[go: up one dir, main page]

JPH0437905Y2 - - Google Patents

Info

Publication number
JPH0437905Y2
JPH0437905Y2 JP20079287U JP20079287U JPH0437905Y2 JP H0437905 Y2 JPH0437905 Y2 JP H0437905Y2 JP 20079287 U JP20079287 U JP 20079287U JP 20079287 U JP20079287 U JP 20079287U JP H0437905 Y2 JPH0437905 Y2 JP H0437905Y2
Authority
JP
Japan
Prior art keywords
gas
anode
electrolytic cell
electrolyte
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20079287U
Other languages
Japanese (ja)
Other versions
JPH01106569U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20079287U priority Critical patent/JPH0437905Y2/ja
Publication of JPH01106569U publication Critical patent/JPH01106569U/ja
Application granted granted Critical
Publication of JPH0437905Y2 publication Critical patent/JPH0437905Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] 本考案は、銅、ニツケル、コバルト等の金属を
電解採取する際に、電極近傍において発生する気
体による電解液面の高さの変動を制御し得る金属
採取用装置に関するものである。 [従来の技術] 電解採取法によつて、銅、ニツケル、コバルト
等の金属を採取する場合、細長い電解槽内に陽極
板と陰極板とを交互に多数並べて設置して電解し
て陰極板上に目的とする金属を析出させて適当な
厚みになるとこれを電解槽から取出して製品とす
るものである。この場合に、不溶性陽極を用いて
電解処理する方法では、陽極板上に気体が発生
し、この気体が電解液面から空気中に拡散するだ
けでなく、電解液中に浮游している固体粒子をも
同伴して空気中に飛散させるものである。したが
つて、電解液が例えば塩化物溶液である場合に
は、発生する気体は、塩素ガスであつて、有害で
あり、又、これを他に利用する上からも放置する
ことはできず、種々の防除手段、回収手段が提案
されている。これらの中に、不溶性陽極板の大部
分又は全部をほぼ密閉状に囲み、かつ、側面に隔
膜を設けた絶縁性ボツクス内に収納し、電解時に
陽極から発生する気体を吸引して回収する手段が
提案されている(たとえば実公昭51−22855号、
特公昭57−15674号)。 すなわち、特公昭57−15674号の装置は、第4
図及び第5図に示すように、不溶性の陽極板1
は、その外面との間に適当な間隔を有するよう
に、隔膜4が張つてある陽極ボツクス2内に入れ
られ、ブスバー5に電気的に接触されたクロスバ
ー6に懸吊され、陰極板9と平行に対向するよう
に交互に電解槽8内に設置されている。さらに、
陽極ボツクス2には、陽極ボツクス内に溜る発生
気体を排出するための排気枝管12が設けられ、
各陽極ボツクス2の排気を集める排気主管11に
連結されてなる排気吸引ライン10を形成し、各
陽極ボツクス2の下側を通り電解槽8の外部に通
じている排液主管14に各陽極ボツクス2の下方
から上方に延びている排液枝管15が連結してサ
イフオン状の排液ライン13が形成されている。
しかして、一定量の電解液を供給しつつ電解操作
を行なうに当つて、各陽極ボツクス2内を大気圧
よりやや減圧になるように排気吸引ライン10を
通して吸引することによつて発生気体を排出する
とともに、電解液は、隔膜4を通して陽極ボツク
ス2内に入り、電解処理を受けた電解液は、排液
ライン13を通して外部へ排出され、陰極板9上
に金属が析出するようになつている。 [考案が解決しようとする問題点] しかしながら、このような従来の装置による場
合、前述のように、陽極ボツクス内を大気圧より
やや低く保つように排気吸引ラインを通して吸引
し排気しているが、この際、電解液による排気吸
引ラインの閉塞等による陽極ボツクス内の圧力が
変動する度に、陽極ボツクス内の液面の高さに変
動を与え、この影響により陰極側すなわち電解槽
における液面高さの変動が呼びおこされ、時とし
て電解槽における液面が陽極ボツクスの上部フレ
ーム下端部以下となつて、陽極ボツクスに設けら
れた隔膜面を通して陽極ボツクス設置位置近傍の
空気を吸い込む状態を継続することがある。この
場合、回収されている気体がたとえば塩素ガスで
あり酸化剤として利用されているような場合に
は、回収される塩素ガスの濃度が低下するように
なり、濃度の不均一から処理される製品にも悪影
響を及ぼすことになる。又、一度大気を吸引した
後に、電解液の液面を陽極ボツクスの上部フレー
ムの上部へ戻す場合、陽極ボツクス内で発生して
いる気体たとえば塩素ガスを含んだ溶液が電解槽
側へ逆流する回流現象がおこり、上部が開放され
ている電解槽の液面から気体を大量に放出して作
業環境を汚染するとともに、不安定な電解槽液面
の高さが陰極に生成して来る電着物に不均一不良
をまねき易くする等といつた問題があつた。 本考案は、前記問題を解決し、電解槽液面変動
を減少し得る手段を得ることを目的とするもので
ある。 [問題点を解決するための手段] 本考案者等は、前記問題を解決し、前記目的を
達成するために工夫を重ね、発生気体吸引用の排
気吸引ラインの一端に、一端が電解槽内の気液境
界面下に浸漬された水封管の他端を連結し、陽極
ボツクス内と電解槽液面とを同時に吸引するよう
にすることによつて目的を達し得ることを認めて
本考案を完成するに至つた。すなわち、本考案
は、電解槽内に発生気体吸引用の排気吸引ライン
が設けられさらに電解液排液用のサイフオン状の
排液ラインが設けられ側面に電解液透過性隔膜を
備えた陽極ボツクス内に収納された複数の平板状
不溶性陽極板と複数の陰極板とを交互に対向させ
て設置されている金属採取用の電解装置におい
て、端部が電解槽内の気液境界面下に浸漬されて
いる水封管の他端部を発生気体吸引用の排気吸引
ラインに連結してなる金属採取用電解装置であ
る。 次に、添付の図面に基づいて本考案装置の構成
例を説明する。 第1図は、本考案装置の一実施例を示す短手方
向の断面図、第2図は、同じく長手方向の要部断
面図、第3図は、同じく一部切欠き要部斜視図で
ある。 1は、陽極板であつて、金属板又は亜鉛板等の
ような平板状不溶性材で製作され、繊維強化プラ
スチツクのような耐食性のある電気絶縁物で陽極
板1の形状とほぼ相似形に形成され、陽極板1よ
りわずかに大きく窓3が設けられ、電解槽から電
解液の透過は許すが、陽極板1上に発生した気体
の通過は許さない十分緻密な材料製の隔膜4が張
つてある陽極ボツクス2内へ陽極板1外面と陽極
ボツクス2内面との間に適当な間隔を有するよう
に挿入され、電源(図示せず)に連結するブスバ
ー5に電気的に連結するクロスバー6に、導入支
持棒7に固定されて懸吊され電解槽8内に配置さ
れている。9は、陰極板であつて、銅、ニツケ
ル、コバルト等のような金属薄板で製作され、陽
極板1に平行に対向して交互に電解槽8内へブス
バー5に電気的に連結して懸吊されている。10
は、排気吸引ラインであつて、各陽極ボツクス2
からの排気を集める排気主管11と、排気主管1
1に連結し陽極ボツクス2内へ開口する排気枝管
12とから構成され、陽極ボツクス2内上部に溜
る発生気体を吸収排出する。13は、排液ライン
であつて、電解槽8底部の長手方向に配置され側
壁に沿つて立上り、側壁を越えて下行するように
配設された排液主管14と、排液主管14に連結
し陽極ボツクス2の底部を貫通し上端近くに開口
する排液枝管15とからサイフオン状に構成さ
れ、電解操作中陽極ボツクス2内の電解処理を受
けた電解液を排出するようになつている。16
は、水封管であつて、たとえば塩化ビニルのよう
な耐食材で製作され、一端側を電解槽8内の気液
境界面下に浸漬し、他端を排気吸引ライン10の
排気主管11に連結するように形成され、各極間
に設置されている。電解液中に浸漬される側をた
とえば開口部の内径が50mm程度の椀状とし、伏せ
た状態で電解液中に浸漬し、底部側に内径13mm程
