JPH04367282A - Semiconductor photodetector - Google Patents
Semiconductor photodetectorInfo
- Publication number
- JPH04367282A JPH04367282A JP3168933A JP16893391A JPH04367282A JP H04367282 A JPH04367282 A JP H04367282A JP 3168933 A JP3168933 A JP 3168933A JP 16893391 A JP16893391 A JP 16893391A JP H04367282 A JPH04367282 A JP H04367282A
- Authority
- JP
- Japan
- Prior art keywords
- superlattice
- semiconductor
- layer
- gaas
- electrode layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は超格子構造の光検出部を
備えたモノリシック型の半導体光検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monolithic semiconductor photodetector having a photodetector having a superlattice structure.
【0002】0002
【従来の技術】赤外線等の光検出器として、従来から焦
電型センサと半導体型センサが知られており、前者は低
感度で集積化が困難なことからセンサ単体として用いら
れており、後者の半導体型センサがイメージセンサとし
て用いられている。[Prior Art] Pyroelectric sensors and semiconductor sensors have been known as photodetectors for infrared rays, etc. The former has low sensitivity and is difficult to integrate, so it is used as a single sensor, while the latter Semiconductor type sensors are used as image sensors.
【0003】半導体型センサは更にシリコンのショット
キーダイオードをセンサとするモノリシック型と、イン
ジウム・アンチモン(InSb)や水銀・カドミウム・
テルル(HgCdTe)をセンサとして走査回路にはシ
リコンCCD等を用いたハイブリッド型とに大別される
。上記の半導体型センサのうちモノリシック型は光の検
出感度が低く分光感度の設計に自由度が少ない。一方ハ
イブリッド型は感度は高くても、InSb、HgCdT
eの集積技術に課題がある。[0003] Semiconductor type sensors further include a monolithic type that uses a silicon Schottky diode as a sensor, and a monolithic type that uses a silicon Schottky diode as a sensor, and a type that uses indium antimony (InSb), mercury, cadmium,
There are two main types: a hybrid type that uses tellurium (HgCdTe) as a sensor and a silicon CCD or the like as a scanning circuit. Among the semiconductor type sensors mentioned above, the monolithic type has low light detection sensitivity and there is little freedom in designing the spectral sensitivity. On the other hand, although the hybrid type has high sensitivity, it
There are issues with e integration technology.
【0004】そこで、InSbやHgCdTeよりも集
積技術の発達したガリウム・砒素(GaAs)系化合物
を用いた超格子構造の赤外線検出器が特開昭63−24
6626号として提案されている。この検出器は図4に
示すように半導体基板100上にn型半導体電極層10
1を形成し、この電極層101の上に赤外線を吸収する
半導体ヘテロ構造の超格子102を形成し、更に超格子
102の上にn型半導体電極層103を形成した構造と
なっている。[0004] Therefore, an infrared detector with a superlattice structure using a gallium-arsenic (GaAs)-based compound, which has more advanced integration technology than InSb or HgCdTe, was proposed in Japanese Patent Laid-Open No. 63-24.
It has been proposed as No. 6626. As shown in FIG. 4, this detector has an n-type semiconductor electrode layer 10 on a semiconductor substrate 100.
1, a semiconductor heterostructure superlattice 102 that absorbs infrared rays is formed on this electrode layer 101, and an n-type semiconductor electrode layer 103 is further formed on the superlattice 102.
【0005】ところで、図3は超格子に入射する光の角
度を示したものであり、入射角と光吸収率との関係は以
下の(数1)で表わせる。By the way, FIG. 3 shows the angle of light incident on the superlattice, and the relationship between the incident angle and the light absorption rate can be expressed by the following (Equation 1).
【0006】[0006]
【数1】[Math 1]
【0007】上式から明らかなように超格子中に形成さ
れるサブバンド間の光吸収率は入射角が90°に近い程
、換言すれば超格子に対して平行になる程、光吸収率は
高くなる。そこで、図4に示す従来例にあっては半導体
基板100の端面を傾斜加工している。また図5に示す
ように入射側のn型半導体電極層103の表面をノコギ
リ形状に加工し、入射角を斜めにするようにした技術も
知られている。As is clear from the above equation, the light absorption rate between subbands formed in the superlattice increases as the incident angle approaches 90°, in other words, the more parallel it is to the superlattice. becomes higher. Therefore, in the conventional example shown in FIG. 4, the end face of the semiconductor substrate 100 is processed to be inclined. Further, as shown in FIG. 5, a technique is also known in which the surface of the n-type semiconductor electrode layer 103 on the incident side is processed into a sawtooth shape so that the incident angle is oblique.
