[go: up one dir, main page]

JPH0437070A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0437070A
JPH0437070A JP14335190A JP14335190A JPH0437070A JP H0437070 A JPH0437070 A JP H0437070A JP 14335190 A JP14335190 A JP 14335190A JP 14335190 A JP14335190 A JP 14335190A JP H0437070 A JPH0437070 A JP H0437070A
Authority
JP
Japan
Prior art keywords
bias voltage
electrode
capacitance
semiconductor substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14335190A
Other languages
Japanese (ja)
Inventor
Tsukasa Ooka
大岡 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP14335190A priority Critical patent/JPH0437070A/en
Publication of JPH0437070A publication Critical patent/JPH0437070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To augment the fluctuation rate of capacitance corresponding to the fluctuation in the backward bias voltage by a method wherein a MOS transistor whereon a drain electrode is provided on the rear side region opposing to a gate electrode on a semiconductor substrate is composed of a variable capacitance diode. CONSTITUTION:A depletion layer 20 is formed on the PN junction between an epitaxially grown layer 13 and impurity regions 14 in a semiconductor substrate 11 by impressing the region between an anode electrode 19 and cathode electrodes 16 with a backward bias voltage. The depletion layer 20 is expanded in the epitaxially grown layer 13 from the broken lines a to b from the PN junction surface to the outside of the region encircled by the impurity regions 14 as the backward bias voltage is boosted. Next, at the time point or later when the backward bias voltage reaches the specified value, the depletion layers 20 expanding inward are joined together as shown by the broken line C so that the capacitance in the region between the anode electrode 19 and a gate 17 may be abruptly fluctuated to be decreased. Through these procedures, the fluctuation in the capacitance DELTAC can be augmented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、詳しくはMOSトランジス
タを可変容量ダイオードとした半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a MOS transistor is a variable capacitance diode.

〔従来の技術〕[Conventional technology]

従来、テレビジラン用型子チューナなどに広く使用され
ている可変容量ダイオードは、第4図に示すPN接合構
造のものが一般的である。この可変容量ダイオードは、
高濃度のN+型サすストレーl−(1)上に低濃度のN
−型エピタキシャル成長層(2)を積層形成したシリコ
ン等の半導体基板(3)にボロン等の低濃度のP−型不
純物を拡散して不純物領域(4)を形成し、この半導体
基板(3)の不純物領域(4)の表面にカソード電極(
5)を被着形成すると共に、上記半導体基板(3)のカ
ソード電極(5)と対向する裏面にアノード電極(6)
を被着形成したものである。
Conventionally, variable capacitance diodes widely used in TV set tuners and the like generally have a PN junction structure as shown in FIG. This variable capacitance diode is
A low concentration of N is placed on a high concentration of N+ type suspension stray L-(1).
A low concentration P- type impurity such as boron is diffused into a semiconductor substrate (3) made of silicon or the like on which a - type epitaxial growth layer (2) is laminated to form an impurity region (4). A cathode electrode (
5) and an anode electrode (6) on the back surface of the semiconductor substrate (3) facing the cathode electrode (5).
It is formed by depositing.