度の管とし排気主管11に連結されている。しか
して、水封管16端を電解液中に浸漬する際の浸
漬深さは、15〜25mmに設定することが好ましく、
浸漬深さが浅過ぎると電解液面の変動によつて水
封管16が電解液から離れてしまい効果がなくな
り、浸漬深さが深くなり過ぎると発生気体の吸引
力に必要以上の動力を消耗させるものである。 本考案装置はこのように構成されているので、
電解操作を開始するに当つて、まず、所定数の陽
極板1と陰極板9とを所定間隔に平行に対向させ
て交互に電解槽8中に設置し、各極間には水封管
16をそれぞれ設置し、電解液を供給管(図示せ
ず)から供給すると、電解槽8内の電解液位が上
昇するとともに電解液は陽極ボツクス2内へ隔膜
4を通つて侵入し陽極ボツクス2内の電解液位も
同様に上昇し、排液枝管15を越えた時点でオー
バーフローし、電解槽8内の電解液位とほぼ同一
になる。この際、排液主管14が電解槽8側壁を
越える地点にセキ17を排液枝管15の上端とほ
ぼ同一高さに設けておくことが望ましい。 この状態において電解液を一定量づゝ供給しな
がら操業を開始し、陽極ボツクス2及び水封管1
6を排気吸引ライン10を通して大気圧よりやや
減圧になるように吸引排気しながら電解を行なう
と、陽極ボツクス2内の陽極板1表面で発生した
気体は、電解液中に一部は溶解するがほとんど大
部分が電解液中を浮上して気体吸引ライン10に
吸引されて排出され、バツフアータンク(図示せ
ず)に集められ、次の用途に供される。一方、電
解液は、吸引による負圧に見合つた高さだけ上昇
するので排液枝管15からオーバーフローし、新
らしい電解液が隔膜4を浸透して供給され電解操
作は継続される。この間、陽極ボツクス2内の液
面上部と、電解槽8の液面上部の気層とは、同時
に吸引しているので、従来装置による場合の液面
変動幅が60mmにも及んだのに対し、本装置におい
ては、最大液面変動幅は、25mm程度におさえるこ
とができるように、陽極ボツクス2内の液面高さ
と、電解槽8内の液面高さとの間に大幅に差が生
じることを防止し得るものである。 [実施例] 次に、本考案の実施例を述べる。 実施例 隔膜として電解質透過性隔膜を張つてある陽極
ボツクス内に不溶性電極としての金属下地電極の
陽極板を入れた陽極8枚と、800×1000mmのニツ
ケル薄膜の陰極板7枚とを所定通り設置した容積
1700の電解槽を用い、各極間に、発生気体吸引
用の排気吸引ラインの排気主管に塩化ビニル製の
内径13mm管の一端を連結した内径50mmの水封管を
電解液の液面下への浸漬深さを5mm,15mm,25mm
に変え、塩化ニツケル15wt%溶液を電解液とし
てアノードボツクス一枚当り590ml/分の割合で
供給しながら、3.3Vの直流、陰極電流密度
2.3A/dm2の条件で8日間連続操業を行なつた。 操業間、電解液の液面変動及び回収気体組成を
8時間ごとに測定した。これらの結果を、2日
目、5日目、8日目について、液面変動は最大変
動値を、気体組成は平均組成として次表に示す。 なお、気体組成分析は、JIS 2301燃料ガスヘン
ペル式分析方法により、とくに塩素分について
は、KOH 300 g/溶液を使用して分析した。 比較例 水封管を使用しない以外は、実施例と同様な装
置を使用して、実施例と同様条件で操業し、実施
例と同様な測定を行なつた。結果を同様に次表に
示す。
[Industrial Application Field] The present invention relates to a metal extraction device that can control the fluctuation in the height of the electrolyte due to the gas generated near the electrode when metals such as copper, nickel, and cobalt are electrowinning. It is something. [Prior art] When extracting metals such as copper, nickel, and cobalt by electrowinning, a large number of anode plates and cathode plates are arranged alternately in a long and narrow electrolytic tank, and electrolysis is performed to collect metals such as copper, nickel, and cobalt. The desired metal is deposited on the electrolytic bath, and when the desired thickness is reached, it is taken out from the electrolytic bath and used as a product. In this case, in the electrolytic treatment method using an insoluble anode, gas is generated on the anode plate, and this gas not only diffuses into the air from the electrolyte surface, but also solid particles floating in the electrolyte. It also accompanies it and scatters it into the air. Therefore, if the electrolytic solution is, for example, a chloride solution, the gas generated is chlorine gas, which is harmful, and cannot be left as it is for other purposes. Various control means and recovery means have been proposed. Among these, there is a means for enclosing most or all of the insoluble anode plate in an almost airtight manner and storing it in an insulating box with a diaphragm on the side, and sucking and recovering gas generated from the anode during electrolysis. have been proposed (for example, Utility Model Publication No. 51-22855,
Special Publication No. 57-15674). In other words, the device of Special Publication No. 57-15674 is
As shown in Fig. 5, an insoluble anode plate 1
is placed in an anode box 2 on which a diaphragm 4 is stretched so as to have an appropriate distance between it and the outer surface thereof, and is suspended from a crossbar 6 electrically connected to a busbar 5, and a cathode plate 9 They are placed alternately in the electrolytic cell 8 so as to face each other parallel to each other. moreover,
The anode box 2 is provided with an exhaust branch pipe 12 for discharging generated gas accumulated in the anode box.
