JPH0437083B2 - - Google Patents
Info
- Publication number
- JPH0437083B2 JPH0437083B2 JP2085083A JP2085083A JPH0437083B2 JP H0437083 B2 JPH0437083 B2 JP H0437083B2 JP 2085083 A JP2085083 A JP 2085083A JP 2085083 A JP2085083 A JP 2085083A JP H0437083 B2 JPH0437083 B2 JP H0437083B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- oxygen
- magnesium
- titanium
- containing organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010936 titanium Substances 0.000 claims description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 28
- 239000001301 oxygen Substances 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- 239000011777 magnesium Substances 0.000 claims description 27
- 150000002894 organic compounds Chemical class 0.000 claims description 25
- 229910052719 titanium Inorganic materials 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 20
- -1 aluminum halide compound Chemical class 0.000 claims description 20
- 229910052749 magnesium Inorganic materials 0.000 claims description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 19
- 239000007795 chemical reaction product Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 18
- 229920000098 polyolefin Polymers 0.000 claims description 12
- 150000001336 alkenes Chemical class 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 239000011949 solid catalyst Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 150000003623 transition metal compounds Chemical class 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 23
- 239000005977 Ethylene Substances 0.000 description 23
- 238000006116 polymerization reaction Methods 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000006227 byproduct Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 5
- 230000037048 polymerization activity Effects 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 150000002681 magnesium compounds Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- APKYUQFPWXLNFH-UHFFFAOYSA-M butan-1-olate titanium(4+) chloride Chemical compound [Cl-].CCCCO[Ti+](OCCCC)OCCCC APKYUQFPWXLNFH-UHFFFAOYSA-M 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- HWKYGJSLGVSKPP-UHFFFAOYSA-K CO[Ti](Br)(Br)Br Chemical compound CO[Ti](Br)(Br)Br HWKYGJSLGVSKPP-UHFFFAOYSA-K 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- BYLOHCRAPOSXLY-UHFFFAOYSA-N dichloro(diethyl)silane Chemical compound CC[Si](Cl)(Cl)CC BYLOHCRAPOSXLY-UHFFFAOYSA-N 0.000 description 2
- UHSDHNXHBQDMMH-UHFFFAOYSA-L ethanolate;titanium(4+);dichloride Chemical compound CCO[Ti](Cl)(Cl)OCC UHSDHNXHBQDMMH-UHFFFAOYSA-L 0.000 description 2
- RMTCVMQBBYEAPC-UHFFFAOYSA-K ethanolate;titanium(4+);trichloride Chemical compound [Cl-].[Cl-].[Cl-].CCO[Ti+3] RMTCVMQBBYEAPC-UHFFFAOYSA-K 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000002899 organoaluminium compounds Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NTWOIGOPFDMZAE-UHFFFAOYSA-M CCO[Ti](Cl)(OCC)OCC Chemical compound CCO[Ti](Cl)(OCC)OCC NTWOIGOPFDMZAE-UHFFFAOYSA-M 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- GMBHAGCJDLIVRQ-UHFFFAOYSA-M butan-1-olate titanium(2+) chloride Chemical compound C(CCC)O[Ti]Cl GMBHAGCJDLIVRQ-UHFFFAOYSA-M 0.000 description 1