上記可変容量ダイオードでは、アノード電極(6)とカ
ソード電極(5)間に逆バイアス電圧を印加することに
より、エピタキシャル成長層(2)と不純物領域(4)
間のPN接合面に空乏層(7)が形成される。この空乏
層(7)は絶縁領域であり、この厚みがコンデンサの誘
電体の厚みに相当するものとなる。上記アノード電極(
6)とカソード電極(5)間c、:印加される逆バイア
ス電圧を増減させることにより上記空乏lit (7)
の厚みが増減し、これに追従して容置が多、化する。
In the above variable capacitance diode, by applying a reverse bias voltage between the anode electrode (6) and the cathode electrode (5), the epitaxial growth layer (2) and the impurity region (4) are separated.
A depletion layer (7) is formed at the PN junction surface between them. This depletion layer (7) is an insulating region, and its thickness corresponds to the thickness of the dielectric of the capacitor. The above anode electrode (
6) and the cathode electrode (5) c: By increasing or decreasing the applied reverse bias voltage, the depletion lit (7)
As the thickness increases and decreases, the number of containers increases accordingly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述したtt*の可変8閂ダイオ・ ドでは
、アノード電極(6)と力゛か−ド電極(5)間に印加
される逆バイアス電圧の変化U追従しこ、空乏N(7)
の厚みが単調N、 Lか増減しないので、逆バイアス電
圧の変化に対しこ容置がす:−アに変化する。即ち、上
記逆バイアス重圧の第−仕4U。
By the way, in the tt* variable 8-bar diode described above, the change U of the reverse bias voltage applied between the anode electrode (6) and the power electrode (5) is followed by the depletion N (7).
Since the thickness of N and L does not increase or decrease monotonically, it changes to -A when the reverse bias voltage changes. That is, the 4th section 4U of the above-mentioned reverse bias heavy pressure.

対して容量の変化率が比較的小ざい、そのため、所望の
容量の可変範囲を得よ・つ、!オ゛ると、逆バイアス電
圧の調整範囲も広くせざるを得ないとい・)問題があっ
た。
On the other hand, the rate of change in capacitance is relatively small, so you can obtain the desired variable range of capacitance! In this case, there was a problem in that the adjustment range of the reverse bias voltage had to be widened.

そこで、本発明は上記問題点に鑑み″4′旋案されたも
ので、その目的とするところは逆バイアス電圧の変化に
対する容置の変化率を人きく1.7得る半導体装置を提
供することにある。
Therefore, the present invention has been developed in consideration of the above-mentioned problems, and the object thereof is to provide a semiconductor device which can obtain a rate of change in capacity of 1.7 with respect to a change in reverse bias voltage. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

発明ツJにおける上記目的を達成するための技術的45
段は、7一導電型半導体基板に他導電型不純物1を拡散
し′ζその表面U′〕ソ〜ス電極を設ξ1プる。3共に
、上記他導電型不純@′j領域(挾まれた半導体基板の
露呈する領域表面じゲ・−1−酸化誇苓、介し85゛′
ゲ[・電極を設け、上記半導体基板のゲート・電極1!
対向する領@lI向にドレイン電極を設は六・: M 
(3Sトラニか〕2スタを、ドレイン・ソース電極M 
””e (!’)fi、 ハ・イアスミ圧印加に基づく
空乏層の拡がり状態によりl’ i、、−イン・ゲー・
ト電極間で変化する容量を持パ、)可変″R最ダイオ・
・−ドとしたことである。
Technical 45 to achieve the above purpose in invention J
In step 7, an impurity 1 of a different conductivity type is diffused into the semiconductor substrate 71 and a source electrode ξ1 is formed on its surface U'. 3. In both cases, the impurity region of the other conductivity type (the exposed surface area of the sandwiched semiconductor substrate) is
A gate electrode 1 of the semiconductor substrate is provided.
Drain electrodes are placed in the opposite regions @lI direction: M
(3S tranny) 2 stars, drain and source electrode M
``''e (!') fi, due to the expanding state of the depletion layer based on the application of the Asumi pressure, l' i, , -in Ga.
The capacitance that varies between the two electrodes is variable.
・-

〔作用〕[Effect]

本発明に係る¥−導体装置でIl、、1′1、MO31
ラン・ソスタのドレ・イン、ソース電極を夫々)°ノ・
ド、カソード電極としまた可変容量ダイオ−t!を構成
し、。
Il, 1'1, MO31 in the ¥-conductor device according to the present invention
drain, in, and source electrodes of the run source respectively)°ノ・
A variable capacitance diode is used as a cathode electrode and a cathode electrode. Configure and.

