JPH04366424A - Method for initializing optical disk - Google Patents
Method for initializing optical diskInfo
- Publication number
- JPH04366424A JPH04366424A JP14218991A JP14218991A JPH04366424A JP H04366424 A JPH04366424 A JP H04366424A JP 14218991 A JP14218991 A JP 14218991A JP 14218991 A JP14218991 A JP 14218991A JP H04366424 A JPH04366424 A JP H04366424A
- Authority
- JP
- Japan
- Prior art keywords
- disk
- laser beam
- recording
- phase change
- optical disc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 14
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 238000011423 initialization method Methods 0.000 claims description 10
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 abstract description 12
- 230000008025 crystallization Effects 0.000 abstract description 12
- 239000002245 particle Substances 0.000 abstract 3
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910000618 GeSbTe Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910005898 GeSn Inorganic materials 0.000 description 2
- 229910018314 SbSeBi Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910007277 Si3 N4 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、レーザ光照射により可
逆的な相変化を用いて情報を記録する光ディスクに関す
るものであって、特に、作成された相変化型光ディスク
を使用するに先立ち、記録膜の状態を初期化するための
光ディスク初期化方法に関する。[Field of Industrial Application] The present invention relates to an optical disc that records information using a reversible phase change caused by laser beam irradiation. The present invention relates to an optical disc initialization method for initializing the state of a film.
【0002】0002
【従来の技術】レーザ光を用いた光ディスク記録方式は
大容量記録が可能であり、非接触で高速アクセスできる
ことから、大容量メモリとして実用化が始まっている。
光ディスクはコンパクトディスクやレーザディスクとし
て知られている再生専用型、ユーザ自身で記録できる追
記型、及びユーザ側で繰り返し記録消去ができる書き替
え型に分類される。追記型・書き替え型の光ディスクは
コンピュータの外部メモリ、あるいは文書・画像ファイ
ルとして使用されようとしている。2. Description of the Related Art Optical disk recording systems using laser light are capable of large-capacity recording and non-contact high-speed access, and are now being put to practical use as large-capacity memories. Optical discs are classified into read-only types known as compact discs and laser discs, write-once types that allow users to record on their own, and rewritable types that allow users to repeatedly record and erase information. Write-once and rewritable optical discs are being used as external memory for computers and for document and image files.
【0003】書き替え型光ディスクには、記録膜の相変
化を利用した相変化型光ディスクと垂直磁化膜の磁化方
向の変化を利用した光磁気ディスクがある。このうち、
相変化光ディスクは、外部磁場が不要で、かつ、オーバ
ライトが容易にできることから、今後書き替え型光ディ
スクの主流になることが期待されている。[0003] Rewritable optical disks include phase-change optical disks that utilize phase changes in a recording film and magneto-optical disks that utilize changes in the magnetization direction of a perpendicularly magnetized film. this house,
Since phase change optical disks do not require an external magnetic field and can be easily overwritten, they are expected to become the mainstream of rewritable optical disks in the future.
【0004】従来よりレーザ光照射により結晶−非晶質
間の相変化を起こす記録膜を用いた書き替え可能な、い
わゆる相変化型光ディスクが知られている。相変化型光
ディスクでは記録膜に記録すべき情報に応じた高パワの
レーザ光スポットを照射し、記録膜温度を局部的に上昇
させることにより、結晶−非晶質間の相変化を起こさせ
て記録し、これに伴う光学定数の変化を低パワのレーザ
光によって反射光強度差として読み取ることにより再生
を行っている。例えば、結晶化時間が比較的遅い記録膜
を用いた相変化光ディスクは、ディスクを回転させ、デ
ィスクに形成された記録膜にレーザ光を照射し、記録膜
の温度を融点以上に上昇させ、レーザ光が通過した後、
急冷することによりその部分を非晶質状態とし、記録す
る。消去時には、記録膜温度を結晶化温度以上、融点以
下の結晶化可能温度範囲で結晶化を進行させるために十
分な時間保持し、記録膜を結晶化させる。このための方
法としては、レーザ光進行方向に長い長円レーザ光を照
射する方法が知られている。既に記録したデータを消去
しながら新しい情報を記録する2ビームによる疑似的な
オーバライトを行う場合には、消去用の長円レーザ光を
記録用円形レーザ光に先行させて照射するように配置す
る。So-called phase-change optical disks, which are rewritable and use a recording film that undergoes a phase change between crystal and amorphous upon irradiation with laser light, have been known. In phase-change optical discs, a high-power laser beam spot is irradiated on the recording film according to the information to be recorded, and the temperature of the recording film is locally raised to cause a phase change between crystal and amorphous. Reproduction is performed by recording and reading the accompanying change in optical constants as a difference in reflected light intensity using a low-power laser beam. For example, a phase-change optical disk using a recording film with a relatively slow crystallization time rotates the disk and irradiates the recording film formed on the disk with laser light to raise the temperature of the recording film above its melting point. After the light passes through
The area is made amorphous by rapid cooling and recorded. During erasing, the temperature of the recording film is maintained within the crystallization temperature range of not less than the crystallization temperature and not more than the melting point for a sufficient period of time to allow crystallization to proceed, thereby crystallizing the recording film. As a method for this purpose, a method of irradiating a long oval laser beam in the direction in which the laser beam travels is known. When performing a pseudo overwrite using two beams that records new information while erasing already recorded data, the elliptical laser beam for erasing is irradiated in advance of the circular laser beam for recording. .