- KKNCFSHOCAISEM-UHFFFAOYSA-L butan-1-olate titanium(3+) dichloride Chemical compound [Cl-].[Cl-].CCCCO[Ti++] KKNCFSHOCAISEM-UHFFFAOYSA-L 0.000 description 1
- DEFMLLQRTVNBOF-UHFFFAOYSA-K butan-1-olate;trichlorotitanium(1+) Chemical compound [Cl-].[Cl-].[Cl-].CCCCO[Ti+3] DEFMLLQRTVNBOF-UHFFFAOYSA-K 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- RFUDQCRVCDXBGK-UHFFFAOYSA-L dichloro(propyl)alumane Chemical compound [Cl-].[Cl-].CCC[Al+2] RFUDQCRVCDXBGK-UHFFFAOYSA-L 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- SXMIPEKRQFUSIN-UHFFFAOYSA-N ethyl hypobromite;magnesium Chemical compound [Mg].CCOBr SXMIPEKRQFUSIN-UHFFFAOYSA-N 0.000 description 1
- REBFJHPJLSHCAF-UHFFFAOYSA-N ethyl hypochlorite;magnesium Chemical compound [Mg].CCOCl REBFJHPJLSHCAF-UHFFFAOYSA-N 0.000 description 1
- ORXPWOMTPJIELH-UHFFFAOYSA-N ethyl hypoiodite;magnesium Chemical compound [Mg].CCOI ORXPWOMTPJIELH-UHFFFAOYSA-N 0.000 description 1
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- KRPXAHXWPZLBKL-UHFFFAOYSA-L magnesium;diphenoxide Chemical compound [Mg+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 KRPXAHXWPZLBKL-UHFFFAOYSA-L 0.000 description 1
- CRGZYKWWYNQGEC-UHFFFAOYSA-N magnesium;methanolate Chemical compound [Mg+2].[O-]C.[O-]C CRGZYKWWYNQGEC-UHFFFAOYSA-N 0.000 description 1
- NJISORGDZJLUGK-UHFFFAOYSA-N magnesium;phenyl hypochlorite Chemical compound [Mg].ClOC1=CC=CC=C1 NJISORGDZJLUGK-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000005054 phenyltrichlorosilane Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- ZOYFEXPFPVDYIS-UHFFFAOYSA-N trichloro(ethyl)silane Chemical compound CC[Si](Cl)(Cl)Cl ZOYFEXPFPVDYIS-UHFFFAOYSA-N 0.000 description 1
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
本発明はポリオレフインの製造法に関する。
更に詳しくはマグネシウムおよびチタンを含む
固体触媒成分に特定の共触媒を使用することによ
る、高い重合活性を有し、低分子量副生物の生成
が極めて少なく、優れた生産性を有するポリオレ
フインの製造方法に関する。
一般にエチレンの重合およびエチレンと他のα
−オレフインとの共重合によりポリオレフインを
製造する場合、分子量数+〜数千の飽和又は不飽
和炭化水素副生物が生成する。
一方、昨今の石油事情からくる原料コストの上
昇は、ポリオレフインの製造における経済性に多
大の影響を与えている。
従つて、ポリオレフインの製造において低分子
量副生物の生成を低減させることができれば高い
生産性のもとにポリオレフインを製造することが
できるので経済的メリツトは大となる。
又、ポリオレフイン製造プロセスにおいて低分
子量副生物を低減させることによつて反応器器壁
への付着や、配管等の閉塞等が少なくなり、長期
連続運転が可能となる。更に、製品物性にも好ま
しい結果を与える。
本発明者等は上記事情に鑑み鋭意検討した結果
遷移金属化合物成分と有機アルミニウム化合物成
分とからなる触媒系を用いてオレフインの重合を
行うに際し遷移金属化合物成分としてマグネシウ
ムおよびチタンを含む固体触媒成分を用い、有機
アルミニウム化合物成分として特定の酸素含有有
機アルミニウム化合物を使用することにより、高
い重合活性で、低分子量副生物の生成が極めて少
く、優れた生産性を有し、製造プロセス上も反応
器の付着等がなく、長期安定運転が可能なポリオ
レフインの製造方法を見い出し本発明を達成し
た。
すなわち本発明の要旨は遷移金属化合物成分と
有機アルミニウム化合物成分とからなる触媒系を
用いてオレフインの重合を行うに際し、遷移金属
化合物成分として下記(A)〜(C)の反応生成物から選
ばれる固体触媒を用い、
(A) マグネシウムの酸素含有有機化合物とチタン
の酸素含有有機化合物とアルミニウムハロゲン
化合物との反応生成物
(B) マグネシウムの酸素含有有機化合物とチタン
の酸素含有有機化合物とケイ素ハロゲン化合物
との反応生成物
(C) マグネシウムの酸素含有有機化合物とチタン
ハロゲン化合物との反応生成物
有機アルミニウム化合物成分として一般式
A1R1 1.5(OR2)0.5X1……[1]
(式中、R1およびR2はアルキル基を表わし、X1
はハロゲン原子を表わす。)で示される酸素含有
有機アルミニウム化合物又は組成物を使用するこ
とを特徴とするポリオレフインの製造法に存す
る。
更に本発明を詳細に説明するに、本発明におい
ては遷移金属化合物成分としてマグネシウムとチ
タンを含む固体触媒成分と共触媒に有機アルミニ
ウム化合物として前記一般式〔〕で示される酸
素含有有機アルミニウム化合物又は組成物を使用
することにより低分子量副生物が低減し、本発明