γノル )″・カソード電極間に逆バイアス電圧を印加
することによりPN接合面に空乏層が形成され、上記逆
バイアス電圧の増派により空乏層の拡がり状態が変化し
2、これに基づいてアノード・ゲ・−ト電極間で容量が
変化する。この時。、。゛アノード・ゲート電極間での
半導体基板中で空乏層の拡がりが急激に変化する状態が
あり、その結犀、逆バ・イアスミ圧の小さな変化に対1
.−ζ容最の大きな変化率を得ることができる。
By applying a reverse bias voltage between the γ nor )'' and cathode electrodes, a depletion layer is formed at the PN junction surface, and by increasing the reverse bias voltage, the state of expansion of the depletion layer changes2, and based on this, the anode and The capacitance changes between the gate electrode and the gate electrode.At this time, there is a state in which the spread of the depletion layer in the semiconductor substrate between the anode and gate electrode changes rapidly, resulting in the formation of a reverse barrier bias. 1 for small changes in pressure
.. -The largest rate of change in ζ volume can be obtained.

〔実施例〕〔Example〕

本発明に係る半導体装置の−・X絶倒を第1図乃至第3
図を参照しながら説明する。
FIGS. 1 to 3 show the -.
This will be explained with reference to the figures.

第1図及び第2図に示す半導体装置Qこおいて、(11
)は・シリコン等からなるN型半導体基板で、高濃度の
N″型サすスト!/−ト(12) 、l二に低濃度のN
−型エピタキシャル成長M (13) f積Ii形成し
たものである。(14)は1記半導体基板(11)のエ
ビタキーシャル成長M (13)に4k fi l1f
fのホrlン等のP−型不純物を拡散して形成されたP
′型不純l$A領域で、この不純物領域(工4)内に高
濃度のP型不純物を拡散してP″型電極引出し2層(1
(5)を形成する。(16)は上記電極引出!、、N(
15) J=、に被着形成したA1などのソ・・−スミ
極で、可変容置ダイオードでのカソード′電極となる。
In the semiconductor device Q shown in FIGS. 1 and 2, (11
) is an N-type semiconductor substrate made of silicon, etc., with a high concentration of N'' type support!/- (12), and a low concentration of N
− type epitaxial growth M (13) f product Ii is formed. (14) is 4k fi l1f on the evitaxial growth M (13) of the semiconductor substrate (11) mentioned above.
P formed by diffusing P-type impurities such as f
In the ' type impurity l$A region, a high concentration of P type impurity is diffused into this impurity region (Step 4) to form two P'' type electrode extraction layers (1).
(5) is formed. (16) is the above electrode drawer! ,,N(
15) So--Sumi electrodes such as A1 deposited on J=, serve as cathode' electrodes in variable displacement diodes.

  (1,7)は上記不純物領域(14)で挟まれた半
導体基板(11)のエピタキシャル成長層(13)が露
早する領@表面に’、’、 S i O2:等のゲ・−
・・・ト酸化iff (18)を介し2(被着形成し、
たAI等のゲルト電極、(19)は半導体基板(]1)
の上&H5ゲ〜ト・電極(17)と対向する領@裏面C
被着形成されにドレイン電極で、可変容置ダイオードで
の7ノード電極となる。尚、以下の説明では」4述し7
たソース、ド1.ツイン電極(16)  (19)をカ
ソード、アノード電極と称するや 本発明の特徴は、1述した構造のMOSトランジスタを
、アノ−ド・カソード電極(19)  (16)間ごの
逆ハイ1ス電圧印加に基づく空乏層(後述)の拡がり状
態によりアノ−)’・ゲ・−ト電極(工9)(11’ 
)で変化する容量を持つ可変容量ダイオードとしたこと
り一ある。
(1, 7) is a region where the epitaxial growth layer (13) of the semiconductor substrate (11) sandwiched between the impurity regions (14) is exposed at a high speed.
... 2 (adhesive formation, via oxidation if (18)
Gelt electrode for AI, etc., (19) is a semiconductor substrate (]1)
Upper & H5 gate/electrode (17) and area opposite @ back side C
A drain electrode is deposited and forms a 7-node electrode in a variable displacement diode. In addition, in the following explanation, "4" and "7"
Sauce, 1. The twin electrodes (16) and (19) are referred to as cathode and anode electrodes, and the feature of the present invention is that the MOS transistor having the structure described in 1. Due to the expansion state of the depletion layer (described later) based on the voltage application, the anode)' gate electrode (step 9) (11')
) is a variable capacitance diode with a capacitance that changes.

