[go: up one dir, main page]

JPH0438442A - Automatic particle size distribution measuring device - Google Patents

Automatic particle size distribution measuring device

Info

Publication number
JPH0438442A
JPH0438442A JP2146512A JP14651290A JPH0438442A JP H0438442 A JPH0438442 A JP H0438442A JP 2146512 A JP2146512 A JP 2146512A JP 14651290 A JP14651290 A JP 14651290A JP H0438442 A JPH0438442 A JP H0438442A
Authority
JP
Japan
Prior art keywords
particle size
flow cell
size distribution
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2146512A
Other languages
Japanese (ja)
Inventor
Ichiro Washisaki
鷲崎 一郎
Isao Ogasawara
功 小笠原
Yasuharu Ikeda
池田 靖治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI TECHNO RES KK
Sumitomo Chemical Co Ltd
Original Assignee
ASAHI TECHNO RES KK
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI TECHNO RES KK, Sumitomo Chemical Co Ltd filed Critical ASAHI TECHNO RES KK
Priority to JP2146512A priority Critical patent/JPH0438442A/en
Publication of JPH0438442A publication Critical patent/JPH0438442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、比較的粒径の大きい、300μm〜1500
μmの各種粉粒体の粒度分布を連続かつ迅速に測定する
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is applicable to particles having a relatively large particle size of 300 μm to 1500 μm.
This invention relates to a device that continuously and rapidly measures the particle size distribution of various powder particles of μm.

〈従来の技術〉 従来、粒度分布を測定する方法として、篩又は空気によ
る分級、重力又は遠心力により分級、或いはこれらと光
透過、光散乱等の方法と組合せて測定する方法が行われ
ていた(特開昭58−111741号公報、特開昭58
−122447号公報、特開昭58−160842号公
報、特開昭59−159051号公報等)。
<Prior art> Conventionally, particle size distribution has been measured by classification using a sieve or air, classification using gravity or centrifugal force, or combining these with methods such as light transmission and light scattering. (Unexamined Japanese Patent Publication No. 58-111741, JP-A-58-111741,
-122447, JP-A-58-160842, JP-A-59-159051, etc.).

しかし光学的方法と併用して連続的に効率よく測定でき
る装置は50μ以下、特に0.1〜10μmの微小粒度
分布を測定するものが大部分であり、比較的粒径の大き
い300μm以上の粒径を有する粉粒体の粒度分布の測
定は篩法による手作業で行われていたのが実状であった
However, most of the devices that can be used in conjunction with optical methods to continuously and efficiently measure particles of 50 μm or less, especially 0.1 to 10 μm, are capable of measuring relatively large particles of 300 μm or more. In reality, the measurement of the particle size distribution of powder particles having a diameter has been carried out manually using a sieve method.

したがって作業能率が悪く粒度分布分析を簡単かつ能率
的にできないという問題があった。
Therefore, there was a problem that the work efficiency was poor and particle size distribution analysis could not be easily and efficiently performed.

〈発明が解決しようとする課題〉 かかる従来技術の欠点に鑑み、比較的粒度の大きい粉粒
体の粒度分布測定を短時間、自動的、かつ正確な計測結
果を得ることができる装置を提供することを目的とする
<Problems to be Solved by the Invention> In view of the shortcomings of the prior art, it is an object of the present invention to provide an apparatus that can automatically measure the particle size distribution of relatively large particles in a short time and obtain accurate measurement results. The purpose is to

〈課題を解決するための手段〉 本発明は、溶媒中に均一に粉粒体を分散させる攪拌機を
有する試料容器と、その試料容器から一定流量の試料を
吸引する計量シリンダーとフローセル内へ導入する吸引
ノズルと空気圧によって作動するスイングシリンダーと
洗浄槽とを有する自動洗浄装置とよりなるサンプリング
手段と、フローセルを通過する粉粒体粒子による遮断光
を検知する、フローセル、光源部、受光部とよりなる検
知手段と、その検出値を所定の電気信号に変換し検出値
データを所定のプログラムに従ってデータ処理するコン
ピューターと、所定の測定手順に従って制御するシーケ
ンサ−とよりなるデータ処理手段とを備えることを特徴
とする粒度分布自動測定装置である。
<Means for Solving the Problems> The present invention provides a sample container having a stirrer for uniformly dispersing powder and granules in a solvent, a measuring cylinder that sucks a constant flow rate of sample from the sample container, and a sample container that is introduced into a flow cell. A sampling means consisting of an automatic cleaning device having a suction nozzle, a swing cylinder operated by air pressure, and a cleaning tank, and a flow cell, a light source section, and a light receiving section that detect the light blocked by powder particles passing through the flow cell. It is characterized by comprising a detection means, a computer that converts the detected value into a predetermined electrical signal and processes the detected value data according to a predetermined program, and a data processing means that includes a sequencer that controls according to a predetermined measurement procedure. This is an automatic particle size distribution measuring device.