の目的を達成することができる。
前記一般式〔〕においてR1およびR2として
は各々メチル、エチル、プロピル、ブチル、ペン
チル、ヘキシル、オクチル、フエニル、トリル、
シクロヘキシル等の炭素数15程度までのアルキル
基が挙げられ、R1、R2は勿論異つていてもよい。
X1としては塩素、臭素又はヨウ素が挙げられる。
具体的にはA1Et1.5(OEt)0.5C1、A1Et1.5(OBu)
0.5C1、A1Bu1.5(OBu)0.5C1、A1Oct1.5(O−Oct)0.
5C1(Octはオクチル基を示す)、A1Et1.5(OEt)0.5
Br等が挙げられる。なかでもA1Et1.5(OEt)0.5C1
が特に好ましい。
かかる酸素含有有機アルミニウム化合物の製造法
としては、特に限定されず、当業者に周知の方法
が用いられるが、例えばノルマルヘキサン等の炭
化水素溶媒に希釈したA1R1 2.0X1に、該A1R1 2.0
X11モル当たり、0.25モルのR2OHを室温にてゆ
つくり滴下した後、加熱処理(60℃程度)する方
法、または、A1R1 2.0X1 1及びA1R1 1.0(OR2)1.0X1
1.0を等モルづつ混合し、加熱処理(60℃程度)す
る方法等により、A1R1 1.5(OR2)0.5X1を容易に合
成することができる。
マグネシウムとチタンを含む固体触媒成分とし
ては、次の(A)〜(C)の群から選ばれる反応生成物が
用いられる。
(A) マグネシウムの酸素含有有機化合物とチタン
の酸素含有有機化合物とアルミニウムハロゲン
化合物との反応生成物
(B) マグネシウムの酸素含有有機化合物とチタン
の酸素含有有機化合物とケイ素ハロゲン化合物
との反応生成物
(C) マグネシウムの酸素含有有機化合物とチタン
ハロゲン化合物との反応生成物
以下、(A)〜(C)について説明するが、本発明方法
においては固体触媒成分は上記(A)〜(C)に限定され
るものではなく、例えば、ジハロゲン化マグネシ
ウムを電子供与性化合物で処理した後に、あるい
は処理しながらチタンハロゲン化合物で処理して
得られる生成物の如き公知の触媒成分も本発明方
法において使用することができる。
(A)の触媒成分の製法
(A)の反応生成物を調製する際に用いられるマグ
ネシウムの酸素含有有機化合物としてはMg
(OR3)mX2 2−m(式中、R3はアルキル基、アリ
ール基又はシクロアルキル基を表わし、X2はハ
ロゲン原子を表わし、mは1又は2である。)で
示される化合物、例えばマグネシウムジエトキシ
ド、マグネシウムジメトキシド、マグネシウムジ
フエノキシド、マグネシウムモノエトキシクロリ
ド、マグネシウムモノフエノキシクロリド、マグ
ネシウムモノエトキシブロミド、マグネシウムモ
ノエトキシヨウジド等が挙げられる。このうちマ
グネシウムジエトキシドが好ましい。チタンの酸
素含有有機化合物としては一般式Ti(OR4)nX3 4
−n(式中X3はハロゲン原子を表わし、R4はアル
キル基、アリール基又はシクロアルキル基を表わ
し、nは1〜4である。)で示される化合物、例
えばテトラエトキシチタン、テトラ−n−ブトキ
シチタン、ジエトキシジクロルチタン、ジ−n−
ブトキシジクロルチタン、トリエトキシモノクロ
ルチタン、トリ−n−ブトキシモノクロルチタ
ン、エトキシトリクロルチタン、n−ブトキシト
リクロルチタン、メトキシトリブロムチタン等が
挙げられる。このうちトリ−n−ブトキシモノク
ロルチタンが好ましい。
アルミニウムハロゲン化合物としては、一般式
A1R5 PX4 3−p(式中、R5はアルキル基、アリール
基又はシクロアルキル基を表わし、X4はハロゲ
ン原子を表わし、0<p<3である。)で示され
る化合物例えば、エチルアルミニウムジクロリ
ド、エチルアルミニウムセスキクロリド、ジエチ
ルアルミニウムモノクロリド、ノルマルプロピル
アルミニウムジクロリド等が挙げられる。このう
ちエチルアルミニウムセスキクロリドが好まし
い。
上記化合物の反応はまず、マグネシウムの酸素
含有有機化合物とチタンの酸素含有有機化合物と
を混合し、100℃〜160℃に加熱して均一な液状物
を調製する。均一な液状物が生成し難い場合には
アルコールを存在させることが好ましい。アルコ
ールとしてはエチルアルコール、n−ブチルアル
コール、n−オクチルアルコール等が挙げられ
る。
次いで不活性炭化水素溶媒を添加して不活性炭
化水素溶液とする。
以上のようにして得られた不活性炭化水素溶液
にアルミニウムハロゲン化合物を添加して常温〜
100℃で反応させると反応生成物は沈澱として得
られ、未反応物は不活性炭化水素溶媒で洗浄除去
される。
各成分の量比は、マグネシウム化合物に対する
チタン化合物のモル比(Ti/Mg)で0.1〜10、マ
グネシウム化合物のモル数とチタン化合物のモル
数の和に対するアルミニウムハロゲン化合物のモ
ル数の比〔A1化合物〕/〔Mg化合物〕+〔Ti化合物〕で
1〜20で
あることが好ましい。
(B)の触媒成分の製法
(B)の反応生成物を調製する際に用いられるマグ
ネシウムの酸素含有有機化合物及びチタンの酸素
含有有機化合物は(A)の調製時に使用してものを用
いることが可能である。
ケイ素ハロゲン化合物としては、一般式R6
qSiX5 4−q(式中、R6はアルキル基、アリール基
又はシクロアルキル基を表わし、X5はハロゲン
原子を表わし、0≦q≦2である。)で示される
ケイ素ハロゲン化合物が使用される。このうち
X5が塩素である化合物が好ましい。例えば、四
塩化ケイ素、メチルトリクロルシラン、エチルト
リクロルシラン、フエニルトリクロルシラン、ジ
エチルジクロルシラン等が挙げられ、特にq=0
の塩素化ケイ素化合物すなわち四塩化ケイ素の使
用が好ましい結果を与える。
これらの化合物の反応においてマグネシウムの
酸素含有有機化合物およびチタンの酸素含有有機
化合物の反応は(A)の触媒調製時の反応と同様にし
て得られる。このようにして得られた不活性炭化
水素溶液にケイ素ハロゲン化合物を添加して常温
〜100℃で反応させると反応生成物は沈澱として
得られ、未反応物は不活性炭化水素溶媒で洗浄除
去される。
又各成分の量比はマグネシウム化合物に対する
チタン化合物のモル比(Ti/Mg)で0.1〜10、マ
グネシウム化合物のモル数とチタン化合物のモル
数の和に対するケイ素ハロゲン化合物のモル数の
比〔Si化合物〕/〔Mg化合物〕+〔Ti化合物〕で1〜20
であるこ
とが好ましい。
(C)の触媒成分の製法
(C)の反応生成物を調製する際に用いられるマグ
ネシウムの酸素含有有機化合物は(A)で用いたもの
を使用することが可能である。
チタンハロゲン化合物としては一般式TiX6 1
(OR7)4−r(式中、X6はハロゲン原子を表わし、
R7はアルキル基、アリール基又はシクロアルキ
ル基を表わし、rは1〜4である。)で示される
化合物、例えば四塩化チタン、四臭化チタン、四
ヨウ化チタン等の四ハロゲン化チタン、モノエト
キシトリクロルチタン、モノメトキシトリブロム
チタン、ジエトキシジクロルチタン等が挙げられ