鋏体的に説明4ると、上記アノ・−ド電極(19)とカ
ッ−ドli極(16)との間に逆バイ1ス電圧を印加す
ることC1ごより、半導体基板(工1)中でJビタキシ
ャル成H層(13)と不純物領域(14)間のI” N
接合面に空乏層(20)が形成される。ごの空乏m (
20) &;!:!@縁@域テアリ、”r/−V電極(
19)とゲ・= )電橋(17)間での上記空乏層(2
0)の厚みがコンデンサの誘電体の厚みに相当するもの
になり容量が形成される。アノード電極(19)とカソ
ード電極(16)間に印加される逆バイアス電圧を増加
させるにつれて、空乏層(20)はPN接合面から不純
物領域(14)で囲まれた領域の外側へ向けてエピタキ
シャル成長層(13)で図中破線aからbへと拡がって
いく、そして、上記逆バイアス電圧が所定値に達した時
点以降、内側へ向けて拡がる空乏層(20)は図中破線
Cのようにつながった状態となり、この時、第3図に示
すようにアノード電極(19)とゲート電極(17)間
での容量が急漱に変化して減少する。このように逆バイ
アス電圧の小さな変化ΔVに対して上記容量の変化ΔC
が大きくとれる。上述のように大きな容量変化率が得ら
れるので、小さい逆バイアス電圧の調整範囲でもって広
範囲に亘る容量設定が容易となり、テレビジラン用電子
チェーナや共振型スイッチング電源などに使用する場合
に好適である。
To explain in terms of scissors 4, by applying a reverse bias voltage between the anode electrode (19) and the quad electrode (16), the semiconductor substrate (step 1) is Among them, I”N between the J bitaxial H layer (13) and the impurity region (14)
A depletion layer (20) is formed at the junction surface. Gono depletion m (
20) &;! :! @rim@area tear, ``r/-V electrode (
The depletion layer (2) between the bridge (17) and the bridge (17)
The thickness of 0) corresponds to the thickness of the dielectric of the capacitor, and a capacitor is formed. As the reverse bias voltage applied between the anode electrode (19) and the cathode electrode (16) is increased, the depletion layer (20) grows epitaxially from the PN junction surface to the outside of the region surrounded by the impurity region (14). In the layer (13), the depletion layer (20) expands from dashed line a to b in the diagram, and after the reverse bias voltage reaches a predetermined value, the depletion layer (20) expands inward as shown by dashed line C in the diagram. At this time, as shown in FIG. 3, the capacitance between the anode electrode (19) and the gate electrode (17) suddenly changes and decreases. In this way, for a small change ΔV in reverse bias voltage, the above capacitance change ΔC
You can get a large amount. Since a large rate of change in capacitance can be obtained as described above, it is easy to set the capacitance over a wide range with a small adjustment range of reverse bias voltage, making it suitable for use in electronic chainers for television cameras, resonant switching power supplies, etc. .

簡、上記半導体装置はMOSトランジスタを可変容量ダ
イオードとした構造を有し、通常のM0Sトランジスタ
構造ではドレイン・ゲート電極間のゲート容量COCと
ソース・ゲート電極間のゲート容量CGsとを有するの
に対し、本発明の半導体装置では、ゲート電極(17)
及びゲート酸化膜(18)を不純物領域(14)で囲ま
れた半導体基板(IL)のエピタキシャル成長層(13
)が露呈する領域表面にのみ被着形成したから、上述し
たソース・ゲート電極間のゲート容量CG sを無視で
きる程度に可及的に小さくし、アノード・ゲート電極(
19)  (17)間の容量のみとしている。
Briefly, the above semiconductor device has a structure in which a MOS transistor is a variable capacitance diode, whereas a normal MOS transistor structure has a gate capacitance COC between the drain and gate electrodes and a gate capacitance CGs between the source and gate electrodes. , in the semiconductor device of the present invention, the gate electrode (17)
and an epitaxially grown layer (13) of a semiconductor substrate (IL) in which a gate oxide film (18) is surrounded by an impurity region (14).
) is deposited only on the surface of the exposed region, the gate capacitance CGs between the source and gate electrodes mentioned above is made as small as possible to the extent that it can be ignored, and the anode and gate electrodes (
19) Only the capacity between (17) is considered.