【0008】[0008]
【発明が解決しようとする課題】上述したように、モノ
リシック型の半導体光検出器で感度の高いものを得るに
は光吸収層を超格子構造とすることが考えられるが、従
来の構造では超格子構造の光吸収部への光の入射角度を
90°に近づけることができない。[Problems to be Solved by the Invention] As mentioned above, in order to obtain a monolithic semiconductor photodetector with high sensitivity, it is possible to make the light absorption layer have a superlattice structure, but the conventional structure It is not possible to make the angle of incidence of light on the light absorption portion of the grating structure close to 90°.
【0009】[0009]
【課題を解決するための手段】上記課題を解決すべく本
発明は、半導体基板上に超格子構造の光検出部を形成し
た半導体光検出装置において、前記光検出部の端面を傾
斜面とし、この傾斜面の外側に外部からの光を超格子と
略平行な角度で入射せしめる反射膜を形成した。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a semiconductor photodetection device in which a photodetection section with a superlattice structure is formed on a semiconductor substrate, wherein the end face of the photodetection section is an inclined surface, A reflective film was formed on the outside of this inclined surface to allow light from the outside to enter at an angle substantially parallel to the superlattice.
【0010】0010
【作用】超格子に赤外線等の光が入射すると超格子中の
サブバンドから電子が励起され、励起した電子が井戸か
ら抜け出て電流を生成する。[Operation] When light such as infrared rays is incident on the superlattice, electrons are excited from subbands in the superlattice, and the excited electrons escape from the wells to generate current.
【0011】[0011]
【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る半導体光検出装
置の一例を示す断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a sectional view showing an example of a semiconductor photodetection device according to the present invention.
【0012】半導体光検出装置1は半導体基板2の上に
n+型GaAs電極層3、GaAs/AlGaAs超格
子4及びn+型GaAs電極層5を積層し、n+型Ga
As電極層3,5の表面には金属電極3a,5aを設け
ている。The semiconductor photodetector 1 has an n+ type GaAs electrode layer 3, a GaAs/AlGaAs superlattice 4, and an n+ type GaAs electrode layer 5 stacked on a semiconductor substrate 2.
Metal electrodes 3a, 5a are provided on the surfaces of the As electrode layers 3, 5.
【0013】超格子4は分子線エピタキシー(MBE)
や有機金属気相成長法(MOVPE)などの膜厚制御性
の高いエピタキシャル成長法により形成され、その周期
は数10〜100オングストロームである。[0013] The superlattice 4 is formed by molecular beam epitaxy (MBE).
It is formed by an epitaxial growth method with high film thickness controllability, such as metal organic vapor phase epitaxy (MOVPE), and its period is several tens to hundreds of angstroms.
【0014】また超格子4はリン酸やアンモニアを用い
たウェットエッチングやプラズマによるドライエッチン
グによって端面を傾斜面4aとし、この傾斜面4aの外
側に赤外線を透過する絶縁体層6を介して金属反射膜7
を設けている。Further, the superlattice 4 has an inclined surface 4a at its end face by wet etching using phosphoric acid or ammonia or dry etching using plasma, and metal reflection is formed on the outside of this inclined surface 4a via an insulating layer 6 that transmits infrared rays. Membrane 7
has been established.
【0015】而して、半導体基板2側から入射した赤外
線は反射膜7で反射して超格子4に略平行な角度で入射
する。そして、超格子4に赤外線等の光が入射すると効
率よく電子が励起され、励起した電子が井戸から抜け出
て電流を生成する。The infrared rays incident from the semiconductor substrate 2 side are reflected by the reflective film 7 and incident on the superlattice 4 at an angle substantially parallel to the superlattice 4. When light such as infrared rays is incident on the superlattice 4, electrons are efficiently excited, and the excited electrons escape from the wells to generate current.
