustrated synchronous belt caster is of a narrowing type, and has a plurality of guide rolls 3a each, while maintaining a distance for holding casting material such as molten steel or solidified shell over a predetermined distance. , 3b, 3c, the metal belts 1 and 2 support a pair of long side surfaces arranged opposite each other, and are in close contact near the side edges of each metal belt. A casting space is formed by confining the four sides of the short side plates 4 and 5 in the shape of a concave upper and lower side for supporting the short sides. When molten steel is supplied into the casting space from the immersion nozzle 6, the molten steel that comes into contact with the metal belts 1 and 2 cooled by the cooling pads 7a and 7b is drawn downward while forming a solidified shell. In order to delay solidification on the short sides, it is advantageous to form the inner surfaces of the short side plates in contact with the molten steel with a refractory material. The metal plate with the
A short side plate is disclosed in which a refractory is supported by a frame portion. In addition to supporting the refractory, the provision of the frame part is useful for
It is effective in promoting solidification in the corners of the casting space and preventing molten steel from penetrating between the short side plate and the metal belt, but it is disadvantageous for long-term casting because the refractory surface is extremely susceptible to erosion. It is. (Problem to be Solved by the Invention) It is advantageous that the refractory material in the center of the short side plate has high heat insulation properties and high thermal shock resistance. A mixture of boron nitride and boron nitride is suitable. However, when the entire refractory is made of a new material, the molten metal solidifies on the surface of the short side plate due to the high heat conductivity of the material, increasing the drawing resistance of the slab, and when the strength of the solidified shell is low, the shell It is difficult to apply because it has the disadvantages of rupture and eventual breakout, deformation of the frame holding the refractory due to its large coefficient of linear expansion, and high cost. Furthermore, when using a fused silica brick with low thermal conductivity as a refractory, the edges of the slab begin to solidify at the frame that holds the refractory, but the solidified layer also forms on the refractory surface. This solidified layer develops and easily scrapes off the refractory, eventually damaging the refractory, so it cannot withstand long casting. Note that solidification of molten steel on the refractory surface is unavoidable at the start of casting. That is, the temperature of the refractory at the start of casting is low and the molten steel once solidifies, which not only makes the initial casting operation unstable, but also significantly impairs the quality of the slab surface, which poses a particular problem. On the other hand, Japanese Patent Application Laid-Open No. 58-218356 discloses an effective means for preventing solidification on the surface of the refractory, which involves burying a heating element within the refractory and actively heating the refractory. Problems remain in terms of high costs and the risk of causing disasters such as electric shock. An object of the present invention is to propose a short side plate that can avoid wear of the refractory and solidification of molten steel on the refractory surface. (Means for Solving the Problems) The present invention provides a pair of circulating bodies disposed opposite each other that circulate while maintaining a gap for holding molten metal over a certain distance, and a mutual interaction between the circulating bodies. On the short side of the thin slab continuous casting machine, the casting space is constituted by a pair of short side side plates located on both side edges of the space, the short side plates having a concave shape with an upper width and lower width narrowed in the middle part. It has a frame part formed on both side edges that are in contact with the frame part, and a refractory supported between the frame parts, and the refractory has a heat-insulating refractory layer and a wear-resistant refractory layer provided on the heat-insulating refractory layer. This is a short side plate of a continuous thin slab casting machine, in which a heat-insulating refractory layer is further provided on the wear-resistant refractory layer at least in the area from just below the meniscus to the end of drawing. Here, the thermal conductivity of the insulating refractory is 0.002cal/
Materials with low thermal conductivity of cm・s・℃ or less are recommended.