〔発明の効果〕〔Effect of the invention〕

本発明に係る半導体装置によれば、MOSトランジスタ
を可変容量ダイオードとしたことにより、逆バイアス電
圧の変化に対する容量の変化率を大きくとれるので、小
さい逆バイアス電圧の調整範囲でもって広範囲に亘る容
量設定が容易となり、汎用性に優れた実用的価値大なる
半導体装置を捷供できる。
According to the semiconductor device of the present invention, by using a variable capacitance diode as a MOS transistor, the rate of change in capacitance with respect to a change in reverse bias voltage can be increased, so that a wide range of capacitance settings can be achieved with a small adjustment range of reverse bias voltage. This makes it possible to provide semiconductor devices with excellent versatility and great practical value.

【図面の簡単な説明】 第1図は本発明に係る半導体装置の一実施例を示す概略
断面図、第2図は第1図の縮小平面図、第3図は逆バイ
アス電圧に対する容量の特性図である。 第4図は可変容量ダイオードの従来例を示す概略断面図
である。 (11)・・−m=導電型半導体基板、(14) −一
一他導電型不純物領域、(16) −ソース電極、  
(17) −ゲート電極、(18)・−ゲート酸化膜、
(19)−・・ドレイン電極、(20) −空乏層。 第3図
[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present invention, Fig. 2 is a reduced plan view of Fig. 1, and Fig. 3 is a characteristic of capacitance with respect to reverse bias voltage. It is a diagram. FIG. 4 is a schematic cross-sectional view showing a conventional example of a variable capacitance diode. (11)...-m=conductive type semiconductor substrate, (14) -11 other conductive type impurity region, (16) -source electrode,
(17) - gate electrode, (18) - gate oxide film,
(19) - Drain electrode, (20) - Depletion layer. Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板に他導電型不純物を拡散して
その表面にソース電極を設けると共に、上記他導電型不
純物領域で挟まれた半導体基板の露呈する領域表面にゲ
ート酸化膜を介してゲート電極を設け、上記半導体基板
のゲート電極と対向する領域裏面にドレイン電極を設け
たMOSトランジスタを、ドレイン・ソース電極間での
逆バイアス電圧印加に基づく空乏層の拡がり状態により
ドレイン・ゲート電極間で変化する容量を持つ可変容量
ダイオードとしたことを特徴とする半導体装置。
(1) Impurities of one conductivity type are diffused into a semiconductor substrate of another conductivity type, a source electrode is provided on the surface thereof, and a gate oxide film is provided on the surface of the exposed region of the semiconductor substrate sandwiched between the impurity regions of the other conductivity type. A MOS transistor having a gate electrode and a drain electrode provided on the back surface of the region facing the gate electrode of the semiconductor substrate is connected to the drain and gate electrodes by the spread state of the depletion layer based on the application of a reverse bias voltage between the drain and source electrodes. A semiconductor device characterized in that it is a variable capacitance diode having a capacitance that changes with.
JP14335190A 1990-05-31 1990-05-31 Semiconductor device Pending JPH0437070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14335190A JPH0437070A (en) 1990-05-31 1990-05-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14335190A JPH0437070A (en) 1990-05-31 1990-05-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0437070A true JPH0437070A (en) 1992-02-07