【0005】一方、高速結晶化が可能な情報記録膜を用
いたディスクでは、円形に集光した1本のレーザ光を使
う。従来より知られている方法は、レーザ光のパワを2
つのレベル間で変化させることにより、結晶化あるいは
非晶質化を行う。すなわち、記録膜の温度を融点以上に
上昇させることが可能なパワのレーザ光を記録膜に照射
することにより、そのほとんどの部分は冷却時に非晶質
状態となり、一方、記録膜温度が結晶化温度以上,融点
以下の温度に達するようなパワのレーザ光が照射された
部分は結晶状態になる。On the other hand, a disk using an information recording film capable of high-speed crystallization uses a single laser beam focused in a circular shape. The conventionally known method is to reduce the power of laser light by 2
Crystallization or amorphization is achieved by changing between two levels. In other words, by irradiating the recording film with a laser beam of power capable of raising the temperature of the recording film above its melting point, most parts of the recording film become amorphous when cooled, while the temperature of the recording film becomes crystallized. The part that is irradiated with a laser beam with a power that reaches a temperature above the melting point and below the melting point becomes a crystalline state.
【0006】[0006]
【発明が解決しようとする課題】相変化型光ディスクを
使用する場合には、記録消去に先立って、記録膜を初期
化する必要がある。相変化型光ディスクの記録膜には、
カルコゲナイド系材料であるGeSbTe系,InSb
Te系,InSe系,InTe系,AsTeGe系,T
eOx−GeSn系,TeSeSn系,SbSeBi系
,BiSeGe系などが用いられるが、いずれも抵抗加
熱真空蒸着法,電子ビーム真空蒸着法,スパッタリング
法などの成膜法で成膜される。成膜直後の記録膜の状態
は一種の非晶質状態であり、この記録膜に非晶質の記録
部を形成するには、記録膜全体を結晶質にしておく初期
化処理が必要である。When using a phase change optical disk, it is necessary to initialize the recording film prior to erasing information. The recording film of a phase change optical disc has
Chalcogenide materials such as GeSbTe and InSb
Te series, InSe series, InTe series, AsTeGe series, T
eOx-GeSn-based, TeSeSn-based, SbSeBi-based, BiSeGe-based, etc. are used, and all of them are formed by film forming methods such as resistance heating vacuum evaporation, electron beam vacuum evaporation, and sputtering. The state of the recording film immediately after film formation is a kind of amorphous state, and in order to form an amorphous recording part in this recording film, an initialization process is required to make the entire recording film crystalline. .
【0007】従来、この初期化処理の手段としては、デ
ィスクを回転させながら、光ヘッドを用いて、1(μm
)〜2(μm)径に集光されたレーザ光を、光ディスク
のプリグルーブ部に照射する方法が採用されている。
しかしながら、この場合、照射レーザ光の強度分布がガ
ウシアン分布であり強度分布が一様でないために、ディ
スクのプリグルーブ部を均一に初期化できないという欠
点があった。すなわち、照射レーザ光の強度分布を反映
して、レーザ光照射中心近傍は結晶化温度以上に昇温さ
れて結晶化するが、その周囲は昇温が不十分であるため
に未変化のままとなってしまうという問題点があった。Conventionally, this initialization process has been carried out using an optical head while rotating the disk.