An exhaust suction line 10 is formed which is connected to a main exhaust pipe 11 that collects the exhaust gas from each anode box 2. A siphon-shaped drain line 13 is formed by connecting drain branch pipes 15 extending upward from the bottom of the drain pipes 2 .
Therefore, when performing the electrolytic operation while supplying a certain amount of electrolyte, the generated gas is exhausted by suctioning through the exhaust suction line 10 so that the pressure inside each anode box 2 is slightly lower than atmospheric pressure. At the same time, the electrolytic solution enters the anode box 2 through the diaphragm 4, and the electrolytic solution subjected to the electrolytic treatment is discharged to the outside through the drain line 13, and metal is deposited on the cathode plate 9. . [Problems to be solved by the invention] However, in the case of such a conventional device, as mentioned above, the air is sucked and exhausted through the exhaust suction line to maintain the pressure inside the anode box slightly lower than atmospheric pressure. At this time, each time the pressure inside the anode box fluctuates due to blockage of the exhaust suction line with electrolyte, etc., the height of the liquid inside the anode box fluctuates, and this effect causes the liquid level on the cathode side, that is, the electrolytic cell, to rise. As a result, the liquid level in the electrolytic cell sometimes becomes below the lower end of the upper frame of the anode box, and the state continues in which air near the anode box installation position is sucked through the diaphragm surface provided on the anode box. Sometimes. In this case, if the recovered gas is, for example, chlorine gas and is used as an oxidizing agent, the concentration of the recovered chlorine gas will decrease, and the product being processed will be affected by the uneven concentration. It will also have a negative impact. In addition, when the electrolyte level is returned to the top of the upper frame of the anode box after atmospheric air has been sucked in, a circulation occurs in which the solution containing gases generated in the anode box, such as chlorine gas, flows back toward the electrolytic cell. When this phenomenon occurs, a large amount of gas is released from the liquid level of the electrolytic cell whose top is open, contaminating the working environment, and the unstable liquid level of the electrolytic cell causes electrodeposit to form on the cathode. There were problems such as making it easier to cause non-uniform defects. The present invention aims to solve the above-mentioned problems and provide a means for reducing fluctuations in the electrolytic cell liquid level. [Means for Solving the Problems] In order to solve the above problems and achieve the above objectives, the inventors of the present invention have repeatedly devised ways to connect one end of the exhaust suction line for suctioning generated gas with one end inside the electrolytic cell. Recognizing that the purpose could be achieved by connecting the other end of the water-sealed tube immersed below the gas-liquid interface so that the inside of the anode box and the liquid surface of the electrolytic cell could be simultaneously sucked, the present invention was devised. I was able to complete it. That is, the present invention provides an anode box in which an exhaust suction line for suctioning generated gas is provided in the electrolytic cell, a siphon-shaped drain line is further provided for draining the electrolyte, and an electrolyte permeable diaphragm is provided on the side surface. In an electrolysis device for metal extraction, in which a plurality of flat insoluble anode plates and a plurality of cathode plates housed in an electrolytic cell are installed facing each other alternately, the ends are immersed below the gas-liquid interface in the electrolytic cell. This is an electrolytic device for metal