く作用〉 本発明の粒度分布自動測定装置は、上記のように構成し
測定対象の粉粒体を溶媒中に均一に分散させる試料容器
とその試料容器から一定流量で分散試料を吸引する吸引
ノズル及び計量シリンダーと減速機付モーターとからな
る吸引装置とからなるサンプリング手段を設けることに
より、フローセル内へ試料を導入し一定速度で分散試料
をフローセル内を移動せしめ粒子の分別を可能にしてい
る。
Function> The particle size distribution automatic measuring device of the present invention is configured as described above and includes a sample container that uniformly disperses the powder to be measured in a solvent, and a suction nozzle that sucks the dispersed sample from the sample container at a constant flow rate. By providing a sampling means consisting of a measuring cylinder and a suction device consisting of a motor with a speed reducer, the sample is introduced into the flow cell and the dispersed sample is moved within the flow cell at a constant speed, making it possible to separate particles.

さらに、上記検知手段をフローセルと光源及び受光部分
で構成し、測定対象の粒子の最大径に対応する通路を有
するフローセルを選択することにより正確に流通粒子に
よる光遮断を検知しその遮断光の強さにより粒子の大き
さを電気信号に変換することを可能にし、さらに増巾器
、A/D変換器およびコンピュータよりなるデータ処理
手段により、正確に粒度分布を算出することを可能にし
ている。粒度分布の測定手順は、コンピューターに接続
したシーケンサ−により所定手順になるように制御する
ことが可能にされており、測定後は前期サンプリング手
段に設けた自動洗浄装置により吸引ノズル攪拌機及び配
管内部に付着残存する粒子を清浄水を導入し、洗浄を行
い次の別試料の測定に移行することを可能にしている。
Furthermore, the above-mentioned detection means is composed of a flow cell, a light source, and a light receiving part, and by selecting a flow cell having a passage corresponding to the maximum diameter of the particles to be measured, it is possible to accurately detect light interruption by circulating particles and to increase the intensity of the interruption light. This makes it possible to convert the particle size into an electrical signal, and furthermore, the data processing means consisting of an amplifier, an A/D converter, and a computer makes it possible to accurately calculate the particle size distribution. The measurement procedure for particle size distribution can be controlled to a specified procedure using a sequencer connected to a computer, and after the measurement, an automatic cleaning device installed in the sampling means is used to clean the suction nozzle stirrer and the inside of the piping. Clean water is introduced to wash away any particles that remain attached, making it possible to proceed to the next measurement of another sample.

〈実施例〉 以下図面を参照しつつ本発明に従う実施例について説明
する。
<Examples> Examples according to the present invention will be described below with reference to the drawings.

実施例−1 第1図は、本発明に従う粒度分布自動測定装置の全体構
成を示す。
Example 1 FIG. 1 shows the overall configuration of an automatic particle size distribution measuring device according to the present invention.

第1図に示す粒度分布自動測定装置はサンプリング手段
10と検知手段20とデータ処理手段30とより構成さ
れている。
The particle size distribution automatic measuring device shown in FIG. 1 is composed of sampling means 10, detection means 20, and data processing means 30.

そして試料容器11には通常ガラス又はプラスチックで
作製された約300m1の容器が用いられるが特に制限
されるものではない。
The sample container 11 is usually a container of about 300 ml made of glass or plastic, but is not particularly limited.

攪拌装置12は通常の実験に用いられるラボ攪拌器でよ
い。ノズル13はガラス又はビニル管で作られ2.0φ
〜4.0φの内径のものが好適に用いられる。
The stirring device 12 may be a laboratory stirrer used in routine experiments. The nozzle 13 is made of glass or vinyl tube and has a diameter of 2.0φ.
Those having an inner diameter of ~4.0φ are preferably used.