A method has been adopted in which a pregroove portion of an optical disc is irradiated with a laser beam focused to a diameter of 2 (μm). However, in this case, the intensity distribution of the irradiated laser beam is a Gaussian distribution and is not uniform, so there is a drawback that the pregroove portion of the disk cannot be uniformly initialized. In other words, reflecting the intensity distribution of the irradiated laser beam, the temperature near the center of laser beam irradiation is raised above the crystallization temperature and crystallized, but the surrounding area remains unchanged because the temperature is insufficiently raised. There was a problem with this.
【0008】また、他の光ディスク初期化方法として、
数十ミクロン以上のビーム径を持つ高出力レーザ光を光
ディスクに照射する方法も提案されているが、この場合
、ビーム径が大きいために記録膜を結晶化温度以上に昇
温するためにはかなりの高パワが必要となる。そのため
に、ここに使用できる光源は高出力ガスレーザや高出力
固体レーザとなり、周辺装置が新たに必要となって初期
化装置そのものが大型になってしまうという欠点があっ
た。[0008] Also, as another optical disc initialization method,
A method has also been proposed in which an optical disc is irradiated with a high-power laser beam with a beam diameter of several tens of microns or more, but in this case, because the beam diameter is large, it takes a considerable amount of time to heat the recording film above the crystallization temperature. high power is required. Therefore, the light source that can be used here is a high-output gas laser or a high-output solid-state laser, which has the disadvantage that new peripheral equipment is required and the initialization device itself becomes large.
【0009】さらに、従来の初期化方法では、図2に示
したように、初期化部分の結晶31と記録時に記録点3
3の周囲に形成される環状の溶融結晶化部分(リム)の
結晶32とは粒径が異なり、その結果、両者の反射率が
異なるために、十分な消去率が得られない、あるいは、
オーバライト初期に記録・消去特性が変動するという欠
点があった。Furthermore, in the conventional initialization method, as shown in FIG.
The grain size is different from that of the crystal 32 of the annular melt crystallized portion (rim) formed around the crystal 3, and as a result, the reflectance of the two is different, so that a sufficient erasing rate cannot be obtained, or
There was a drawback that the recording/erasing characteristics fluctuated at the initial stage of overwriting.
【0010】本発明の目的は上記の欠点を解決し、従来
の光ディスク装置に採用されている技術を生かした簡単
な手法で、相変化型光ディスクの良好な初期化処理がで
きる光ディスク初期化方法を提供することにある。An object of the present invention is to solve the above-mentioned drawbacks and to provide an optical disk initialization method that can perform good initialization of a phase change type optical disk using a simple technique that utilizes the technology employed in conventional optical disk devices. It is about providing.
【0011】[0011]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、可逆的な相変化を用い、レーザ光照射
による情報記録膜の相状態変化によって情報の記録・再
生・消去を行う相変化型光ディスクの初期化方法であっ
て、記録時に形成される記録ビット周囲の環状結晶部の
結晶粒と同じ粒径の結晶粒を前記相変化型光ディスク全
体に形成することを特徴とする。[Means for Solving the Problems] In order to solve the above problems, the present invention uses reversible phase change to record, reproduce, and erase information by changing the phase state of an information recording film by laser beam irradiation. A method for initializing a phase change optical disk, characterized in that crystal grains having the same grain size as crystal grains in an annular crystal part around a recording bit formed during recording are formed over the entire phase change optical disk. .
【0012】また本発明は、前記初期化方法として、集
光レーザ光の照射位置を、前記相変化型光ディスクの1
回転あたりに、前記相変化型光ディスクの半径方向に一
定量送りながら前記集光レーザ光を前記相変化型光ディ
スクに照射し、記録ビット周囲の環状結晶部の結晶粒と
同じ粒径の結晶からなる結晶化領域を同心円状もしくは
スパイラル状に連続して形成することを特徴とする。Further, in the present invention, as the initialization method, the irradiation position of the focused laser beam is set to one of the phase change optical discs.
The focused laser beam is irradiated onto the phase change optical disk while being sent a certain amount in the radial direction of the phase change optical disk per rotation, and the laser beam is made of crystals having the same grain size as the crystal grains of the annular crystal part around the recording bit. It is characterized in that the crystallized regions are continuously formed in a concentric or spiral shape.