extraction, in which the other end of a water seal tube is connected to an exhaust suction line for suctioning generated gas. Next, a configuration example of the device of the present invention will be explained based on the attached drawings. Fig. 1 is a sectional view in the width direction showing an embodiment of the device of the present invention, Fig. 2 is a sectional view of the main part in the longitudinal direction, and Fig. 3 is a perspective view of the main part with a part cut away. be. 1 is an anode plate made of a flat insoluble material such as a metal plate or a zinc plate, and made of a corrosion-resistant electrical insulator such as fiber-reinforced plastic to have a shape almost similar to that of the anode plate 1. A window 3 is provided, which is slightly larger than the anode plate 1, and a diaphragm 4 made of a sufficiently dense material is stretched, which allows the electrolyte to pass through from the electrolytic cell, but does not allow the gas generated on the anode plate 1 to pass through. A crossbar 6 is inserted into a certain anode box 2 with an appropriate distance between the outer surface of the anode plate 1 and the inner surface of the anode box 2, and is electrically connected to a busbar 5 connected to a power source (not shown). , are fixed to the introduction support rod 7 and suspended, and arranged in the electrolytic cell 8. Reference numeral 9 denotes a cathode plate, which is made of a metal thin plate such as copper, nickel, cobalt, etc., and is electrically connected to the bus bar 5 and suspended in the electrolytic cell 8, facing parallel to the anode plate 1. It's hanging. 10
is the exhaust suction line, and each anode box 2
Exhaust main pipe 11 that collects exhaust gas from the exhaust main pipe 1
1 and an exhaust branch pipe 12 that opens into the anode box 2 and absorbs and exhausts generated gas that accumulates in the upper part of the anode box 2. Reference numeral 13 denotes a drain line, which is connected to a drain main pipe 14 arranged in the longitudinal direction of the bottom of the electrolytic cell 8, rising along the side wall, and descending beyond the side wall. The anode box 2 has a siphon-like configuration with a drainage branch pipe 15 that penetrates through the bottom of the anode box 2 and opens near the top end, and is designed to discharge the electrolyte that has undergone electrolytic treatment in the anode box 2 during electrolysis operation. . 16
is a water-sealed tube made of corrosion-resistant material such as vinyl chloride, and has one end immersed below the gas-liquid interface in the electrolytic cell 8 and the other end connected to the main exhaust pipe 11 of the exhaust suction line 10. They are formed so as to be connected and are installed between each pole. The side to be immersed in the electrolytic solution is made into a bowl shape with an inner diameter of about 50 mm at the opening, immersed face down in the electrolytic solution, and a pipe with an inner diameter of about 13 mm is connected to the main exhaust pipe 11 on the bottom side. . Therefore, it is preferable that the immersion depth when immersing the end of the water seal tube 16 in the electrolyte is set to 15 to 25 mm.
If the immersion depth is too shallow, the water seal tube 16 will separate from the electrolyte due to fluctuations in the electrolyte level, making it ineffective. If the immersion depth is too deep, more power will be consumed than necessary for the suction force of the generated gas. It is something that makes you Since the device of the present invention is configured as described above,