サンプリングノズルと検知手段との接続は、自動洗浄装
置の作動に支障のないように、シリコンチューブ、ビニ
ル管等の可撓性の材料を用いて行なわれる。
The sampling nozzle and the detection means are connected using a flexible material such as a silicone tube or a vinyl tube so as not to interfere with the operation of the automatic cleaning device.

溶媒としては測定する対象粉粒体によって水又はメタノ
ール等の有機溶媒が用いられる。
As the solvent, water or an organic solvent such as methanol is used depending on the target powder to be measured.

溶媒の中へ粉粒体を採取し10〇−当たり粒子数100
0〜3000個となるように希釈して、攪拌装置11に
よって均一に分散せしめる。
Collect the powder into the solvent and reduce the number of particles to 100 per 100.
The mixture is diluted to 0 to 3000 pieces and uniformly dispersed using the stirring device 11.

計量シリンダー16は、通常直径3〜4 cm、長さ1
2cm程度のガラス製又は樹脂製のンリンジを用い、吸
引口にはフィルター18が備えである。フィルターは通
常の市販品を用いるが、粉粒体がンリンジに吸引されな
い程度のものであれば特に限定はされない。
The measuring cylinder 16 typically has a diameter of 3 to 4 cm and a length of 1
A glass or resin ring with a diameter of about 2 cm is used, and a filter 18 is provided at the suction port. A common commercially available filter may be used, but there are no particular limitations as long as the filter does not allow the powder to be sucked into the filter.

シリンジの軸は減速機付モーター17(b)  に接続
し、一定速度で移動し液を吸引するようになっている。
The shaft of the syringe is connected to a motor 17(b) with a reduction gear so that it moves at a constant speed and sucks the liquid.

液の吸引速度は90〜110m1/min程度であるが
、100m/minにするとフローセル中での粒子との
重複がなく特に好ましい。
The suction speed of the liquid is about 90 to 110 m/min, but a speed of 100 m/min is particularly preferable since there is no overlap with particles in the flow cell.

各自動制御バルブ19(a) 、19(b) 、19(
c) 、19(d) 、19(e)及び攪拌機のモータ
ー17(a) 、計量シリンダーのモーター17(b)
 はシーケンサ−34に接続され所定の手順に従って作
動する。
Each automatic control valve 19(a), 19(b), 19(
c), 19(d), 19(e) and stirrer motor 17(a), metering cylinder motor 17(b)
is connected to the sequencer 34 and operates according to a predetermined procedure.

検出手段20は、光源及び受光部と光源と受光部との間
に備えられるフローセルとよりなっている。
The detection means 20 includes a light source, a light receiving section, and a flow cell provided between the light source and the light receiving section.

光源は一定波長のレーザー光源が好ましいが、通常のラ
ンプでもよい。受光部は光をホトダイオードで受は電圧
に変換する。
The light source is preferably a laser light source with a constant wavelength, but may also be an ordinary lamp. The light receiving section converts light into voltage using a photodiode.

フローセルは石英、アクリル樹脂など透明度の高い材料
で作られる。セルの構造は第2図及び第3図、第3−a
図、第3−b図に示すように粒子通路24、光が通過す
る透明部分22 (a)及び光が透過しない不透明部分
22 (b)で構成されている。
Flow cells are made of highly transparent materials such as quartz and acrylic resin. The structure of the cell is shown in Figures 2 and 3, 3-a.
As shown in Figure 3-b, it is composed of a particle passage 24, a transparent part 22 (a) through which light passes, and an opaque part 22 (b) through which light does not pass.

粒子通路は993mm〜2mm径で、粒子の大きさによ
り適宜選択することができる。光透過部は光源及び受光
部と平行になっている。したがって、セル内の粒子通路
は正方形に作成するのが好ましい。
The particle passage has a diameter of 993 mm to 2 mm, and can be appropriately selected depending on the size of the particles. The light transmitting section is parallel to the light source and the light receiving section. Therefore, the particle passages within the cells are preferably made square.