【0013】[0013]
【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明にかかる光ディスク初期化方
法を示した図である。図1において、ディスクを初期化
するための集光レーザ光2は、0.5(μm)〜2(μ
m)径に絞られ、ディスク上に照射される。プリグルー
ブ凸部11あるいは凹部12の幅は0.3(μm)〜1
.3(μm)であり、ディスク円周方向にスパイラル状
に形成されている。情報の記録用にはこのプリグルーブ
のうち幅の広いほうを用いることが多い。たとえば、1
.3(μm)幅のプリグルーブ凸部11を使用する場合
、0.5(μm)〜2(μm)径の集光レーザ光2でそ
の領域を初期化しようとしても、レーザ光の強度分布が
ガウシアン型であるために凸部11全体を一様な結晶状
態にすることは困難である。Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an optical disc initialization method according to the present invention. In FIG. 1, the focused laser beam 2 for initializing the disk is 0.5 (μm) to 2 (μm)
m) is focused on the diameter and irradiated onto the disk. The width of the pregroove convex portion 11 or the concave portion 12 is 0.3 (μm) to 1
.. 3 (μm), and is formed in a spiral shape in the circumferential direction of the disk. The wider pregroove is often used for recording information. For example, 1
.. When using a pregroove convex portion 11 with a width of 3 (μm), even if you try to initialize that area with a condensed laser beam 2 with a diameter of 0.5 (μm) to 2 (μm), the intensity distribution of the laser beam will be Since it is a Gaussian type, it is difficult to make the entire convex portion 11 in a uniform crystalline state.
【0014】本発明では、図1に示した集光レーザ光2
をディスクの回転に同期させて半径方向に送りながら、
ディスク上に照射する。この時のレーザ光2のパワレベ
ルは、ディスクの記録層が溶融するように設定される。
ディスクが1回転した状態ではプリグルーブ部の一部分
に溶融結晶化領域22が形成される。レーザ光を回転に
同期させて半径方向に送り、溶融結晶化領域22を同心
円状あるいはスパイラル状に連続して形成することで、
プリグルーブ部凸部11,凹部12に一様に溶融結晶化
領域22を形成することができ、初期化時に記録点周囲
の結晶32(図2参照)と同じ粒径の結晶を光ディスク
全体に形成することができる。なお図において、21は
溶融非晶質領域を示している。In the present invention, the focused laser beam 2 shown in FIG.
While feeding in the radial direction in synchronization with the rotation of the disk,
Irradiate onto the disc. The power level of the laser beam 2 at this time is set so as to melt the recording layer of the disk. When the disk rotates once, a molten crystallized region 22 is formed in a portion of the pregroove portion. By sending the laser beam in the radial direction in synchronization with the rotation and continuously forming the melted crystallized region 22 in a concentric or spiral shape,
The melted crystallized region 22 can be uniformly formed in the pregroove convex part 11 and the concave part 12, and at the time of initialization, crystals with the same grain size as the crystals 32 around the recording point (see FIG. 2) are formed over the entire optical disc. can do. In the figure, numeral 21 indicates a molten amorphous region.
【0015】初期化処理の対象となる相変化型光ディス
クは、図3に示すように、円盤状のガラスもしくはプラ
スチックからなる基板61上に第1の誘電体層62,記
録層63,第2の誘電体層64,金属反射層65が順次
形成された構成、あるいは円盤状のガラスもしくはプラ
スチックからなる基板61上に第1の誘電体層62,記
録層63,第2の誘電体層64が順次形成された構成で
ある。ここで、第1の誘電体層62と第2の誘電体層6
4にはSiO2 ,Si3 N4 ,AlN,TiO2
,SiOなどの材料が用いられる。記録層63として
はカルコゲナイド系材料であるGeSbTe系,InS
bTe系,InSe系,InTe系,AsTeGe系,
TeOx−GeSn系,TeSeSn系,SbSeBi
系,BiSeGe系などが用いられる。金属反射層65
にはAl,Au,Cu,Ag,Tiなどの金属が用いら
れる。As shown in FIG. 3, the phase change optical disk to be subjected to initialization processing has a first dielectric layer 62, a recording layer 63, a second dielectric layer 63, and a second dielectric layer 62 on a disk-shaped substrate 61 made of glass or plastic. A structure in which a dielectric layer 64 and a metal reflective layer 65 are sequentially formed, or a first dielectric layer 62, a recording layer 63, and a second dielectric layer 64 are sequentially formed on a disk-shaped substrate 61 made of glass or plastic. This is the formed configuration. Here, the first dielectric layer 62 and the second dielectric layer 6
4 contains SiO2, Si3 N4, AlN, TiO2
, SiO, etc. are used. The recording layer 63 is made of a chalcogenide material such as GeSbTe or InS.
bTe series, InSe series, InTe series, AsTeGe series,
TeOx-GeSn system, TeSeSn system, SbSeBi
BiSeGe type, BiSeGe type, etc. are used. Metal reflective layer 65
Metals such as Al, Au, Cu, Ag, and Ti are used for the material.