In starting the electrolytic operation, first, a predetermined number of anode plates 1 and cathode plates 9 are placed alternately in the electrolytic cell 8 so as to face each other in parallel at a predetermined interval, and a water seal tube 16 is placed between each electrode. When the electrolytic solution is supplied from a supply pipe (not shown), the electrolytic solution level in the electrolytic cell 8 rises and the electrolytic solution enters the anode box 2 through the diaphragm 4, and the electrolytic solution enters the anode box 2 through the diaphragm 4. The electrolyte level also rises in the same way, and when it crosses the drainage branch pipe 15, it overflows and becomes almost the same as the electrolyte level in the electrolytic cell 8. At this time, it is desirable to provide a drain 17 at a point where the main drain pipe 14 crosses the side wall of the electrolytic cell 8 at approximately the same height as the upper end of the branch drain pipe 15. In this state, operation is started while supplying a constant amount of electrolyte, and the anode box 2 and water seal tube 1 are
When electrolysis is performed while suctioning and exhausting 6 through the exhaust suction line 10 to a pressure slightly lower than atmospheric pressure, some of the gas generated on the surface of the anode plate 1 in the anode box 2 will dissolve in the electrolyte. Most of it floats in the electrolyte and is sucked into the gas suction line 10 and discharged, collected in a buffer tank (not shown), and used for the next use. On the other hand, the electrolytic solution rises to a height commensurate with the negative pressure caused by the suction, so it overflows from the drainage branch pipe 15, and new electrolytic solution permeates through the diaphragm 4 to be supplied, and the electrolysis operation is continued. During this time, the upper part of the liquid level in the anode box 2 and the gas layer above the liquid level in the electrolytic cell 8 are being sucked in at the same time. On the other hand, in this device, there is a large difference between the liquid level height in the anode box 2 and the liquid level in the electrolytic cell 8 so that the maximum liquid level fluctuation width can be suppressed to about 25 mm. This can be prevented from occurring. [Example] Next, an example of the present invention will be described. Example: In an anode box with an electrolyte-permeable diaphragm stretched as a diaphragm, 8 anodes containing anode plates of metal base electrodes as insoluble electrodes and 7 cathode plates of nickel thin film of 800 x 1000 mm were installed as specified. volume
Using a 1700 electrolytic cell, between each electrode, a water seal tube with an inner diameter of 50 mm was connected to the main exhaust pipe of the exhaust suction line for suctioning generated gas with one end of a 13 mm inner diameter pipe made of vinyl chloride placed below the surface of the electrolyte. Immersion depth of 5mm, 15mm, 25mm
While supplying a 15wt% nickel chloride solution as the electrolyte at a rate of 590ml/min per anode box, the cathode current density was 3.3V DC.
Continuous operation was carried out for 8 days under the condition of 2.3A/ dm2 . During operation, fluctuations in the electrolyte level and composition of recovered gas were measured every 8 hours. These results are shown in the following table for the 2nd, 5th, and 8th days, with the liquid level fluctuation representing the maximum fluctuation value and the gas composition representing the average composition. The gas composition analysis was performed according to the JIS 2301 fuel gas Hempel analysis method, especially for chlorine content, using 300 g of KOH/solution. Comparative Example Except for not using a water seal tube, the same equipment as in the example was used, the operation was carried out under the same conditions as in the example, and the same measurements as in the example were performed. The results are also shown in the table below.