Family

ID=15336768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14335190A Pending JPH0437070A (en) 1990-05-31 1990-05-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0437070A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576565A (en) * 1993-03-31 1996-11-19 Matsushita Electric Industrial Co., Ltd. MIS capacitor and a semiconductor device utilizing said MIS capacitor
WO2000039921A1 (en) * 1998-12-25 2000-07-06 Hitachi, Ltd. Mobile communication unit
US6858918B2 (en) 2001-09-19 2005-02-22 Renesas Technology Corp. Semiconductor device including a capacitance
US7157765B2 (en) 2001-08-24 2007-01-02 Renesas Technology Corp. Semiconductor device including insulated gate type transistor with pocket regions and insulated gate type capacitor with no region of reverse conductivity type
US7211875B2 (en) 2003-04-08 2007-05-01 Nec Electronics Corporation Voltage-controlled capacitive element and semiconductor integrated circuit
US9303394B2 (en) 2005-11-29 2016-04-05 Creaholic S.A. Washing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576565A (en) * 1993-03-31 1996-11-19 Matsushita Electric Industrial Co., Ltd. MIS capacitor and a semiconductor device utilizing said MIS capacitor
WO2000039921A1 (en) * 1998-12-25 2000-07-06 Hitachi, Ltd. Mobile communication unit
US7157765B2 (en) 2001-08-24 2007-01-02 Renesas Technology Corp. Semiconductor device including insulated gate type transistor with pocket regions and insulated gate type capacitor with no region of reverse conductivity type
US7176515B2 (en) 2001-08-24 2007-02-13 Renesas Technology Corp. Semiconductor device including insulated gate type transistor and insulated gate type capacitance having protruded portions
US7456464B2 (en) 2001-08-24 2008-11-25 Renesas Technology Corp. Semiconductor device including insulated gate type transistor and insulated gate type variable capacitance, and method of manufacturing the same
US6858918B2 (en) 2001-09-19 2005-02-22 Renesas Technology Corp. Semiconductor device including a capacitance
US7112835B2 (en) 2001-09-19 2006-09-26 Renesas Technology Corp. Semiconductor device including a capacitance
US7339238B2 (en) 2001-09-19 2008-03-04 Renesas Technology Corp. Semiconductor device including a capacitance
US7608879B2 (en) 2001-09-19 2009-10-27 Renesas Technology Corp. Semiconductor device including a capacitance
US7211875B2 (en) 2003-04-08 2007-05-01 Nec Electronics Corporation Voltage-controlled capacitive element and semiconductor integrated circuit
US9303394B2 (en) 2005-11-29 2016-04-05 Creaholic S.A. Washing device

Similar Documents

Publication Publication Date Title
JPH0437070A (en) Semiconductor device
US6320474B1 (en) MOS-type capacitor and integrated circuit VCO using same
JP2003318417A (en) Mos-type variable capacitance and semiconductor integrated circuit
CN104576763B (en) A kind of diode structure and its manufacture method
KR20010062843A (en) Voltage Variable capacitor with improved C-V linearity
JP2869548B2 (en) Thin film transistor circuit
JPS59104180A (en) variable capacitance diode
JPH01302768A (en) Inverted staggered silicon thin film transistor
JP2000223722A (en) Mis type variable capacitive capacitor and temperature compensating oscillator using the capacitor
JPS6038885A (en) Vertical field effect transistor and its manufacturing method
JP2917428B2 (en) Semiconductor integrated circuit device
JPH03155659A (en) Semiconductor device
JPS6094758A (en) Resistance adjustment device and its manufacturing method
JPS63155680A (en) Semiconductor device
JPH07135296A (en) Semiconductor integrated circuit device
JPS6254951A (en) Semiconductor device
JPH02283055A (en) Capacitor formed in semiconductor device and manufacture thereof
JPH025465A (en) semiconductor equipment
US7619273B2 (en) Varactor
JPH03254157A (en) Thin film transistor
JP2000299478A (en) Rectifying element and its manufacture
JPS5898974A (en) Vertical MIS-FET
JPH1117114A (en) Variable capacity circuit
JPH09205220A (en) Variable-capacitance diode
JPS63138761A (en) Capacitor for integrated circuit