る。このうち四ハロゲン化チタンが好ましい。
マグネシウムの酸素含有有機化合物とチタンハ
ロゲン化合物との反応は、両者を不活性炭化水素
溶媒の存在下又は不存在下に50℃〜200℃の温度
で接触することにより行なわれる。反応生成物は
沈澱として得られ、未反応物は不活性炭化水素溶
媒で洗浄除去される。両者の反応比率は、マグネ
シウムに対するチタンの原子比に特に制限はない
が多すぎることはチタンが無駄になり、少ないと
重合活性が低下する。そこで通常Ti/Mg=0.1〜
100(モル比)とすることが好ましい。
マグネシウムとチタンを含む固体触媒成分と酸
素含有有機アルミニウム化合物の使用割合は、通
常Al/Tiの原子比で0.1〜100、好ましくは1〜
20の範囲内で使用される。
かくして調製した触媒系を使用してオレフイン
の重合を行うが、本発明方法において使用される
オレフインとしては、エチレン、プロピレン、ブ
テン−1、ペンテン−1、オクテン−1等のα−
オレフインが挙げられる。またこれらのオレフイ
ンを混合して共重合させることもできる。なかで
も、本発明方法はエチレン単独重合体又は好まし
くは5モル%までの他のα−オレフインを含むエ
チレンの共重合体の製造に好都合である。
重合反応は、不活性溶媒あるいは液化モノマー
中で行なう溶液重合あるいはスラリー重合、又は
溶媒不存在下で行なう気相重合のいずれかの方法
をとりうる。通常は、不活性溶媒の存在下、オレ
フイン又はオレフイン混合物を供給しながら所定
の温度、圧力に保持することにより行なわれる。
不活性溶媒としてはプロパン、ブタン、ペンタ
ン、ヘキサン、ヘプタン、オクタン、イソオクタ
ン等の脂肪族炭化水素、ベンゼン、トルエン等の
芳香族炭化水素が使用される。
重合反応は、通常、常温〜200℃の温度および
常圧〜100気圧の圧力の範囲内から選ばれる。
また、本発明方法において、重合反応帯域に水
素を存在させた場合、水素による分子量調節効果
が大きく、容易に目的の分子量の重合帯を得るこ
とができる。
存在させるべき水素の量は、重合条件や所望す
るオレフイン重合体の分子量等によつて相違する
ので、これらに応じて適宜その導入量を調節する
ことが必要である。
又、本発明方法は重合反応を1段階で行なう方
法或いは2段階以上の多段重合方法で行なうこと
ができるが、多段階重合方式の場合特に本発明方
法の有効性が大となる。
すなわち、たとえば、第1および第2の反応帯
域のいずれか一方の帯域において、気相中のエチ
レンに対するモル比で0.001〜1.5の水素の存在下
に重合して粘度平均分子量15万〜100万の重合体
Aを、全重合体生成量の10重量%〜70重量%生成
させ、他方の帯域において気相中のエチレンに対
するモル比で1.5〜15の水素の存在下重合して粘
度平均分子量1万〜8万の重合体Bを、全重合体
生成量の90重量%〜30重量%生成させ、さらに
(重合体Aの粘度平均分子量)/重合体Bの粘度
平均分子量)を4〜80とし、最終的に生成する全
重合体のメルトインデツクスを0.5未満とする、
二段重合法のような場合に、特に重合体Bの製造
の場合のような分子量調節剤である水素が多い場
合に低分子量副生物が多く生成するので本発明方
法は極めて有効である。
ポリオレフインを製造するに際し以上のような
本発明方法による共触媒を使用することによつて
低分子量副生物の生成量が極めて少く、優れた生
産性を有し、製造プロセス上も反応器への付着等
がなく、長期安定運転上好ましく、且つ高い重合
活性である、という種々の利点が得られる。
次に本発明を実施例によつて更に詳しく説明す
るが、本発明はの要旨を超えない限り、以下の実
施例に限定されるものではない。なお、図−1は
本発明の技術内容の理解を助けるためのフローチ
ヤート図であり、本発明はその要旨を逸脱しない
限り、このフローチヤート図によつて何ら制約を
受けるものではない。
実施例中、触媒の重合活性(以下Kと略す)
は、K=(gポリマー)/(g・触媒)(hr)
(Kg/cm2オレフイン圧)で表わした。
また、メルトインデツクス(以下MIと略す)
はASTMD−1238−57Tに基づき190℃で2.16Kg
荷重で測定した。更に、分子量分布の尺度として
の流出量比(以下FRと略す)は溶融粘度の剪断
応力依存性を示す値で、ASTMD−1238−57Tに
準じ、剪断応力106dyne/cm2及び105dyne/cm2に
おける溶融ポリマーの流出量比を表わし、FRが
大であれば分子量分布は広く、小であれば狭いと
されている。
また低分子量副生物の副生量は、以下に示す方
法により測定した。
(1) 副生グリースワツクス(GWと略す)の定量
重合終了後、重合体スラリーを一部取り出し、
溶媒を留去後、80℃の乾燥機にて3時間乾燥し
た。得られた重合体粉末はソツクスレー抽出器を
使用して還流ノルマルヘキサンにて6時間抽出し
た。
還流ノルマルヘキサン可溶分を副生グリースワ
ツクスとし以下のように定めた。
GW=還流ノルマルヘキサン可溶分の重量/全
重合体重量×100=重量%
(2) 副生ハイボイラー(HBと略す)の定量
重合終了後、重合体スラリーを静置し、上澄液
の一部を取り出し、重合溶媒可溶の炭素数8〜32
までの飽和または不飽和炭化水素成分を島津製作
所製ガラスクロマトグラフイー(GC−4BMPF)
を用い測定し以下に示すように定めた。
HB=炭素数8〜32までの飽和又は不飽和炭化水素成分
の重量の和/全重合体重量×100=重量%
実施例 1〜3
マグネシウムジエトキシド115gとトリ−n−
ブトキシモノクロルチタン151gとn−ブタノー
ル37gとを140℃で6時間混合して均一化した。
次いで60℃まで下げてベンゼンを加え均一溶液と
した。次いで40℃にてエチルアルミニウムセスキ
クロライドを454g滴下し、60℃に昇温後1時間
攪拌した。生成した沈澱をn−ヘキサンで洗浄す
ることによつて触媒成分を得た。
得られた固体スラリーの一部を乾燥し、分析を
行つたところ、この固体中にはMgが10.1重量%、
Tiが10.0重量%含まれていた。
つぎに、2オートクレーブにノルマルヘキサ
ン1000c.c.をとり、上記触媒成分10mgを仕込んだ。
90℃に昇温後、所定量の水素を導入し、AlET1.5
(OEt)0.5Cl 0.16mmolをエチレンと共に導入し、
全圧を23Kg/cm2(ゲージ圧)にした。エチレンの
導入と共にエチレンの吸収が見られるが、全圧を
23Kg/cm2に保ようにエチレンを追加導入し、1時
間後に少量のエタノール圧入により重合を停止し
た。得られた結果を第1表に示した。
比較例 1
実施例1においてAlEt1.5(OEt)0.5C1の代りに
AlEt(OEt)C1を使う以外は全く同様に行なつ
た。得られた結果を第1表に示した。
実施例 4
実施例1においてAlEt1.5(OEt)0.5C1の代りに
AliBu1.5(O−iBu)0.5C1を使う以外は全く同様に
行なつた。得られた結果を第1表に示した。
実施例 5
2オートクレーブにノルマルヘキサン1000c.c.