【表】【table】

【表】 以上のように、本考案装置による場合は、回収
気体の濃度を高く安定した形で採取することがで
きることが認められる。これに対し、水封管を使
用しない従来装置では、塩素分について、2日目
では、実施例の88%、5日目では82%、8日目で
は65%でしかなかつた。 [考案の効果] 本考案は、排気吸引ラインに一端を連結し、一
端を電解液中に浸漬する水封管を設けたものであ
るから、金属を電解採取する際に、発生する電解
液面の変動をきわめて少なくし得、発生気体濃度
の変動も少なくし得、陽極ボツクス内から電解槽
内への電解液の不必要な回流を防止し得るととも
に、陰極にて採取される製品の品質安定にも寄与
するところ大なるものがあるなど大きな効果が認
められる。
[Table] As described above, it is recognized that the device of the present invention can collect recovered gas in a stable manner with a high concentration. In contrast, in the conventional device that does not use a water seal tube, the chlorine content was 88% of the Example on the second day, 82% on the fifth day, and only 65% on the eighth day. [Effects of the invention] The present invention is equipped with a water-sealed tube that connects one end to the exhaust suction line and immerses the other end in the electrolytic solution. It is possible to extremely reduce fluctuations in the concentration of generated gas, to prevent unnecessary circulation of the electrolyte from the anode box to the electrolytic cell, and to stabilize the quality of the product collected at the cathode. It has been recognized that there are significant effects, including a significant contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案装置の一実施例を示す短手方
向の断面図、第2図は、同じく長手方向の断面
図、第3図は、同じく一部切欠き要部斜視図、第
4図は、従来例の短手方向の断面図、第5図は、
同じく長手方向の断面図である。 1……陽極板、2……陽極ボツクス、4……隔
膜、8……電解槽、9……陰極板、10……排気
吸引ライン、11……排気主管、12……排気枝
管、13……排液ライン、14……排液主管、1
5……排液枝管、16……水封管。
FIG. 1 is a cross-sectional view in the short direction showing an embodiment of the device of the present invention, FIG. 2 is a cross-sectional view in the longitudinal direction, FIG. The figure is a sectional view in the short direction of the conventional example, and FIG.
It is also a sectional view in the longitudinal direction. 1... Anode plate, 2... Anode box, 4... Diaphragm, 8... Electrolytic cell, 9... Cathode plate, 10... Exhaust suction line, 11... Exhaust main pipe, 12... Exhaust branch pipe, 13 ... Drain line, 14 ... Drain main pipe, 1
5...Drainage branch pipe, 16...Water seal pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電解槽内に発生気体吸引用の排気吸引ラインが
設けられさらに電解液排液用のサイフオン状の排
液ラインが設けられ側面に電解液透過性隔膜を備
えた陽極ボツクス内に収納された複数の平板状不
溶性陽極板と複数の陰極板とを交互に対向させて
設置されている金属採取用の電解装置において、
端部が電解槽内の気液境界面下に浸漬されている
水封管の他端部を発生気体吸引用の排気吸引ライ
ンに連結してなる金属採取用電解装置。
An exhaust suction line for suctioning generated gas is provided in the electrolytic cell, and a siphon-shaped drain line is further provided for draining the electrolyte. In an electrolysis device for metal extraction, in which a flat insoluble anode plate and a plurality of cathode plates are installed alternately facing each other,
An electrolytic device for metal extraction, in which the other end of a water-sealed tube whose end is immersed below the gas-liquid interface in an electrolytic cell is connected to an exhaust suction line for suctioning generated gas.
JP20079287U 1987-12-28 1987-12-28 Expired JPH0437905Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20079287U JPH0437905Y2 (en) 1987-12-28 1987-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20079287U JPH0437905Y2 (en) 1987-12-28 1987-12-28