【0016】図2は別実施例を示し、この実施例にあっ
ては半導体光検出装置1の上に、信号転送用スイッチと
してのコレクタアップ型ヘテロ構造のバイポーラトラン
ジスタ10を一体的に形成している。このバイポーラト
ランジスタ10は前記n+型GaAs電極層5をエミッ
タとして共用し、このn+型GaAs電極層5の上にn
型AlGaAsヘテロエミッタ11、p型GaAsベー
ス12、n型GaAsコレクタ13及びn+型GaAs
コレクタ14を形成している。FIG. 2 shows another embodiment, in which a collector-up heterostructure bipolar transistor 10 as a signal transfer switch is integrally formed on the semiconductor photodetector 1. There is. This bipolar transistor 10 also uses the n+ type GaAs electrode layer 5 as an emitter, and has an n
type AlGaAs heteroemitter 11, p-type GaAs base 12, n-type GaAs collector 13, and n+ type GaAs
A collector 14 is formed.
【0017】而して、超格子構造の光検出装置1の上に
形成したバイポーラトランジスタ10のベース電極に流
す電流を周期的にオン・オフすることにより超格子構造
の光検出部に入射した光を電気信号として順次取り出す
ことができる。By periodically turning on and off the current flowing through the base electrode of the bipolar transistor 10 formed on the photodetecting device 1 having the superlattice structure, the light incident on the photodetecting section having the superlattice structure can be detected. can be sequentially extracted as electrical signals.
【0018】また、本発明に係る半導体光検出装置のよ
うに、超格子の端面を傾斜面とした半導体光検出装置の
上にバイポーラトランジスタを設ければ、傾斜領域を素
子分離領域、配線領域と兼ねさせることができ、更なる
高集積化が可能になる。Furthermore, if a bipolar transistor is provided on a semiconductor photodetector device in which the end face of the superlattice is a sloped surface, as in the semiconductor photodetector device according to the present invention, the sloped region can be used as an element isolation region or a wiring region. This makes it possible to achieve even higher integration.
【0019】尚、実施例では赤外線を検出する例を示し
たが、可視光等を検出するものでもよく、また光検出部
としてn+nn+構造のダイオードを示したが、pin
構造、p+ip+構造或いはp+pp+構造のものでも
よい。
更に半導体基板や電極層の光の入射面を従来と同様にノ
コギリ状に加工してもよい。In the embodiment, an example of detecting infrared rays was shown, but it may also be possible to detect visible light, etc. Also, although a diode with an n+nn+ structure is shown as the photodetecting section, pin
It may have a p+ip+ structure or a p+pp+ structure. Furthermore, the light incident surface of the semiconductor substrate or electrode layer may be processed into a sawtooth shape as in the conventional method.
【0020】[0020]
【発明の効果】以上に説明したように本発明によれば、
超格子構造の光検出部の端面を傾斜面とし、この傾斜面
の外側に反射膜を形成したので、外部からの光を超格子
と略平行な角度で入射せしめることができ、光吸収率が
大幅に向上し、高感度のモノリシック型の光検出装置を
得ることができ、更にこの光検出装置を用いて、高感度
で高集積化したイメージセンサを構成することができる
。[Effects of the Invention] As explained above, according to the present invention,
Since the end face of the photodetecting part of the superlattice structure is an inclined surface and a reflective film is formed on the outside of this inclined surface, light from the outside can be made to enter at an angle approximately parallel to the superlattice, and the light absorption rate can be reduced. It is possible to obtain a monolithic photodetection device with significant improvement and high sensitivity, and furthermore, by using this photodetection device, a highly sensitive and highly integrated image sensor can be constructed.
【図1】本発明に係る半導体光検出装置の断面図FIG. 1 is a cross-sectional view of a semiconductor photodetection device according to the present invention.
【図2
】本発明に係る半導体光検出装置を一体的に組込んだ半
導体装置の断面図[Figure 2
]A cross-sectional view of a semiconductor device in which a semiconductor photodetection device according to the present invention is integrally incorporated.
【図3】超格子と光の入射角との関係を示す図[Figure 3] Diagram showing the relationship between the superlattice and the incident angle of light
【図4】
従来構造を示す断面図[Figure 4]
Cross-sectional view showing conventional structure
【図5】従来構造を示す断面図[Figure 5] Cross-sectional view showing conventional structure
1…半導体光検出装置、2…半導体基板、3,5…n+
型GaAs電極層、4…超格子、7…反射膜、10…バ
イポーラトランジスタ。1... Semiconductor photodetector, 2... Semiconductor substrate, 3, 5... n+
type GaAs electrode layer, 4... superlattice, 7... reflective film, 10... bipolar transistor.