光透退部以外は不透明な材料で作られる。例えば、光透
過部は透明アクリル樹脂を用い、その他の部分は、黒色
のアクリル樹脂を用い両者を接着して、粒子通路を削り
出し、又第3図の実施態様の如く好みの形に切削するこ
とによって製作する。セルと配管の接続部において粒子
通路が急激に縮小するため、液流速が増大するため、粒
子が重複せずに粒子通路を通過し、測定精度、再現性が
良好となる。
It is made of opaque material except for the light-transmitting part. For example, the light transmitting part is made of transparent acrylic resin, and the other parts are made of black acrylic resin, the two are glued together, and particle passages are carved out, or cut into a desired shape as shown in the embodiment shown in Figure 3. produced by Since the particle passage rapidly shrinks at the connection between the cell and the piping, the liquid flow rate increases, so particles pass through the particle passage without overlapping, improving measurement accuracy and reproducibility.

通過粒子は、光源から発する光を受けて、受光部に影を
生じ、受光部ではその影の大きさに応じて電圧が変化し
、光量は粒子径の二乗に比例して減量する。
When the passing particles receive light emitted from the light source, they cast a shadow on the light-receiving section, and the voltage at the light-receiving section changes according to the size of the shadow, and the amount of light decreases in proportion to the square of the particle diameter.

即ち △Q:光量の減量 に:定数 A:受光部の面積 R:粒子径 したがって電圧の変化から粒子径を算出することができ
る。
That is, ΔQ: To reduce the amount of light: Constant A: Area of the light receiving part R: Particle diameter Therefore, the particle diameter can be calculated from the change in voltage.

データ処理手段30は、増巾器31、^10変換器32
、コンビニ−ター及びシーケンサ−で構成されている。
The data processing means 30 includes an amplifier 31 and a ^10 converter 32.
It consists of a combinator and a sequencer.

受光部で電圧に変換された光は、増巾器31及び^/D
変換器を通して、コンピューターに入力され、パーソナ
ルコンピューターに内蔵されたプログラムによって個々
の粒子の直径が算出され、粒子径分布として算出される
。粒子径は第4図に示したような概念で電器信号に変換
される。
The light converted into voltage at the light receiving section is sent to the amplifier 31 and ^/D.
The data is input into a computer through a converter, and the diameter of each particle is calculated by a program built into the personal computer, which is then calculated as a particle size distribution. The particle size is converted into an electrical signal using the concept shown in FIG.

ノズノペ配管及びフローセルは、第5図の如き自動洗浄
装置を付属せしめることによって簡単に洗浄することが
でき、次の測定に備えることができる。
The nozzle pipe and flow cell can be easily cleaned by attaching an automatic cleaning device as shown in FIG. 5, and can be prepared for the next measurement.

毎測定後、自動的にサンプリングノズル部が洗浄側に移
動してサンプリングノズル、攪拌翼等の表面に付着して
いる粒を水で洗い流すと、同時に洗浄水をライン内に吸
引して排出することによりライン内の洗浄も行う。
After each measurement, the sampling nozzle section automatically moves to the cleaning side to wash away particles adhering to the surfaces of the sampling nozzle, stirring blades, etc., and at the same time, the cleaning water is sucked into the line and discharged. This also cleans the inside of the line.

粒度と電気信号に変換された値とは、標準篩(JIs 
28801)によって一定の粒子径に篩別された試料を
用いてキャリブレーションを行って測定を行う。
The particle size and the value converted to an electrical signal are the standard sieve (JIs
Calibration is performed using a sample that has been sieved to a certain particle size using the method (28801), and measurements are performed.

実施例−2 篩法で測定した不透明樹脂試料Aを標準として、キャリ
ブレーションを行い、粒度の異なる不透明試料Bを測定
したところ、表−1の如く、許容範囲5%以内で充分使
用に耐える結果を得た。
Example 2 Using opaque resin sample A measured by the sieve method as a standard, we performed calibration and measured opaque sample B with different particle sizes. As shown in Table 1, the results were sufficient to withstand use within the tolerance range of 5%. I got it.

次いで、不透明試料Aでキャリブレーションを行った状
態で、半透明樹脂試料Cを測定したところ、表−1に示
したごとく、篩法による標準値と大きく相違した。そこ
で試料Cの篩法による値を用いてキャリブレーションを
行い、粒度の異なる半透明試料りを測定したところ篩法
による値と良い一致を示した。
Next, when the translucent resin sample C was measured while calibrating with the opaque sample A, as shown in Table 1, the results were significantly different from the standard values determined by the sieve method. Therefore, calibration was performed using the values obtained by the sieving method for Sample C, and measurements of translucent samples with different particle sizes showed good agreement with the values obtained by the sieving method.

