[go: up one dir, main page]

JPH04372889A - Apparatus for measuring coordinates of supersonic flight body - Google Patents

Apparatus for measuring coordinates of supersonic flight body

Info

Publication number
JPH04372889A
JPH04372889A JP15178491A JP15178491A JPH04372889A JP H04372889 A JPH04372889 A JP H04372889A JP 15178491 A JP15178491 A JP 15178491A JP 15178491 A JP15178491 A JP 15178491A JP H04372889 A JPH04372889 A JP H04372889A
Authority
JP
Japan
Prior art keywords
sensor
coordinates
axis
sensors
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15178491A
Other languages
Japanese (ja)
Inventor
Hideki Inoue
秀喜 井上
Shigeru Kondo
滋 近藤
Jihei Miyazawa
宮沢 治平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGAWARA KENKYUSHO KK
Original Assignee
SUGAWARA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGAWARA KENKYUSHO KK filed Critical SUGAWARA KENKYUSHO KK
Priority to JP15178491A priority Critical patent/JPH04372889A/en
Publication of JPH04372889A publication Critical patent/JPH04372889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To realize the title apparatus reduced in economical load and convenient to handle. CONSTITUTION:When orthogonal coordinates wherein the flight direction of a supersonic flight body to be measured is set to a Z-axis direction are set to X, Y, Z, a first shock wave detection sensor S0 is arranged to the origin O thereof and a second sensor SD is arranged on the negative coordinates (-d) of a Z-axis while a third sensor SR is arranged on the positive coordinates (a) of an X-axis and a fourth sensor SL is arranged on the negative coordinates (-b) of the X-axis. The detection outputs of the first-fourth sensors are respectively passed through first fourth waveform shaping devices E0-E1 to be inputted to a time interval measuring device F to measure the time intervals tauD, tauR, tauL of the output pulses of the first and second waveform shaping devices, the first and third waveform shaping devices and the first and fourth waveform shaping devices and the respective measured values are inputted to an operation device G. The operation device G calculates the x, y coordinates of the flight body piercing an XY plane using those measured values, preset coordinates (-d), (a), (-b) of the sensors and sonic velocity (c).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、銃弾や砲弾などのよ
うな超音速で飛翔する弾の軌道と垂直なXY平面を通過
した点の座標を測定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the coordinates of a point passing through an XY plane perpendicular to the trajectory of a bullet, such as a bullet or a cannonball, flying at supersonic speed.

【0002】0002

【従来の技術】従来のこの種の測定に用いられる第1の
方法は、弾の軌道と垂直に的を張り、弾に的を射ぬかせ
てできる穴の位置を測定する方法で、最も古典的方法で
あり、現在も主流である。第2の方法は、衝撃波を用い
る方法で、図6に示すように、弾の軌道2と垂直なXY
平面のX軸、Y軸に相当する位置にそれぞれX軸棒3及
びY軸棒4を配設する方法である。この方法は、長さと
振動の伝搬速度が既知なこれら棒の両端に、振動センサ
5を取り付け、弾の発生させた衝撃波6がこれらの棒に
直角に当たった位置xa ,ya を、振動センサ5の
検出した振動の時間差から算出する方法である。
[Prior Art] The first method conventionally used for this type of measurement is to set a target perpendicular to the trajectory of the bullet and measure the position of the hole made by letting the bullet hit the target, which is the most classic method. method, and is still the mainstream method. The second method uses shock waves, and as shown in Figure 6, the XY
In this method, an X-axis rod 3 and a Y-axis rod 4 are arranged at positions corresponding to the X-axis and Y-axis of the plane, respectively. In this method, vibration sensors 5 are attached to both ends of these rods whose lengths and vibration propagation speeds are known, and the positions xa and ya where the shock waves 6 generated by the bullet hit these rods at right angles are detected by the vibration sensors 5. This method is calculated from the time difference between the detected vibrations.