をとり、実施例1で得られた触媒成分25mgを仕込
んだ。90℃に昇温後、18.3Kg/cm2まで水素を導入
し、AlEt1.5(OEt)0.5C10.40mmolをエチレンと共
に導入し、全圧25Kg/cm2(ゲージ圧)にした。エ
チレンの導入と共にエチレンの吸収が見られる
が、全圧を25Kg/cm2に保つようにエチレンを追加
導入し、55分間後にエチレンの導入を中止した。
この間に236gのエチレンが吸収された。その後、
全圧を1.9Kg/cm2(ゲージ圧)までパージすると
同時に80℃まで冷却し、次いで1−ブテン4.8g
をエチレンとともに導入し、全圧を4.0Kg/cm2
(ゲージ圧)にいて2段目の重合を開始した。一
段目と同様にエチレンを追加導入し、45分後に
236gのエチレンが吸収された時点で少量のエタ
ノール圧により重合を停止した。
得られた結果を以下に示した。
一段目 K=1940
水素/エチレン(気相モル比)=3.8
二段目 K=4500
水素/エチレン(気相モル比)=0.24
得られた重合体は、MI=0.34 FR=53 GW=
2.3重量% HB=0.75重量%であつた。
実施例 6
マグネシウムジエトキシド57gとトリ−n−ブ
トキシモノクロルチタン150gとを130℃で6時間
混合して均一化した。
次いで60℃まで下げてベンゼンを加え均一溶液
とした後四塩化ケイ素を850g滴下し50℃にて3
時間攪拌を行ない熟成した。生成した沈澱をノル
マルヘキサンで洗浄し、触媒成分を得た。かくし
て得られた触媒成分を用いること以外は実施例1
と全く同様にして重合を行つた。
得られた結果を第2表に示した。
実施例 7
マグネシウムジエトキシド10gと四塩化チタン
70mlとを130℃で2時間反応させた。冷却後n−
ヘキサンにより洗浄することによつて触媒成分を
得た。かくして得られた触媒成分を用いること以
外は実施例1と全く同様にして重合を行つた。得
られた結果を第2表に示した。
比較例 2
実施例1においてAlEt1.5(OEt)0.5C1の代りに
AlEt3を用いた以外は全く同様に行つた。
得られた結果を第3表に示した。
比較例 3
実施例1においてAlEt1.5(OEt)0.5C1の代りに
AlEt2Clを用いた以外は全く同様に行つた。
得られた結果を第3表に示した。
比較例 4
実施例5においてAlEt1.5(OEt)0.5Clの代りに
AlEt2C1を用いた以外は全く同様に重合した。
得られた結果を以下に示した。
一段目 K=2050
水素/エチレン(気相モル比)=3.8
二段目 K=4830
水素/エチレン(気相モル比)=0.24
得られた重合体は、MI=0.31 FR=56 GW=
3.3重量% HB=1.3重量%であつた。
比較例 5
実施例6においてAlEt1.5(OEt)0.5C1の代りに
AlEt2C1を用いた以外は全く同様に行つた。
得られた結果を第3表に示した。
比較例 6
実施例7において、AlEt1.5(OEt)0.5C1の代り
にAlEt2Cl を用いた以外は全く同様に行つた。
得られた結果を第3表に示した。
The present invention relates to a method for producing polyolefins. More specifically, it relates to a method for producing a polyolefin that has high polymerization activity, produces very little low molecular weight by-products, and has excellent productivity by using a specific cocatalyst in a solid catalyst component containing magnesium and titanium. . Generally polymerization of ethylene and ethylene and other α
- When producing polyolefins by copolymerization with olefins, saturated or unsaturated hydrocarbon by-products with a molecular weight of + to several thousand are produced. On the other hand, the rise in raw material costs resulting from the recent petroleum situation is having a significant impact on the economic efficiency of polyolefin production. Therefore, if it is possible to reduce the production of low molecular weight by-products in the production of polyolefins, polyolefins can be produced with high productivity, resulting in great economic benefits. In addition, by reducing low molecular weight by-products in the polyolefin manufacturing process, there is less adhesion to reactor walls and clogging of piping, etc., making long-term continuous operation possible. Furthermore, it also gives favorable results to the physical properties of the product. In view of the above circumstances, the inventors of the present invention have made intensive studies and found that when polymerizing olefin using a catalyst system consisting of a transition metal compound component and an organoaluminium compound component, a solid catalyst component containing magnesium and titanium as the transition metal compound component is used. By using a specific oxygen-containing organoaluminum compound as the organoaluminum compound component, it has high polymerization activity, very little generation of low molecular weight by-products, excellent productivity, and the production process is also easy to use in the reactor. The present invention has been achieved by discovering a method for producing polyolefin that is free from adhesion and allows for long-term stable operation. That is, the gist of the present invention is that when polymerizing olefin using a catalyst system consisting of a transition metal compound component and an organoaluminium compound component, the transition metal compound component is selected from the following reaction products (A) to (C). Using a solid catalyst, (A) a reaction product of an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and an aluminum halide compound (B) a reaction product of an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and a silicon halide compound Reaction product (C) Reaction product between an oxygen-containing organic compound of magnesium and a titanium halogen compound As an organoaluminum compound component, the general formula A1R 1 1.5 (OR 2 ) 0.5 X 1 ... [1] (in the formula, R 1 and R 2 represent an alkyl group, and X 1
represents a halogen atom. ) The present invention relates to a method for producing a polyolefin, characterized by using an oxygen-containing organoaluminum compound or composition shown in (a). To further explain the present invention in detail, in the present invention, a solid catalyst component containing magnesium and titanium as a transition metal compound component and an oxygen-containing organoaluminum compound or composition represented by the above general formula [] as an organoaluminum compound as a cocatalyst. By using the above-mentioned compound, low molecular weight by-products can be reduced and the object of the present invention can be achieved. In the general formula [], R 1 and R 2 are methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, phenyl, tolyl,
Examples include alkyl groups having up to about 15 carbon atoms such as cyclohexyl, and R 1 and R 2 may of course be different.
Examples of X 1 include chlorine, bromine or iodine. Specifically, A1Et 1.5 (OEt) 0.5 C1, A1Et 1.5 (OBu)
0.5 C1, A1Bu 1.5 (OBu) 0.5 C1, A1Oct 1.5 (O-Oct) 0.
5 C1 (Oct indicates octyl group), A1Et 1.5 (OEt) 0.5
Examples include Br. Among them, A1Et 1.5 (OEt) 0.5 C1
is particularly preferred. The method for producing such an oxygen- containing organoaluminum compound is not particularly limited, and methods well known to those skilled in the art may be used. For example, A1R 1 2.0
A method of slowly dropping 0.25 mol of R 2 OH per 1 mol of X 1 at room temperature, followed by heat treatment (about 60° C ), or A1R 1 2.0 X 1 1 and A1R 1 1.0 (OR 2 ) 1.0 X 1
A1R 1 1.5 (OR 2 ) 0.5 As the solid catalyst component containing magnesium and titanium, a reaction product selected from the following groups (A) to (C) is used. (A) Reaction product of an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and an aluminum halide compound (B) A reaction product of an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and a silicon halide compound (C) Reaction product of magnesium oxygen-containing organic compound and titanium halide compound (A) to (C) will be explained below. In the method of the present invention, the solid catalyst component is Known catalyst components such as, but not limited to, products obtained by treating magnesium dihalides with titanium halogen compounds after or during treatment with electron-donating compounds may also be used in the process of the invention. be able to. Method for producing the catalyst component of (A) The oxygen-containing organic compound of magnesium used in preparing the reaction product of (A) is Mg
(OR 3 )mX 2 2 -m (wherein R 3 represents an alkyl group, aryl group or cycloalkyl group, X 2 represents a halogen atom, and m is 1 or 2); Examples include magnesium diethoxide, magnesium dimethoxide, magnesium diphenoxide, magnesium monoethoxy chloride, magnesium monophenoxy chloride, magnesium monoethoxy bromide, magnesium monoethoxy iodide, and the like. Among these, magnesium diethoxide is preferred. The oxygen-containing organic compound of titanium has the general formula Ti( OR4 ) nX34
-n ( wherein, -butoxytitanium, diethoxydichlorotitanium, di-n-
Examples include butoxydichlorotitanium, triethoxymonochlortitanium, tri-n-butoxymonochlortitanium, ethoxytrichlortitanium, n-butoxytrichlortitanium, methoxytribromotitanium, and the like. Among these, tri-n-butoxymonochlorotitanium is preferred. As an aluminum halide compound, the general formula is
Compounds represented by A1R 5 P Examples include ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum monochloride, normal propylaluminum dichloride, and the like. Among these, ethylaluminum sesquichloride is preferred. In the reaction of the above compounds, first, an oxygen-containing organic compound of magnesium and an oxygen-containing organic compound of titanium are mixed and heated to 100°C to 160°C to prepare a uniform liquid. When it is difficult to produce a uniform liquid, it is preferable to include alcohol. Examples of the alcohol include ethyl alcohol, n-butyl alcohol, and n-octyl alcohol. An inert hydrocarbon solvent is then added to form an inert hydrocarbon solution. An aluminum halogen compound is added to the inert hydrocarbon solution obtained as described above, and the mixture is heated to room temperature.