この結果からあらかじめキャリブレーションを行うこと
によって透明度の異なる種々の試料に適用できることが
判った。
From this result, it was found that by performing calibration in advance, the method can be applied to various samples with different transparency.

〈発明の効果〉 本発明の粒度分布自動測定装置では、比較的粒度の大き
い粉粒体の粒度分布測定を5分程度の短時間に行うこと
ができかつ正確な計測結果を得ることができる。
<Effects of the Invention> The automatic particle size distribution measuring device of the present invention can measure the particle size distribution of powder particles having a relatively large particle size in a short time of about 5 minutes, and can obtain accurate measurement results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粒度分布自動測定装置の全体構成図、第2図は
フローセルの断面断面の概念図、第3図はフローセルの
一実施態様の斜視図、第3−a図はフローセルの一実施
態様のA−A’断面図、 第3−b図はフローセルの一実施態様のB−B’断面図
、 第4図は粒子径を電気信号に変換する概念図、第5図は
自動洗浄装置図 10・・・サンプリング手段、11・・・試料容器、1
2・・・攪拌装置、13・・・ノズノペ14・・・洗浄
槽、15・・・スイングシリンダー、16・・・計量シ
リンダー、17 (a)・・・攪拌機モーター、17(
b) ・・・計量シリンダーモーター18−・・フィル
ター、19(a)、 19(b)、 19(c)、 1
9(d)、 19(e)・・・自動制御バルブ、 20・・・検出手段、21・・・光源、22・・・セル
、22 (a)・・・セルの透明部分、22 (b)・
・・セルの不透明部分、23・・・受光部、24・・・
粒子通路、25・・・粒子、26・・・粒子の影、30
・・・データ処理手段、31・・・増巾器、32・・・
A/D変換器、33・・・コンピューター 、34・・
・シーケンサー第 図 フローセルの断面概念図 第3 a図 フローセルの一実施態様のA 断面図 第3−b図 フローセルの一実施態様のB B′ 断面図 第 図 粒子径を電気信号に変換する概念図 第 図 自動洗浄装置
Fig. 1 is an overall configuration diagram of an automatic particle size distribution measurement device, Fig. 2 is a conceptual diagram of a cross section of a flow cell, Fig. 3 is a perspective view of an embodiment of a flow cell, and Fig. 3-a is an embodiment of a flow cell. Figure 3-b is a BB' cross-sectional view of an embodiment of the flow cell, Figure 4 is a conceptual diagram of converting particle size into an electrical signal, and Figure 5 is a diagram of an automatic cleaning device. 10... Sampling means, 11... Sample container, 1
2... Stirring device, 13... Nozzle 14... Washing tank, 15... Swing cylinder, 16... Measuring cylinder, 17 (a)... Stirrer motor, 17 (
b)...Measuring cylinder motor 18-...Filter, 19(a), 19(b), 19(c), 1
9(d), 19(e)... Automatic control valve, 20... Detection means, 21... Light source, 22... Cell, 22 (a)... Transparent part of cell, 22 (b )・
... Opaque part of the cell, 23... Light receiving part, 24...
Particle passage, 25...Particle, 26...Particle shadow, 30
...Data processing means, 31...Amplifier, 32...
A/D converter, 33... Computer, 34...
・Sequencer Figure: Conceptual cross-sectional diagram of a flow cell Figure 3: A Cross-sectional diagram of an embodiment of a flow cell Figure 3-B: B B' Cross-sectional diagram of an embodiment of a flow cell Figure: Conceptual diagram of converting particle diameter into an electrical signal Diagram Automatic cleaning device

Claims (1)