【0003】0003

【発明が解決しようとする課題】一般に弾は、地面と平
行に飛翔するものとし、求めるx,y座標のうちのX軸
を地面と平行に、Y軸を地面と垂直に設定するものとす
ると、従来のこの種の装置の検出部分は、y座標の測定
範囲以上の高さを持つことを必要とする。砲弾の場合は
、一般に数メートルに及ぶ座標測定範囲を必要とし、数
メートルの高さに及ぶ的を張る(第1の方法の場合)か
、またはY軸棒3を設置する(第2の方法の場合)こと
が必要になり、コストの点で負担がかかると共に取扱い
も不便であった。この発明は、従来の難点を解決し、経
済的負担が少なく、取扱いの便利な測定装置を実現しよ
うとするものである。
[Problem to be Solved by the Invention] Generally, bullets are assumed to fly parallel to the ground, and of the x and y coordinates to be found, the X axis is set parallel to the ground and the Y axis is set perpendicular to the ground. , the detection part of a conventional device of this type needs to have a height greater than the y-coordinate measurement range. In the case of artillery shells, a coordinate measuring range generally extending over several meters is required, either by placing a target at a height of several meters (in the case of the first method) or by installing a Y-axis rod 3 (in the case of the second method). ), which was burdensome in terms of cost and inconvenient to handle. The present invention aims to solve the conventional difficulties and realize a measuring device that is easy to handle and has a low economic burden.

【0004】0004

【課題を解決するための手段】被測定超音速飛翔体の飛
翔方向をZ軸の方向とする直交座標をX,Y,Zとする
とき、この発明では、前記座標の原点Oに設置される第
1の衝撃波検出センサ(以下センサと言う)SO と、
前記Z軸の負の座標(−d)上に設置される第2のセン
サSD と、前記X軸の正の座標(a)上に設置される
第3のセンサSR と、前記X軸の負の座標(−b)上
に設置される第4のセンサSL とが用いられる。
[Means for Solving the Problems] When X, Y, and Z are orthogonal coordinates in which the flight direction of the supersonic flying object to be measured is the direction of the Z axis, in this invention, the system is installed at the origin O of the coordinates. a first shock wave detection sensor (hereinafter referred to as sensor) SO;
a second sensor SD installed on the negative coordinate (-d) of the Z axis; a third sensor SR installed on the positive coordinate (a) of the X axis; A fourth sensor SL installed on the coordinates (-b) of is used.

【0005】前記第1乃至第4のセンサの検出出力を第
1乃至第4の波形整形器にそれぞれ入力し、前記第1乃
至第4の波形整形器の各出力パルスを時間間隔測定器に
入力して、前記第1と第2,第1と第3及び第1と第4
の波形整形器の出力パルスの時間間隔τD ,τR 及
びτL を測定する。また、予め前記第2乃至第4のセ
ンサの座標−d,a,−b及び音速cを演算装置にセッ
トし、前記時間間隔測定器の測定値τD ,τR ,τ
L を入力して、前記飛翔体が前記直交座標のXY平面
を貫通する点Pの座標を演算する。
The detection outputs of the first to fourth sensors are input to first to fourth waveform shapers, respectively, and the output pulses of the first to fourth waveform shapers are inputted to a time interval measuring device. and the first and second, the first and third, and the first and fourth
Measure the time intervals τD, τR, and τL of the output pulses of the waveform shaper. Further, the coordinates -d, a, -b of the second to fourth sensors and the speed of sound c are set in advance in the calculation device, and the measured values τD, τR, τ of the time interval measuring device are set in advance.
By inputting L, the coordinates of a point P where the flying object passes through the XY plane of the orthogonal coordinates are calculated.

【0006】[0006]