When the reaction is carried out at 100°C, the reaction product is obtained as a precipitate, and unreacted substances are washed away with an inert hydrocarbon solvent. The quantitative ratio of each component is the molar ratio of titanium compound to magnesium compound (Ti/Mg) of 0.1 to 10, and the ratio of the number of moles of aluminum halogen compound to the sum of the number of moles of magnesium compound and the number of moles of titanium compound [A1 compound ]/[Mg compound]+[Ti compound] is preferably 1 to 20. Method for producing the catalyst component of (B) The oxygen-containing organic compound of magnesium and the oxygen-containing organic compound of titanium used in preparing the reaction product of (B) may be those used in the preparation of (A). It is possible. As a silicon halogen compound, the general formula R 6
A silicon halogen compound represented by qSiX 5 4 -q (in the formula, R 6 represents an alkyl group, an aryl group, or a cycloalkyl group, and X 5 represents a halogen atom, and 0≦q≦2) is used. Ru. this house
Compounds in which X 5 is chlorine are preferred. Examples include silicon tetrachloride, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, diethyldichlorosilane, etc., especially when q=0
The use of chlorinated silicon compounds, namely silicon tetrachloride, gives favorable results. In the reaction of these compounds, the reaction of the oxygen-containing organic compound of magnesium and the oxygen-containing organic compound of titanium is obtained in the same manner as the reaction in preparing the catalyst in (A). When a silicon halogen compound is added to the inert hydrocarbon solution obtained in this manner and reacted at room temperature to 100°C, the reaction product is obtained as a precipitate, and unreacted substances are washed away with an inert hydrocarbon solvent. Ru. The quantitative ratio of each component is the molar ratio of titanium compound to magnesium compound (Ti/Mg) of 0.1 to 10, and the ratio of the number of moles of silicon halogen compound to the sum of the number of moles of magnesium compound and the number of moles of titanium compound [Si compound ] / [Mg compound] + [Ti compound] 1 to 20
It is preferable that Method for producing catalyst component (C) The oxygen-containing organic compound of magnesium used in preparing the reaction product (C) can be the same as that used in (A). As a titanium halide compound, the general formula is TiX 6 1
(OR 7 ) 4 −r (wherein, X 6 represents a halogen atom,
R 7 represents an alkyl group, an aryl group or a cycloalkyl group, and r is 1-4. Examples include titanium tetrahalides such as titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, monoethoxytrichlorotitanium, monomethoxytribromotitanium, diethoxydichlorotitanium, and the like. Among these, titanium tetrahalide is preferred. The reaction between the oxygen-containing organic compound of magnesium and the titanium halide compound is carried out by contacting the two in the presence or absence of an inert hydrocarbon solvent at a temperature of 50°C to 200°C. The reaction product is obtained as a precipitate, and unreacted substances are washed away with an inert hydrocarbon solvent. There is no particular limit to the atomic ratio of titanium to magnesium in the reaction ratio between the two, but if it is too large, titanium will be wasted, and if it is too small, the polymerization activity will decrease. Therefore, usually Ti/Mg=0.1~
It is preferable to set it to 100 (molar ratio). The ratio of the solid catalyst component containing magnesium and titanium to the oxygen-containing organoaluminum compound is usually 0.1 to 100 in terms of Al/Ti atomic ratio, preferably 1 to 100.