For example, MgO board, SiO 2 board, fused silica brick, etc. are suitable. In addition to the above-mentioned MgO board, SiO 2 board, and fused silica brick, suitable materials for the heat-insulating refractory provided on the wear-resistant refractory layer include asbelt cloth, glass fiber cloth, and rock wool. The thickness is preferably 1 to 3 mm, because if it is less than 1 mm, the heat insulating effect will be insufficient, and if it exceeds 3 mm, the amount of slag will increase when melted. In addition, wear-resistant refractories have high corrosion resistance, spalling resistance, and mechanical strength, and the shore hardness of cast slabs immediately after casting is 10 or less, so it is preferable that the shore hardness is 10 or less. teeth
Materials having a shore hardness of 15 or more at 1200° C., such as silicon nitride, sialon, alumina, mullite, and zirconium boride alone, or a composite material of at least one of these and boron nitride, are advantageously suitable. (Function) The molten metal supplied to the casting space of the continuous thin slab casting machine is cooled on the long side by the circulating body and on the short side by the frame of the short side plate, thereby producing a solidified shell. Conventionally, when the solidified shell on the short side grows, it extends from the frame to the insulating refractory, and the solidified shell grows into a hollow shape with the same shape as the short side plate, so the solidified shell acts as an anchor and circulates. It remains in that position without being able to move along with the resistance, and eventually the shell that acts as an anchor grows to the bottom of the mold, leading to a breakout. Furthermore, when anchoring occurs, a solidification-delayed area is generated on the surface of the slab, causing surface cracks. Therefore, it is extremely effective to minimize the solidification on the short sides and prevent the formation of anchors in order to achieve stable operation. In the short-side side plate according to the present invention, first, a refractory that is a combination of a heat-insulating refractory layer and a wear-resistant refractory layer provided on the heat-insulating refractory layer is used. This refractory has excellent wear resistance, corrosion resistance, and spalling resistance on the surface that comes into contact with slabs and molten steel, and has high heat insulation properties on the back surface, resulting in low thermal conductivity overall. It is a high-strength refractory material. Therefore, wear is suppressed in the part that comes into contact with the solidification shell, furthermore, melting damage is prevented in the part that comes in contact with the molten steel, and solidification of the molten steel in this part is prevented to avoid the occurrence of anchors and achieve stable operation. Furthermore, in this invention, in order to deal with the situation at the initial stage of casting, at least an area on the wear-resistant refractory layer of the refractory from just below the meniscus to the end of the drawing,
That is, a heat insulating refractory layer (hereinafter referred to as surface layer) is provided on the surface that comes into contact with molten steel. This surface layer allows
At least in the initial stage of casting, the molten steel does not come into direct contact with the wear-resistant refractory layer, and solidification of the molten steel on the refractory surface can be avoided. That is, the surface layer that the molten steel comes into contact with has poor corrosion resistance but has a small heat capacity, so the molten steel does not solidify on this surface. In addition, as casting progresses, the surface layer is gradually eroded away, but at the same time, the wear-resistant refractory layer under the surface layer is sufficiently heated by heat transfer with the molten steel, so the entire surface layer is eroded away, making it resistant to corrosion. When the wear-resistant refractory layer and molten steel come into direct contact, the molten steel does not solidify on the wear-resistant refractory layer. (Example) FIG. 1 shows a short side plate according to the present invention. In the figure, 8 is a side plate main body having frame parts 9 on both side edges, 10 is a refractory supported by the frame parts 9, and 11
is a refrigerant passage through which water, etc. circulates. Refractory 10
A heat-resistant refractory layer 10a provided on the side plate main body 8 side and a refractory layer 1 provided on the heat-insulating refractory layer 10a.
0b and a heat-insulating refractory layer 10c provided on the wear-resistant refractory layer 10b. The surface of the frame portion 9 is sufficiently cooled by the cooling water flowing in the refrigerant passage 11, and is always given the necessary properties, namely high strength and high thermal conductivity, where the molten steel is cooled and a solidified shell is generated. . Further, the surface of the three-layer refractory 10 held in the frame portion 9 is in contact with molten steel, but since the surface layer of the refractory 10 has low thermal conductivity, the molten steel does not solidify in the refractory 10. The solidified shell generated in the frame portion 9 grows and partially extends to the surface of the refractory 10, but since the wear-resistant refractory layer 10b is formed on the surface layer of the refractory 10, this wear-resistant The refractory layer 10b is rarely scraped by the solidified shell. The thickness of the wear-resistant refractory layer 10b is 2 to 10 mm.
In other words, if it is less than 2 mm, it will be difficult to handle and cause problems such as cracking when subjected to thermal shock, and if it exceeds 10 mm, the shell will be damaged due to heat absorption in the refractory layer during the early casting stage. is generated, causing initial casting trouble. Note that it is important that the heat-insulating refractory layer 10c provided on the wear-resistant refractory layer 10b be provided in the area from just below the meniscus M to the narrowing end portion E, as shown in FIG. Next, continuous casting using short side plates according to the present invention will be specifically explained. Using the belt caster shown in Fig. 3 with the short side plate having the structure shown in Fig. 1, low carbon aluminum killed steel was cast into a slab with a thickness of 25 mm and a width of 1350 mm at a casting speed of 12 m/min. In addition, the frame of the short side plate is made of Ag-containing Cu.