【実施例】測定対象の飛翔体は、測定位置の近傍では一
定速度、かつ超音速で大気中を運動しているものとする
。このとき、飛翔体の速度v〔m/s〕と大気中の音速
c〔m/s〕によって形状の定まる円錐状の衝撃波が発
生する。図3Aに示すように、飛翔体の軌道11を直線
とし、任意の時刻の飛翔体の位置をP1 とし、飛翔体
がP1 にいた時刻から任意の時間t〔s〕だけ遅れた
時刻の飛翔体の位置をP2 とする。P1 を中心とす
る半径c・t〔m〕の球の接線が、P2 を通るときの
接点をP3とすると、飛翔体が発生する衝撃波の形状は
、飛翔体の軌道11を回転中心軸とし、直線P2 P3
 を母線とする円錐である。∠P1 P2 P3 をα
〔rad〕とおくと、次式が成立する。
[Embodiment] It is assumed that a flying object to be measured is moving in the atmosphere at a constant speed and supersonic speed in the vicinity of the measurement position. At this time, a conical shock wave whose shape is determined by the velocity v [m/s] of the flying object and the speed of sound in the atmosphere c [m/s] is generated. As shown in FIG. 3A, the trajectory 11 of the flying object is a straight line, the position of the flying object at an arbitrary time is P1, and the flying object is at a time delayed by an arbitrary time t [s] from the time when the projectile is at P1. Let the position of P2 be P2. If P3 is the point of contact when a tangent to a sphere of radius c·t [m] centered at P1 passes through P2, the shape of the shock wave generated by the projectile is as follows, with the trajectory 11 of the projectile as the central axis of rotation, Straight line P2 P3
It is a cone whose generating line is . ∠P1 P2 P3 as α
If [rad] is set, the following equation holds true.

【0007】     sin α=P1 P3 /P1 P2 =c
t/vt=c/v            (1)  
  cos θ={1−(sin α)2}1/2 =
(1−c2 /v2)1/2       (1′)図
1の実施例では、この衝撃波を検出するセンサを4個使
用し、センサの配置で定める座標上での、飛翔体の通過
位置を測定する。飛翔体の軌道が直線として、飛翔体の
速度の方向をZ軸の方向とする。衝撃波センサは、超音
波マイクロホンや圧力センサのように衝撃波の到達を感
知してパルスを出力する小型のもので、その大きさは無
視できるものとする。
[0007] sin α=P1 P3 /P1 P2 =c
t/vt=c/v (1)
cos θ={1-(sin α)2}1/2=
(1-c2 /v2)1/2 (1') In the example shown in Figure 1, four sensors are used to detect this shock wave, and the passing position of the flying object is measured on the coordinates determined by the sensor arrangement. do. Assuming that the trajectory of the flying object is a straight line, the direction of the speed of the flying object is the Z-axis direction. The shock wave sensor is a small device that detects the arrival of a shock wave and outputs a pulse, like an ultrasonic microphone or a pressure sensor, and its size can be ignored.

【0008】図3Bに示すように、まず第1のセンサS
O を設置し、この位置を原点Oとする。第2のセンサ
SD は、Z軸上の負の位置に設置し、この位置をDと
呼ぶ。第3のセンサSR は、X軸上の正の位置に設置
し、この位置をRと呼ぶ。第4のセンサSL は、X軸
上の負の位置に設置し、この位置をLと呼ぶ。飛翔体は
、XY平面と直交する軌道11を、y座標が正となる半
空間内に持つものとし、XY平面と軌道11との交点を
Pとする。ここで、a=OR〔m〕,b=OL〔m〕,
d=OD〔m〕,r=PO〔m〕,rR =PR〔m〕
,rL =PL〔m〕,θ=∠POR〔rad〕と置く
。求める点Pの座標(x,y)は、次式で表される。
As shown in FIG. 3B, first, the first sensor S
0 and set this position as the origin O. The second sensor SD is installed at a negative position on the Z axis, and this position is called D. The third sensor SR is installed at a positive position on the X-axis, and this position is called R. The fourth sensor SL is installed at a negative position on the X-axis, and this position is called L. It is assumed that the flying object has a trajectory 11 orthogonal to the XY plane in a half space where the y coordinate is positive, and the intersection of the XY plane and the trajectory 11 is P. Here, a=OR[m], b=OL[m],
d = OD [m], r = PO [m], rR = PR [m]
, rL = PL [m], θ = ∠POR [rad]. The coordinates (x, y) of the desired point P are expressed by the following equation.

【0009】   x=r・cos θ〔m〕,y=r・sin θ〔
m〕                    (2)
a,b,d及び後に必要となる音速cのデータは図1の
演算装置Fに予めセットされる。被測定飛翔体の軌道1
1を地面と平行に設定できるので、その場合4個のセン
サは地面上の同じ高さに設置すればよい。
[0009] x=r・cos θ[m], y=r・sin θ[
m] (2)
Data a, b, d and the sound velocity c, which will be required later, are set in advance in the arithmetic unit F in FIG. Trajectory 1 of the flying object to be measured
1 can be set parallel to the ground, so in that case, the four sensors only need to be installed at the same height above the ground.