Used within 20. The catalyst system thus prepared is used to polymerize olefins, and the olefins used in the method of the present invention include α-
One example is olefin. Moreover, these olefins can also be mixed and copolymerized. In particular, the process of the invention is advantageous for the production of ethylene homopolymers or copolymers of ethylene containing preferably up to 5 mol % of other α-olefins. The polymerization reaction can be carried out by solution polymerization or slurry polymerization carried out in an inert solvent or liquefied monomer, or by gas phase polymerization carried out in the absence of a solvent. This is usually carried out by supplying the olefin or olefin mixture and maintaining it at a predetermined temperature and pressure in the presence of an inert solvent. As the inert solvent, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, and isooctane, and aromatic hydrocarbons such as benzene and toluene are used. The polymerization reaction is usually carried out at a temperature of from room temperature to 200°C and a pressure of from normal pressure to 100 atmospheres. Further, in the method of the present invention, when hydrogen is present in the polymerization reaction zone, the effect of controlling the molecular weight by hydrogen is large, and a polymerization zone having the desired molecular weight can be easily obtained. The amount of hydrogen to be present varies depending on the polymerization conditions, the desired molecular weight of the olefin polymer, etc., and therefore it is necessary to adjust the amount of hydrogen introduced accordingly. Further, the method of the present invention can be carried out in a method in which the polymerization reaction is carried out in one stage or in a multi-stage polymerization method in which two or more stages are carried out, but the effectiveness of the method of the present invention is particularly great in the case of a multi-stage polymerization system. That is, for example, in one of the first and second reaction zones, polymerization is performed in the presence of hydrogen at a molar ratio of 0.001 to 1.5 to ethylene in the gas phase, resulting in a polymer having a viscosity average molecular weight of 150,000 to 1,000,000. Polymer A is produced in an amount of 10% to 70% by weight of the total polymer production amount, and polymerized in the presence of hydrogen in a molar ratio of 1.5 to 15 to ethylene in the gas phase in the other zone to obtain a viscosity average molecular weight of 10,000. ~80,000 Polymer B is produced in 90% to 30% by weight of the total polymer production amount, and further (viscosity average molecular weight of polymer A) / viscosity average molecular weight of polymer B) is set to 4 to 80, The melt index of all the polymers finally produced is less than 0.5,
The method of the present invention is extremely effective in cases such as two-stage polymerization, especially when there is a large amount of hydrogen as a molecular weight regulator, such as in the production of Polymer B, since many low molecular weight by-products are produced. By using the cocatalyst according to the method of the present invention as described above when producing polyolefin, the amount of low molecular weight by-products produced is extremely small, resulting in excellent productivity, and also during the production process, there is no adhesion to the reactor. Various advantages can be obtained, such as no such problems, favorable long-term stable operation, and high polymerization activity. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the invention. It should be noted that FIG. 1 is a flowchart to help understand the technical content of the present invention, and the present invention is not limited in any way by this flowchart unless it deviates from the gist thereof. In the examples, the polymerization activity of the catalyst (hereinafter abbreviated as K)
is K=(g polymer)/(g・catalyst)(hr)
(Kg/cm 2 olefin pressure). In addition, melt index (hereinafter abbreviated as MI)
is 2.16Kg at 190℃ based on ASTMD-1238-57T
Measured by load. Furthermore, the flow rate ratio (hereinafter abbreviated as FR), which is a measure of molecular weight distribution , is a value that indicates the dependence of melt viscosity on shear stress, and is based on ASTMD- 1238-57T . It represents the outflow ratio of molten polymer in /cm 2 , and it is said that the larger the FR, the wider the molecular weight distribution, and the smaller the FR, the narrower the molecular weight distribution. Further, the amount of low molecular weight by-products was measured by the method shown below. (1) Quantification of by-product grease wax (abbreviated as GW) After polymerization, take out a portion of the polymer slurry and
After distilling off the solvent, it was dried in a dryer at 80°C for 3 hours. The obtained polymer powder was extracted with refluxed normal hexane for 6 hours using a Soxhlet extractor. The soluble portion in refluxed normal hexane was defined as a by-product grease wax as follows. GW = weight of refluxed normal hexane soluble content / total polymer weight x 100 = weight% (2) Determination of by-product high boiler (abbreviated as HB) After the polymerization is completed, the polymer slurry is allowed to stand still, and the supernatant liquid is Take out a part and add 8 to 32 carbon atoms that are soluble in the polymerization solvent.
The saturated or unsaturated hydrocarbon components up to
It was measured using the method and determined as shown below. HB = sum of weights of saturated or unsaturated hydrocarbon components having 8 to 32 carbon atoms/total polymer weight x 100 = weight% Examples 1 to 3 115 g of magnesium diethoxide and tri-n-
151 g of butoxymonochlorotitanium and 37 g of n-butanol were mixed at 140° C. for 6 hours to homogenize.
Then, the temperature was lowered to 60°C, and benzene was added to form a homogeneous solution. Next, 454 g of ethylaluminum sesquichloride was added dropwise at 40°C, the temperature was raised to 60°C, and the mixture was stirred for 1 hour. A catalyst component was obtained by washing the generated precipitate with n-hexane. A part of the obtained solid slurry was dried and analyzed, and it was found that this solid contained 10.1% by weight of Mg.
It contained 10.0% by weight of Ti. Next, 1000 c.c. of normal hexane was placed in a second autoclave, and 10 mg of the above catalyst component was charged therein.
After raising the temperature to 90℃, a predetermined amount of hydrogen was introduced, and AlET 1.5
(OEt) 0.5 Cl 0.16 mmol was introduced together with ethylene,
The total pressure was 23 Kg/cm 2 (gauge pressure). Ethylene absorption is seen with the introduction of ethylene, but when the total pressure is
Ethylene was additionally introduced to maintain the pressure at 23 kg/cm 2 , and after 1 hour, the polymerization was stopped by injecting a small amount of ethanol. The results obtained are shown in Table 1. Comparative Example 1 AlEt 1.5 (OEt) 0.5 instead of C1 in Example 1
The procedure was exactly the same except that AlEt(OEt)C1 was used. The results obtained are shown in Table 1. Example 4 AlEt 1.5 (OEt) 0.5 instead of C1 in Example 1
AliBu 1.5 (O-iBu) 0.5 The same procedure was used except that C1 was used. The results obtained are shown in Table 1. Example 5 1000 c.c. of normal hexane in 2 autoclaves.
was charged with 25 mg of the catalyst component obtained in Example 1. After raising the temperature to 90° C., hydrogen was introduced to 18.3 Kg/cm 2 , and 10.40 mmol of AlEt 1.5 (OEt) 0.5 C was introduced together with ethylene to bring the total pressure to 25 Kg/cm 2 (gauge pressure). Absorption of ethylene was observed as ethylene was introduced, but ethylene was additionally introduced to maintain the total pressure at 25 Kg/cm 2 , and the introduction of ethylene was stopped after 55 minutes.
During this time, 236 g of ethylene was absorbed. after that,
Purge the total pressure to 1.9Kg/cm 2 (gauge pressure) and simultaneously cool to 80℃, then add 4.8g of 1-butene.
was introduced together with ethylene, and the total pressure was 4.0Kg/cm 2
(gauge pressure), the second stage polymerization was started. Additional ethylene was introduced in the same way as the first stage, and after 45 minutes
Polymerization was stopped by applying a small amount of ethanol pressure when 236 g of ethylene had been absorbed. The results obtained are shown below. First stage K = 1940 Hydrogen / ethylene (gas phase molar ratio) = 3.8 Second stage K = 4500 Hydrogen / ethylene (gas phase molar ratio) = 0.24 The obtained polymer is MI = 0.34 FR = 53 GW =
2.3% by weight HB=0.75% by weight. Example 6 57 g of magnesium diethoxide and 150 g of tri-n-butoxymonochlorotitanium were mixed at 130° C. for 6 hours and homogenized. Next, the temperature was lowered to 60°C, benzene was added to make a homogeneous solution, and 850g of silicon tetrachloride was added dropwise at 50°C.
The mixture was aged by stirring for hours. The generated precipitate was washed with normal hexane to obtain a catalyst component. Example 1 except that the catalyst component thus obtained was used.