MgO is used for the heat insulating refractory layer 10a (15 mm thick).
The board is also coated with a wear-resistant refractory layer 10b (5mm thick)
Sialon-BN (20%) material was used for the material, and asbestos cloth was used for the heat insulating refractory layer 10c (2.0% thickness). The characteristics of each refractory are shown in the table below.
【表】
比較としてサイアロン−BN材の1層構造およ
びSiO2質材の1層構造の耐火物をそなえた同様
の短辺側板を用いての同様の鋳造を行つた。
各鋳造を行つた結果について、鋳込全長と溶損
量との関係にて第4図に示す。
短辺側板の耐火物にSiO2質レンガを用いた場
合には鋳込長300m以上の鋳造では溶損量が1mm
近くに達し、ブレークアウトに至つた。又、耐火
物全体をサイアロン−BN材にした場合は鋳造初
期から鋳片の引抜き力が増加し、6mの鋳込長で
ブレークアウトに至つた。一方この発明に従う短
辺側板を用いた場合は、表面の溶損もほとんどな
く安定した鋳造が出来た。
なお上記実施例は双ベルト式連続鋳機によるの
であるが、他に双ロール式等短辺側板に耐火物を
用いるものがあればどのようなものにでも適用可
能である。
(発明の効果)
この発明によれば、耐火物の摩耗を抑え、また
耐火物面での溶融金属の凝固を防ぎ、よつて鋳造
継続長の増長および安定鋳造を実現し得る。[Table] For comparison, similar castings were carried out using similar short side plates with refractories having a single layer structure of Sialon-BN material and a single layer structure of SiO 2 material. The results of each casting are shown in Fig. 4 in terms of the relationship between the total casting length and the amount of erosion. When using SiO2 brick as the refractory material for the short side plates, the amount of corrosion loss is 1 mm in castings with a casting length of 300 m or more.
reached close and led to a breakout. Furthermore, when the entire refractory was made of Sialon-BN material, the pull-out force of the slab increased from the early stage of casting, and breakout occurred at a casting length of 6 m. On the other hand, when the short side plate according to the present invention was used, stable casting was possible with almost no surface erosion. Although the above embodiment uses a twin-belt continuous casting machine, it can be applied to any other type such as a twin-roll type, as long as the short side plates are made of refractory material. (Effects of the Invention) According to the present invention, it is possible to suppress wear of the refractory and prevent solidification of molten metal on the surface of the refractory, thereby realizing an increase in continuous casting length and stable casting.
第1および2図はこの発明に従う短辺側板を示
す説明図、第3図はベルトキヤスターの説明図、
第4図は鋳込全長と耐火物の溶損量との関係を示
すグラフである。
1,2……金属ベルト、3a,3b,3c……
ガイドロール、4,5……短辺側板、6……浸漬
ノズル、7a,7b……冷却パツド、8……側板
本体,9……額縁部、10……耐火物、10a,
10c……断熱性耐火物層、10b……耐摩耗性
耐火物層、11……冷媒通路。
1 and 2 are explanatory diagrams showing short side plates according to the present invention, and FIG. 3 is an explanatory diagram of a belt caster.
FIG. 4 is a graph showing the relationship between the total casting length and the amount of erosion of the refractory. 1, 2...metal belt, 3a, 3b, 3c...
Guide roll, 4, 5... short side plate, 6... immersion nozzle, 7a, 7b... cooling pad, 8... side plate main body, 9... frame portion, 10... refractory, 10a,
10c...Insulating refractory layer, 10b...Abrasion-resistant refractory layer, 11...Refrigerant passage.