【0010】センサSO ,SD ,SR ,SL の
パルス出力はそれぞれ第1乃至第4波形整形器EO 〜
EL を介して時間間隔測定器Eに入力され、SD ,
SO 間、SO ,SR 間、SO ,SL 間のパル
ス間隔が測定される。センサSD ,SO の検出パル
スの間隔τD 〔s〕は、センサSD のパルスが発生
してからセンサSO のパルスが発生するまでの時間で
、常に正の値を持つ。また、センサSO ,SR の検
出パルスの間隔τR 〔s〕は、センサSO のパルス
が発生してからセンサSR のパルスが発生するまでの
時間で、正、負、ゼロの値を持つ。センサSO ,SL
 の検出パルスの間隔τL 〔s〕は、センサSO の
パルスが発生してからセンサSL のパルスが発生する
までの時間で、正、負、ゼロの値を持つ。これらの測定
値τD ,τR ,τL は演算装置Gに供給される。
The pulse outputs of the sensors SO, SD, SR, and SL are transmitted through the first to fourth waveform shapers EO to 4, respectively.
It is input to the time interval measuring device E via EL, SD,
The pulse intervals between SO, between SO and SR, and between SO and SL are measured. The interval τD [s] between the detection pulses of the sensors SD and SO is the time from when the pulse of the sensor SD is generated until the pulse of the sensor SO is generated, and always has a positive value. Further, the interval τR [s] between the detection pulses of the sensors SO and SR is the time from the generation of the pulse of the sensor SO to the generation of the pulse of the sensor SR, and has positive, negative, or zero values. Sensor SO, SL
The detection pulse interval τL [s] is the time from the generation of the pulse of the sensor SO to the generation of the pulse of the sensor SL, and has positive, negative, or zero values. These measured values τD, τR, τL are supplied to the arithmetic unit G.

【0011】飛翔体は、DとOを結ぶZ軸に平行に一定
速度で移動するので、図3Cに示すようにDに衝撃波が
到達したときの飛翔体の位置をPD ,Oに衝撃波が到
達したときの飛翔体の位置をPO とすると、距離PD
 PO 〔m〕は距離DO〔m〕に等しい。従って、飛
翔体の速度v〔m/s〕は、次式で与えられる。v=P
O PD /τD =OD/τD =d/τD 〔m/
s〕      (3)以下、図4を参照しながら説明
する。飛翔体が点P(XY平面と軌道11との交点)に
到達した瞬間から、点PO に到達するまでの時間to
 〔s〕は、図3Aを用いて説明したことから明らかな
ように、点Pを頂点とする頂角2αの円錐面から、点P
O を頂点とする頂角2αの円錐面に音波が到達する時
間に等しい。O,P,PO 及び2つの円錐面の幾何学
的性質から、2つの円錐面の最短距離は、点Pより直線
OPO に下した垂線の長さに等しくPO・cos α
=r・cos α〔m〕で与えられる(図4A)。従っ
て、この最短距離を音波が伝搬する時間toは次式で与
えられる。
Since the projectile moves at a constant speed parallel to the Z-axis connecting D and O, the position of the projectile when the shock wave reaches D is PD and the shock wave reaches O as shown in FIG. 3C. If the position of the flying object at that time is PO, then the distance PD
PO [m] is equal to the distance DO [m]. Therefore, the velocity v [m/s] of the flying object is given by the following equation. v=P
O PD /τD = OD/τD = d/τD [m/
s] (3) Hereinafter, it will be explained with reference to FIG. The time from the moment the flying object reaches point P (the intersection of the XY plane and trajectory 11) to the point PO
[s] is, as is clear from the explanation using FIG.
It is equal to the time it takes for a sound wave to reach a conical surface with an apex angle of 2α with O as its apex. From the geometric properties of O, P, PO and the two conical surfaces, the shortest distance between the two conical surfaces is PO・cos α, which is equal to the length of the perpendicular drawn from the point P to the straight line OPO
= r·cos α [m] (Fig. 4A). Therefore, the time to for the sound wave to propagate through this shortest distance is given by the following equation.