Polymerization was carried out in exactly the same manner. The results obtained are shown in Table 2. Example 7 10g of magnesium diethoxide and titanium tetrachloride
70 ml was reacted at 130°C for 2 hours. After cooling n-
A catalyst component was obtained by washing with hexane. Polymerization was carried out in exactly the same manner as in Example 1 except for using the catalyst component thus obtained. The results obtained are shown in Table 2. Comparative Example 2 AlEt 1.5 (OEt) 0.5 instead of C1 in Example 1
The same procedure was carried out except that AlEt 3 was used. The results obtained are shown in Table 3. Comparative Example 3 AlEt 1.5 (OEt) 0.5 instead of C1 in Example 1
The same procedure was performed except that AlEt 2 Cl was used. The results obtained are shown in Table 3. Comparative Example 4 In Example 5, AlEt 1.5 (OEt) 0.5 was used instead of Cl.
Polymerization was carried out in exactly the same manner except that AlEt 2 C1 was used. The results obtained are shown below. First stage K = 2050 Hydrogen / ethylene (gas phase molar ratio) = 3.8 Second stage K = 4830 Hydrogen / ethylene (gas phase molar ratio) = 0.24 The obtained polymer is MI = 0.31 FR = 56 GW =
3.3% by weight HB=1.3% by weight. Comparative Example 5 AlEt 1.5 (OEt) 0.5 instead of C1 in Example 6
The same procedure was carried out except that AlEt 2 C1 was used. The results obtained are shown in Table 3. Comparative Example 6 The same procedure as in Example 7 was carried out except that AlEt 2 Cl was used instead of AlEt 1.5 (OEt) 0.5 C1. The results obtained are shown in Table 3.
【表】【table】
【表】【table】
図−1は本発明の一態様を示すフローチヤート
図である。
FIG. 1 is a flowchart showing one embodiment of the present invention.
Claims (1)
物成分とからなる触媒系を用いてオレフインの重
合を行うに際し、遷移金属化合物成分として下記
(A)〜(C)の反応生成物から選ばれる固体触媒成分を
用い、有機アルミニウム化合物成分として一般式
A1R1 1.5 (OR2)0.5X1(式中、R1およびR2はアル
キル基を表わし、X1はハロゲン原子を表わす。)
で示される酸素含有有機アルミニウム化合物又は
組成物を使用することを特徴とするポリオレフイ
ンの製造法。 (A) マグネシウムの酸素含有有機化合物とチタン
の酸素含有有機化合物とアルミニウムハロゲン
化合物との反応生成物 (B) マグネシウムの酸素含有有機化合物とチタン
の酸素含有有機化合物とケイ素ハンロゲン化合
物との反応生成物 (C) マグネシウムの酸素含有有機化合物とチタン
ハロゲン化合物との反応生成物 2 有機アルミニウム化合物成分がA1Et1.5
(OEt)0.5C1で示される化合物又は組成物である特
許請求の範囲第1項記載の方法。[Scope of Claims] 1. When polymerizing an olefin using a catalyst system consisting of a transition metal compound component and an organoaluminum compound component, the following transition metal compound components may be used.
Using a solid catalyst component selected from the reaction products of (A) to (C), the general formula
A1R 1 1.5 (OR 2 ) 0.5 X 1 (In the formula, R 1 and R 2 represent an alkyl group, and X 1 represents a halogen atom.)
1. A method for producing a polyolefin, which comprises using an oxygen-containing organoaluminum compound or composition represented by: (A) Reaction product of an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and an aluminum halide compound (B) A reaction product of an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and a silicon halide compound (C) Reaction product 2 of magnesium oxygen-containing organic compound and titanium halogen compound The organic aluminum compound component is A1Et 1.5
(OEt) 0.5 The method according to claim 1, which is a compound or composition represented by C1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2085083A JPS59147004A (en) | 1983-02-10 | 1983-02-10 | Preparation of polyolefin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2085083A JPS59147004A (en) | 1983-02-10 | 1983-02-10 | Preparation of polyolefin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59147004A JPS59147004A (en) | 1984-08-23 |
JPH0437083B2 true JPH0437083B2 (en) | 1992-06-18 |
Family
ID=12038563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2085083A Granted JPS59147004A (en) | 1983-02-10 | 1983-02-10 | Preparation of polyolefin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59147004A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0717710B2 (en) * | 1989-05-19 | 1995-03-01 | 出光石油化学株式会社 | Method for producing ethylene-based polymer composition |
TW248565B (en) | 1991-08-14 | 1995-06-01 | Mitsui Petroleum Chemicals Industry Co |
-
1983
- 1983-02-10 JP JP2085083A patent/JPS59147004A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59147004A (en) | 1984-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0725818B2 (en) | Method for polymerizing α-olefin | |
US4578373A (en) | Polymerization catalyst system | |
EP0376936A2 (en) | A ziegler-Natta catalyst component | |
FI91264C (en) | Process for the preparation of alpha-monoolefins | |
EP0177189A1 (en) | Polymerization catalyst | |
US4525554A (en) | Process for polymerizing olefin | |
JPH05132520A (en) | Solid component of catalyst for homopoly- merization and copolymerization of ethylene | |
JP6486393B2 (en) | Short chain branching control of ethylene-butene copolymer | |
JPH07268016A (en) | Olefin polymerization catalyst component obtained by impregnating a prepolymer with a solution of the catalyst component, and prepolymer obtained from this catalyst component | |
JPH0437083B2 (en) | ||
JPH0125768B2 (en) | ||
US4665262A (en) | Polymerization catalyst | |
US5070056A (en) | Alkene polymerization process and catalyst compositions therefor | |
JPS5846205B2 (en) | Olefin polymerization method | |
JPS5814443B2 (en) | Olefin polymerization method | |
JPH09110921A (en) | Prepolymer for olefin polymerization comprising combination of solid catalyst components | |
Lloyd | Olefin Polymerization Catalysts | |
JPH0134246B2 (en) | ||
JPS60152511A (en) | Polymerization of alpha-olefin | |
EP0797596B1 (en) | Catalyst for polymerizing olefins | |
JPS6036510A (en) | Ethylene polymerization method | |
JPH04285606A (en) | Production of polyolefin | |
JPH0132245B2 (en) | ||
JPS59149911A (en) | Production of ethylene copolymer | |
JPH05117320A (en) | Method for controlling molecular weight distribution during production of polyethylene |