Publications (2)

Publication Number Publication Date
JPH01106569U JPH01106569U (en) 1989-07-18
JPH0437905Y2 true JPH0437905Y2 (en) 1992-09-04

Family

ID=31491181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20079287U Expired JPH0437905Y2 (en) 1987-12-28 1987-12-28

Country Status (1)

Country Link
JP (1) JPH0437905Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526734B2 (en) * 1991-11-22 1996-08-21 住友金属鉱山株式会社 Insoluble anode box for metal electrowinning

Also Published As

Publication number Publication date
JPH01106569U (en) 1989-07-18

Similar Documents

Publication Publication Date Title
US4668353A (en) Method and apparatus for acid mist reduction
CA1103199A (en) Electrode with woven fabric screen for preventing electrolyte mist
CN104160067B (en) The method and cathode frame of operation of cells
RU93039970A (en) MULTIMONOPOLAR ELEMENT AND METHOD FOR PRODUCING ALUMINUM BY ELECTROLYSIS, ASSEMBLY OF ANODES IN THIS ELEMENT, INDEXPRESSIBLE ANODE AND METHOD OF CONVERTING AN ELECTROLYTIC ELEMENT TO A MULTIMELOMENTOL
JPS6230274B2 (en)
CN1492949A (en) Method and electrowinning cell for production of metal
US4129494A (en) Electrolytic cell for electrowinning of metals
KR880000707B1 (en) Reduction Electrolyzer
US4288305A (en) Process for electrowinning nickel or cobalt
KR100874684B1 (en) Method and apparatus for recovering precious metal at high rate using porous metal
JPH0437905Y2 (en)
US3409533A (en) Mercury-method cell for alkali chloride electrolysis
CA1258043A (en) Method and apparatus for acid mist reduction
JPS57101692A (en) Horizontal electroplating method by insoluble electrode
US9976222B2 (en) Bubble collector guide and use thereof
US4793902A (en) Method for electrolyzing zinc and apparatus therefor
US3192140A (en) Removal, by suction, of anodic gases formed in electrolytic cells employed for aluminum production
US6461489B1 (en) Cathode plate for electro winning and refining
JP2526734B2 (en) Insoluble anode box for metal electrowinning
EP0172847A1 (en) Metal recovery process.
RU2275443C2 (en) Multipolar electrolysis bath for production of the molten metals by the electrolysis of the melts and the method of the electrolysis baths mounting
JPS5935587Y2 (en) Mist exhaust cover for copper electrolytic primary decopper tank
CN211339709U (en) Electrolytic cell for electrolytic aluminum production and beneficial to maintaining electrolyte molecular ratio
CA1334951C (en) Method and apparatus for acid mist reduction
JPH08209376A (en) Electrowinning of metal