【0012】     to =(r・cos α)/c〔s〕   
                         
  (4)Rに衝撃波が到達したときの飛翔体の位置を
PR (図4B),Lに衝撃波が到達したときの飛翔体
の位置をPL (図4C)とおき、飛翔体が点Pから点
PR に達するまでの時間をtR 〔s〕,点Pから点
PL に達するまでの時間をtL 〔s〕と置くと、t
O を求めたのと同様にtR ,tL はそれぞれ次式
で与えられる。
[0012] to = (r・cos α)/c[s]

(4) The position of the flying object when the shock wave reaches R is PR (Figure 4B), the position of the flying object when the shock wave reaches L is PL (Figure 4C), and the flying object moves from point P to point Letting the time to reach PR be tR [s] and the time to reach point PL from point P to tL [s], then t
Similarly to the calculation of O, tR and tL are given by the following equations.

【0013】     tR =(rR ・cos α)/c〔s〕 
                         
  (5)    tL =(rL ・cos α)/
c〔s〕                     
       (6)  センサSO ,SR 間のパ
ルス間隔τR 〔s〕とセンサSO ,SL 間のパル
ス間隔τL 〔s〕は(4)〜(6)式より求められ次
式で与えられる。     τR =tR −to = cosα・(rR
 −r)/c〔s〕            (7) 
   τL =tL −to = cosα・(rL 
−r)/c〔s〕            (8)rR
 は、r,θ,aによって表すことができる。図5に示
すように、点PからX軸に垂線を下し、3平方の定理を
用いれば、次式が得られる。
tR = (rR ・cos α)/c[s]

(5) tL = (rL ・cos α)/
c [s]
(6) The pulse interval τR [s] between the sensors SO and SR and the pulse interval τL [s] between the sensors SO and SL are obtained from equations (4) to (6) and given by the following equation. τR = tR −to = cosα・(rR
-r)/c[s] (7)
τL = tL −to = cosα・(rL
-r)/c[s] (8) rR
can be expressed by r, θ, a. As shown in FIG. 5, by drawing a perpendicular line from point P to the X axis and using the three-square theorem, the following equation can be obtained.

【0014】     (r・sin θ)2+(a−r・cos θ
)2=rR2     ∴rR =(r2 −2・r・
a・cos θ+a2 )1/2 〔m〕      
  (9)  同様に、rL は、r,θ,bによって
表すことができる。     (r・sin θ)2 +(b+r・cos 
θ)2=rL2     ∴rL =(r2 +2・r
・b・cos θ+b2) 1/2〔m〕      
    (10)従って、τR ,τL は、r,θ,
a,b,c,αによって表すことができる。
(r・sin θ)2+(a−r・cos θ
)2=rR2 ∴rR=(r2 −2・r・
a・cos θ+a2 )1/2 [m]
(9) Similarly, rL can be represented by r, θ, and b. (r・sin θ)2 + (b+r・cos
θ)2=rL2 ∴rL=(r2 +2・r
・b・cos θ+b2) 1/2 [m]
(10) Therefore, τR, τL are r, θ,
It can be represented by a, b, c, and α.

【0015】     τR = cosα{(r2 −2・r・a・
cos θ+a2)1/2 −r}/c〔s〕    
                         
                         
          (11)    τL = co
sα{(r2 +2・r・b・cos θ+b2)1/
2 −r}/c〔s〕               
                         
                        (
12)次に(11),(12)式を、rとcos θに
ついて解く。
[0015] τR = cos α {(r2 −2・r・a・
cos θ+a2)1/2 -r}/c[s]


(11) τL = co
sα{(r2 +2・r・b・cos θ+b2)1/
2 -r}/c[s]

(
12) Next, solve equations (11) and (12) for r and cos θ.