Claims (1)
を積層して形成した半導体光検出装置において、前記光
検出部の端面は傾斜面とされ、この傾斜面の外側に外部
からの光を超格子と略平行な角度で入射せしめる反射膜
が形成されていることを特徴とする半導体光検出装置。1. A semiconductor photodetecting device in which a superlattice-structured photodetecting section is stacked on a semiconductor substrate, wherein an end surface of the photodetecting section is an inclined surface, and an external light source is formed on the outside of the inclined surface. A semiconductor photodetection device characterized in that a reflective film is formed that allows the light to be incident at an angle substantially parallel to the superlattice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3168933A JP2988540B2 (en) | 1991-06-13 | 1991-06-13 | Semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3168933A JP2988540B2 (en) | 1991-06-13 | 1991-06-13 | Semiconductor photodetector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04367282A true JPH04367282A (en) | 1992-12-18 |
JP2988540B2 JP2988540B2 (en) | 1999-12-13 |
Family
ID=15877241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3168933A Expired - Lifetime JP2988540B2 (en) | 1991-06-13 | 1991-06-13 | Semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2988540B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0663699A2 (en) * | 1993-12-20 | 1995-07-19 | Nec Corporation | Manufacturing method of an opto-electric semiconductor device |
CN111595884A (en) * | 2020-07-07 | 2020-08-28 | 中国工程物理研究院电子工程研究所 | Scanning electron microscope detection method suitable for thin-layer superlattice material |
-
1991
- 1991-06-13 JP JP3168933A patent/JP2988540B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0663699A2 (en) * | 1993-12-20 | 1995-07-19 | Nec Corporation | Manufacturing method of an opto-electric semiconductor device |
EP0663699A3 (en) * | 1993-12-20 | 1995-09-27 | Nec Corp | Process for the production of opto-electrical semiconductor components. |
US5576221A (en) * | 1993-12-20 | 1996-11-19 | Nec Corporation | Manufacturing method of semiconductor device |
CN111595884A (en) * | 2020-07-07 | 2020-08-28 | 中国工程物理研究院电子工程研究所 | Scanning electron microscope detection method suitable for thin-layer superlattice material |
CN111595884B (en) * | 2020-07-07 | 2024-03-15 | 中国工程物理研究院电子工程研究所 | Scanning electron microscope detection method suitable for thin-layer superlattice material |
Also Published As
Publication number | Publication date |
---|---|
JP2988540B2 (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5386128A (en) | Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output | |
US8314446B2 (en) | Photo-detector array, semiconductor image intensifier and methods of making and using the same | |
US8441032B2 (en) | Low-level signal detection by semiconductor avalanche amplification | |
US9076702B2 (en) | Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same | |
EP2109146B1 (en) | Infrared detector, infrared detecting apparatus, and method of manufacturing infrared detector | |
US4876586A (en) | Grooved Schottky barrier photodiode for infrared sensing | |
US10115764B2 (en) | Multi-band position sensitive imaging arrays | |
CN101356653A (en) | Optically controlled field-effect transistor and integrated photodetector using it | |
US10312390B2 (en) | Light receiving device and method of producing light receiving device | |
JP2004031452A (en) | Rear face incident type imaging device | |
US20110101483A1 (en) | Two colour photon detector | |
US6054718A (en) | Quantum well infrared photocathode having negative electron affinity surface | |
US5410168A (en) | Infrared imaging device | |
EP0345972A1 (en) | Quantum-well radiation detector | |
US20130009045A1 (en) | Self-Aligned Contacts for Photosensitive Detection Devices | |
JPH04367282A (en) | Semiconductor photodetector | |
JP3716401B2 (en) | Quantum well optical sensor | |
JP2773930B2 (en) | Light detection device | |
JPH0517492B2 (en) | ||
JP2508579B2 (en) | Method of manufacturing array type infrared detector | |
JP7516730B2 (en) | Infrared sensor and light detection method | |
JP2000323742A (en) | Infrared detector | |
JPH04364072A (en) | Semiconductor device | |
JPS6242447A (en) | Solid-state image pickup device | |
JPS63305568A (en) | Photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990922 |