Claims (1)
めの間〓を維持しつつ循環する1対の対向配置に
かかる循環体と、それら循環体相互間の両側縁部
に位置させた1対の上広下すぼまり形状で中間部
が絞り込まれてなる短辺側板とで鋳造空間を構成
する薄鋳片連続鋳造機の短辺側板において、 上記循環体と接する両側縁に形成した額縁部
と、この額縁部間で支持される耐火物とをそな
え、耐火物は断熱性耐火物層とこの断熱性耐火物
層上に設けた耐摩耗性耐火物層とこの耐摩耗性耐
火物層上の少なくともメニスカス直下から絞り込
み終了部までに相当する領域に設けた断熱性耐火
物層との組み合わせになる薄鋳片連続鋳造機の短
辺側板。[Scope of Claims] 1. A pair of circulating bodies arranged opposite each other, which circulate while maintaining a gap for holding molten metal over a certain distance, and positions on both side edges between the circulating bodies. Formed on both side edges in contact with the above-mentioned circulating body in the short side side plate of a thin slab continuous casting machine, which constitutes a casting space with a pair of short side side plates with a concave shape with an upper width and lower width narrowed at the middle part. The refractory includes a heat-insulating refractory layer, a wear-resistant refractory layer provided on the heat-insulating refractory layer, and a refractory supported between the frame parts. A short side plate of a continuous thin slab casting machine that is combined with an insulating refractory layer provided on the material layer at least in an area corresponding to the area from just below the meniscus to the end of drawing.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29804688A JPH02147151A (en) | 1988-11-28 | 1988-11-28 | Short side plate of continuous thin slab casting machine |
DE8989306400T DE68906312T2 (en) | 1988-06-24 | 1989-06-23 | LIMITING WALL FOR CONTINUOUS CASTING PLANTS. |
EP89306400A EP0348227B1 (en) | 1988-06-24 | 1989-06-23 | Side wall construction for continuous belt caster |
US07/704,895 US5127462A (en) | 1988-06-24 | 1991-05-21 | Side wall construction for continuous belt caster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29804688A JPH02147151A (en) | 1988-11-28 | 1988-11-28 | Short side plate of continuous thin slab casting machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02147151A JPH02147151A (en) | 1990-06-06 |
JPH0438503B2 true JPH0438503B2 (en) | 1992-06-24 |
Family
ID=17854428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29804688A Granted JPH02147151A (en) | 1988-06-24 | 1988-11-28 | Short side plate of continuous thin slab casting machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02147151A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970033248A (en) | 1995-12-13 | 1997-07-22 | 가나이 쯔도무 | Continuous casting device and continuous casting method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0796148B2 (en) * | 1988-09-09 | 1995-10-18 | 川崎製鉄株式会社 | Short side plate of thin cast continuous casting machine |
-
1988
- 1988-11-28 JP JP29804688A patent/JPH02147151A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02147151A (en) | 1990-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4721095B2 (en) | Casting nozzle | |
JPH0438503B2 (en) | ||
EP0348227B1 (en) | Side wall construction for continuous belt caster | |
JPS59104253A (en) | Spout for charger of twin belt caster | |
US20050280192A1 (en) | Zirconia refractories for making steel | |
JP2541962B2 (en) | Pouring nozzle for metal strip continuous casting machine | |
CA1325875C (en) | Side wall construction for continuous belt caster | |
JPH01162545A (en) | Short side plate for strip continuous casting machine | |
JPH0275450A (en) | Side plate at short side in thin ingot continuous casting machine | |
JPS6055211B2 (en) | Horizontal continuous casting method | |
JP4135835B2 (en) | Mold for continuous casting overlay welding | |
KR20010040757A (en) | Device for continuous casting in vertical charge of a melting metal | |
JPH03114632A (en) | Short side plate of continuous thin slab casting machine | |
JPH0659527B2 (en) | Thin plate continuous casting equipment | |
JPS6167543A (en) | Steel casting method | |
JPH1034286A (en) | Continuous casting apparatus and continuous casting method | |
JPS6227314Y2 (en) | ||
KR100383273B1 (en) | Refractory Mold for Continuous Casting of Billet | |
JP2558187B2 (en) | Heating mold for continuous casting | |
JPH044063B2 (en) | ||
JPH01289564A (en) | Ladle for molten steel | |
JPS61293635A (en) | Continuous casting method | |
JPS58218349A (en) | Stationary side plate of continuous casting device of thin steel plate | |
JPS60199554A (en) | Spout for pouring device of twin belt caster | |
JPS62156052A (en) | Method and apparatus for producing rapid cooled thin hoop metal having excellent end-face shape |