【0016】     A=τR ・c/ cosα;B=τL ・c
/ cosα                  (
13)と置くと、(11),(12)式はそれぞれ  
  A=(r2 −2・r・a・cos θ+a2)1
/2 −r                (11′
)    B=(r2 +2・r・b・cos θ+b
2)1/2 −r                (
12′)と表される。(11′)より     (A+r)2=r2 −2・r・a・cos 
θ+a2       A2 +2・A・r=−2・r
・a・cos θ+a2              
 (11″)(12′)より       B2 +2・B・r=2・r・b・cos
 θ+b2                 (12
″)(11″),(12″)を辺々相加えて     
 A2 +B2 +2r(A+B)=a2 +b2  
     ∴r=(a2 +b2 −A2 −B2)/
2(A+B)              (14)(
12″)を cosθについて解くと、      c
os θ=(B2 +2・B・r−b2)/2rb  
                (15)(15)式
のrに(14)式を代入すれば      cos θ
={A(B2−b2)+B(a2−A2) }/b(a
2+b2−A2−B2)              
                         
                         
(16)(14)式のr及び(15)式の cosθを
用いれば、P点の座標x,yは    x=rcos 
θ                        
                        (
17)    y=rsin θ=r(1−cos2 
θ)1/2                    
      (18)と求められる。
A=τR ・c/cosα; B=τL ・c
/ cosα (
13), equations (11) and (12) become respectively
A=(r2 −2・r・a・cos θ+a2)1
/2 −r (11'
) B=(r2 +2・r・b・cos θ+b
2) 1/2 -r (
12'). From (11') (A+r)2=r2 -2・r・a・cos
θ+a2 A2 +2・A・r=−2・r
・a・cos θ+a2
From (11″) (12′) B2 +2・B・r=2・r・b・cos
θ+b2 (12
″) (11″) and (12″) are added here and there.
A2 +B2 +2r(A+B)=a2 +b2
∴r=(a2 +b2 −A2 −B2)/
2(A+B) (14)(
12″) for cosθ, we get c
os θ=(B2 +2・B・r−b2)/2rb
(15) If we substitute equation (14) for r in equation (15), we get cos θ
= {A(B2-b2)+B(a2-A2)}/b(a
2+b2-A2-B2)


(16) Using r in equation (14) and cos θ in equation (15), the coordinates x, y of point P are x = r cos
θ
(
17) y=rsin θ=r(1-cos2
θ) 1/2
(18) is required.

【0017】以上述べた図1の実施例における飛翔体と
XY平面との交点Pの座標(x,y)を測定する手順を
まとめると、図6のようになる。ステップS1 で演算
装置Gにセンサの間隔a,b,dと音速cの値が予めセ
ットされる。ステップS2 において第1乃至第4セン
サにより衝撃波を検出する。ステップS3 において、
時間間隔測定器Fにより時間間隔τD ,τR ,τL
 が測定され、それらの測定値が演算装置Gに供給され
る。
The procedure for measuring the coordinates (x, y) of the intersection point P between the flying object and the XY plane in the embodiment of FIG. 1 described above is summarized as shown in FIG. In step S1, the values of the sensor intervals a, b, and d and the sound speed c are preset in the arithmetic unit G. In step S2, shock waves are detected by the first to fourth sensors. In step S3,
The time intervals τD, τR, τL are measured by the time interval measuring device F.
are measured, and the measured values are supplied to the arithmetic unit G.

【0018】演算装置Gは、ステップS4 において飛
翔体の速度vを計算し、ステップS5 において co
sα(しかしαは飛翔体により発生する衝撃波の作る円
錐の頂角の1/2)を計算し、ステップS6 において
A=τR ・c/ cosα;B=τL ・c/cos
αを計算する。演算装置Gは、ステップS7 において
r及び cosθ(しかしr,θはP点の極座標)を計
算し、ステップS8 においてP点のx,y座標を計算
する。
The arithmetic unit G calculates the velocity v of the flying object in step S4, and calculates the velocity v of the flying object in step S5.
sα (however, α is 1/2 of the apex angle of the cone created by the shock wave generated by the flying object), and in step S6, A=τR ・c/cosα; B=τL ・c/cos
Calculate α. Arithmetic unit G calculates r and cos θ (however, r and θ are polar coordinates of point P) in step S7, and calculates the x, y coordinates of point P in step S8.