【特許請求の範囲】[Claims] (1)溶媒中に均一に粉粒体を分散させる攪拌機を有す
る試料容器と、その試料容器から一定流量の試料を吸引
する計量シリンダーとフローセル内へ導入する吸引ノズ
ルと空気圧によって作動するスイングシリンダーと洗浄
槽とを有する自動洗浄装置とよりなるサンプリング手段
と、フローセルを通過する粉粒体粒子による遮断光を検
知する、フローセル、光源部、受光部とよりなる検知手
段と、その検出値を所定の電気信号に変換し検出値デー
タを所定のプログラムに従ってデータ処理するコンピュ
ーターと、所定の測定手順に従って制御するシーケンサ
ーとよりなるデータ処理手段とを備えることを特徴とす
る粒度分布自動測定装置。
(1) A sample container with a stirrer that uniformly disperses the powder in the solvent, a measuring cylinder that sucks a constant flow of sample from the sample container, a suction nozzle that introduces it into the flow cell, and a swing cylinder that is operated by air pressure. a sampling means comprising an automatic cleaning device having a cleaning tank; a detection means comprising a flow cell, a light source section, and a light receiving section for detecting light blocked by powder particles passing through the flow cell; An automatic particle size distribution measuring device characterized by comprising a data processing means comprising a computer that converts detected value data into an electrical signal and processes the detected value data according to a predetermined program, and a sequencer that controls according to a predetermined measurement procedure.
JP2146512A 1990-06-04 1990-06-04 Automatic particle size distribution measuring device Pending JPH0438442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2146512A JPH0438442A (en) 1990-06-04 1990-06-04 Automatic particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146512A JPH0438442A (en) 1990-06-04 1990-06-04 Automatic particle size distribution measuring device

Publications (1)

Publication Number Publication Date
JPH0438442A true JPH0438442A (en) 1992-02-07

Family

ID=15409317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146512A Pending JPH0438442A (en) 1990-06-04 1990-06-04 Automatic particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JPH0438442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701109B2 (en) 2001-03-09 2004-03-02 Seiko Epson Corporation Color image forming apparatus
JP2006098212A (en) * 2004-09-29 2006-04-13 Shimadzu Corp Particle size distribution measuring device
JP2008114932A (en) * 2006-10-31 2008-05-22 Brother Ind Ltd Sheet package
JP2011059046A (en) * 2009-09-14 2011-03-24 Hokuto Denshi Kogyo Kk Method for detecting size of particles in liquid and liquid pipeline
JP2015013221A (en) * 2013-07-03 2015-01-22 株式会社竹村製作所 Water treatment equipment using filtration sand

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701109B2 (en) 2001-03-09 2004-03-02 Seiko Epson Corporation Color image forming apparatus
JP2006098212A (en) * 2004-09-29 2006-04-13 Shimadzu Corp Particle size distribution measuring device
JP2008114932A (en) * 2006-10-31 2008-05-22 Brother Ind Ltd Sheet package
JP2011059046A (en) * 2009-09-14 2011-03-24 Hokuto Denshi Kogyo Kk Method for detecting size of particles in liquid and liquid pipeline
JP2015013221A (en) * 2013-07-03 2015-01-22 株式会社竹村製作所 Water treatment equipment using filtration sand

Similar Documents

Publication Publication Date Title
JP3255597B2 (en) Methods and devices for determining the presence of hemolysis, jaundice or lipemia, methods for determining serum index, methods and devices for transferring samples, and methods and devices for performing pre-tests
JP4758507B2 (en) Platelet count
US4747685A (en) Biological microparticle inspection apparatus
EP0528877B1 (en) Apparatus and method for analyzing particles suspended in a liquid
ATE169116T1 (en) METHOD FOR SIMULTANEOUS ANALYSIS
JP4800318B2 (en) Apparatus and method for treating biological fluids
WO2021097610A1 (en) Sample analyzer and sample analysis method
US3680962A (en) Contaminant detector comprising means for selectively applying pressure to liquify bubbles
WO2009091317A1 (en) Apparatus and method for analysis of particles in a liquid sample
CN103630509A (en) On-line pesticide concentration detection device and method
JPH0438442A (en) Automatic particle size distribution measuring device
JPS61271438A (en) Suspended particulate measurement method and device
CN106644865A (en) Dust concentration calibration system and calibration method
CN106970004A (en) Mancarried device and method for field monitoring algae density
CN2514351Y (en) Batch-type on-line automatic washing turbidimeter
CN205481203U (en) Laser oil smoke sensing device
US3511573A (en) Flow cell structure for particle counting having improved wash
CN118362470A (en) A laser particle size analyzer with a hybrid type of CCD and annular detector and a method of using the same
JP2548383B2 (en) Method and apparatus for detecting bubbles in liquid sample
JP2636051B2 (en) Particle measurement method and device
CN210572335U (en) High-sensitivity specific protein analyzer
JPH0277636A (en) Particle measuring device
CN209167125U (en) A kind of multichannel fluorescence detection optical system
CN210146036U (en) A multi-channel liquid sample collection and storage device for a handheld SPR detector
EP0039718B1 (en) Method and apparatus for determining the concentration of a substance contained in particles carried by a flowing medium