【0019】それらの計算値は必要に応じ表示器Hに表
示され、或いは出力端子20より外部に出力される。
These calculated values are displayed on the display H or outputted to the outside from the output terminal 20, if necessary.

【0020】[0020]

【発明の効果】この発明による座標測定装置では、地面
のように飛翔体の軌道と平行な平面上に4個の小型の衝
撃波検出センサを配設することにより、座標位置を検出
することができ、従来のように地面に高さの大きな座標
検出用的を張ったり、振動センサ付の棒を立てたりする
のに比べて、経済的に構成できると共に、その取扱いも
きわめて便利である。
[Effects of the Invention] The coordinate measuring device according to the present invention can detect coordinate positions by arranging four small shock wave detection sensors on a plane parallel to the trajectory of a flying object, such as the ground. Compared to the conventional method of setting up a large coordinate detection target on the ground or erecting a pole with a vibration sensor, it can be constructed more economically and is extremely convenient to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the invention.

【図2】図1の要部の波形図。FIG. 2 is a waveform diagram of the main part of FIG. 1.

【図3】Aは超音速飛翔体により発生する衝撃波を説明
するための断面図、Bは図1の第1乃至第4センサSO
 〜SL の配設位置を説明するための図、Cは第1セ
ンサSO 及び第2ンセンサSD で衝撃波をそれぞれ
検出した時点の飛翔体の位置PO 及びPD を示す図
[Fig. 3] A is a cross-sectional view for explaining shock waves generated by a supersonic flying object, and B is a cross-sectional view of the first to fourth sensors SO in Fig. 1.
-C is a diagram for explaining the arrangement position of the flying object PO and PD at the time when the shock wave is detected by the first sensor SO and the second sensor SD, respectively.

【図4】Aは飛翔体がXY平面上のP点を通過した時点
より第1,第3及び第4センサ(SO ,SR 及びS
L )が衝撃波をそれぞれ検出するまでの時間tO ,
tR 及びtL を説明するための図。
[Figure 4] A shows the first, third and fourth sensors (SO , SR and S
L ) detects each shock wave tO ,
A diagram for explaining tR and tL.

【図5】XY平面上における飛翔体の通過位置Pと第1
,第3及び第4センサ(SO ,SR 及びSL )の
位置を示す図。
[Figure 5] Passing position P of the flying object on the XY plane and the first
, a diagram showing the positions of the third and fourth sensors (SO, SR, and SL).

【図6】図1の実施例の動作フローチャート。FIG. 6 is an operation flowchart of the embodiment of FIG. 1;

【図7】従来の超音速飛翔体座標測定装置における振動
センサの取付状態を示す図。
FIG. 7 is a diagram showing how a vibration sensor is installed in a conventional supersonic flying object coordinate measuring device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被測定超音速飛翔体の飛翔方向をZ軸
の方向とする直交座標をX,Y,Zとするとき、前記座
標の原点Oに設置される第1の衝撃波検出センサ(以下
センサと言う)SO と、前記Z軸の負の座標(−d)
上に設置される第2のセンサSD と、前記X軸の正の
座標(a)上に設置される第3のセンサSR と、前記
X軸の負の座標(−b)上に設置される第4のセンサS
L と、前記第1乃至第4のセンサの検出出力をそれぞ
れ入力して波形整形してパルスを出力する第1乃至第4
の波形整形器と、前記第1乃至第4の波形整形器の各出
力パルスを入力して、前記第1と第2,第1と第3及び
第1と第4の波形整形器の出力パルスの時間間隔τD 
,τR及びτL を測定する時間間隔測定器と、予め前
記第2乃至第4のセンサの座標−d,a,−b及び音速
cがセットされ、前記時間間隔測定器の測定値τD ,
τR ,τL を入力して、前記飛翔体が前記直交座標
のXY平面を貫通する点Pの座標を演算する演算装置と
を具備することを特徴とする、超音速飛翔体座標測定装
置。
Claim 1: When X, Y, and Z are orthogonal coordinates in which the flight direction of the supersonic projectile to be measured is the Z-axis direction, a first shock wave detection sensor (hereinafter referred to as sensor) SO and the negative coordinate of the Z axis (-d)
A second sensor SD is installed on the top, a third sensor SR is installed on the positive coordinate (a) of the X-axis, and a third sensor SR is installed on the negative coordinate (-b) of the X-axis. Fourth sensor S
L and the first to fourth sensors input the detection outputs of the first to fourth sensors, shape the waveforms, and output pulses.
by inputting each output pulse of the waveform shaper and the first to fourth waveform shapers, and output pulses of the first and second, first and third, and first and fourth waveform shapers. time interval τD
, τR and τL, and the coordinates -d, a, -b and sound speed c of the second to fourth sensors are set in advance, and the measured values τD,
A supersonic projectile coordinate measuring device, comprising: an arithmetic device that inputs τR and τL and calculates the coordinates of a point P where the projectile passes through the XY plane of the orthogonal coordinates.
JP15178491A 1991-06-24 1991-06-24 Apparatus for measuring coordinates of supersonic flight body Pending JPH04372889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178491A JPH04372889A (en) 1991-06-24 1991-06-24 Apparatus for measuring coordinates of supersonic flight body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178491A JPH04372889A (en) 1991-06-24 1991-06-24 Apparatus for measuring coordinates of supersonic flight body

Publications (1)

Publication Number Publication Date
JPH04372889A true JPH04372889A (en) 1992-12-25

Family

ID=15526226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178491A Pending JPH04372889A (en) 1991-06-24 1991-06-24 Apparatus for measuring coordinates of supersonic flight body

Country Status (1)

Country Link
JP (1) JPH04372889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510996A (en) * 2004-08-24 2008-04-10 ビービーエヌ テクノロジーズ コーポレーション Compact shooter location system and method
JP2008510995A (en) * 2004-08-24 2008-04-10 ビービーエヌ テクノロジーズ コーポレーション Self-calibrating shooter estimation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520487A (en) * 1978-05-30 1980-02-13 Australasian Training Aids Pty Track position deciding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520487A (en) * 1978-05-30 1980-02-13 Australasian Training Aids Pty Track position deciding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510996A (en) * 2004-08-24 2008-04-10 ビービーエヌ テクノロジーズ コーポレーション Compact shooter location system and method
JP2008510995A (en) * 2004-08-24 2008-04-10 ビービーエヌ テクノロジーズ コーポレーション Self-calibrating shooter estimation
JP4812764B2 (en) * 2004-08-24 2011-11-09 レイセオン ビービーエヌ テクノロジーズ コーポレーション Self-calibrating shooter estimation

Similar Documents

Publication Publication Date Title
KR100885416B1 (en) Integrated accelerometer and angular accelerometer drive system
US11390517B2 (en) Systems and methods for bias suppression in a non-degenerate MEMS sensor
CN106500682B (en) A MEMS gyroscope
CN102103013B (en) Three-dimensional vector hydrophone
CN112747731B (en) A five-mass biaxial detection silicon microresonant gyroscope based on out-of-plane vibration
TR201806675T4 (en) Gyroscope.
US3744322A (en) Angular velocity sensors
JPH11211481A (en) Attitude angle detecting device
CH661596A5 (en) APPARATUS TO MEASURE THE ANGULAR SPEED OF A STRUCTURE.
US10191076B1 (en) Airflow sensing systems and methods
CN103913159B (en) A kind of tunnel type MEMS gyroscope
Davies et al. Ultrasonic sensor for UAV flight navigation
JPS623904B2 (en)
JPH04372889A (en) Apparatus for measuring coordinates of supersonic flight body
EP3055710B1 (en) Vector sensor for measuring particle movement in a medium
JP4515491B2 (en) Angular velocity sensor
JP6704443B2 (en) Vibration mass gyroscope system
RU152970U1 (en) MICROELECTROMECHANICAL GYROSCOPE
US3371536A (en) Sonic displacement transducer
RU182540U1 (en) MICROELECTROMECHANICAL GYROSCOPE
CN106767746A (en) Type vibration wire gyro
RU2064682C1 (en) Micromechanical vibratory gyroscope-accelerometer
JPH01127963A (en) angular velocity sensor
Vagapov et al. Ultrasonic sensor for UAV flight navigation
CN206695806U (en) Type vibration wire gyro