【0016】次に、プリグルーブ付きポリカーボネート
基板上にスパッタ法により作成されたGeSbTe記録
膜付き単板の相変化型光ディスク(直径130mm)を
用いて光ディスク初期化方法の動作を確認した。ここで
用いた光ディスクは、誘電体層としてSiO2 、金属
反射層としてAlが採用されているものである。このデ
ィスクを11.3(m/s)の一定線速度で回転させな
がら、初期化を試みた。Next, the operation of the optical disk initialization method was confirmed using a single-plate phase change optical disk (diameter 130 mm) with a GeSbTe recording film formed by sputtering on a pregrooved polycarbonate substrate. The optical disc used here employs SiO2 as the dielectric layer and Al as the metal reflective layer. Initialization was attempted while rotating this disk at a constant linear velocity of 11.3 (m/s).
【0017】光ヘッドのレーザ光源には波長830(n
m),出力20(mW)の半導体レーザを用いた。ディ
スク面上のレーザスポット径は約1.5(μm)であっ
た。トラッキングサーボをかけずにフォーカスサーボの
みをかけた状態で、レーザ光をディスク1回転あたり、
ディスクの半径方向に0.1(μm)〜2(μm)ずつ
送りながら、初期化を行った。このとき、レーザ光のデ
ィスク面上での出力は13(mW)に設定した。図4に
示したように、0.1(μm)〜0.6(μm)単位で
レーザ光をディスクの半径方向に送った場合に、反射光
量が最も増大し、初期化後の繰り返しオーバライトにお
いて、良好な再生信号C/Nと消去率が得られた。また
、0.1(μm)〜0.6(μm)単位でレーザ光をデ
ィスクの半径方向に送り初期化した後、記録したトラッ
クを透過型電子顕微鏡を用いて観察したところ、初期化
領域の結晶の粒径と記録ビット周囲の結晶の粒径が同一
であることが確認された。The laser light source of the optical head has a wavelength of 830 (n
m), a semiconductor laser with an output of 20 (mW) was used. The laser spot diameter on the disk surface was approximately 1.5 (μm). With only the focus servo applied without the tracking servo, the laser beam is
Initialization was performed while feeding the disk by 0.1 (μm) to 2 (μm) in the radial direction. At this time, the output of the laser beam on the disk surface was set to 13 (mW). As shown in Figure 4, when the laser beam is sent in the radial direction of the disk in units of 0.1 (μm) to 0.6 (μm), the amount of reflected light increases the most, and repeated overwriting after initialization increases. Good reproduced signal C/N and erasure rate were obtained. In addition, after initializing the disk by sending a laser beam in the radial direction of the disk in units of 0.1 (μm) to 0.6 (μm), we observed the recorded tracks using a transmission electron microscope, and found that the initialization area was It was confirmed that the grain size of the crystal and the grain size of the crystal around the recording bit were the same.
【0018】[0018]
【発明の効果】以上説明したように、本発明では、溶融
再結晶化領域を初期化部分としているため、良好でかつ
一様な初期化ができ、初期化後に記録・消去特性に変動
のない記録ができるという利点がある。また、オーバラ
イト記録時には、消去部分が溶融再結晶化部分であるた
め、記録ビットの周囲に形成される溶融再結晶化部分(
リム)と同じ結晶組織になり、消去率の改善が図れる。
本発明に係る初期化方法を適用した装置では、既存の光
ヘッド技術が利用でき、小型の装置構成が可能という効
果がある。[Effects of the Invention] As explained above, in the present invention, since the melt recrystallized region is used as the initialization part, good and uniform initialization can be performed, and there is no change in recording/erasing characteristics after initialization. It has the advantage of being recordable. In addition, during overwrite recording, since the erased part is a melted recrystallized part, the melted recrystallized part (
It has the same crystal structure as the rim), which improves the erasure rate. A device to which the initialization method according to the present invention is applied can utilize existing optical head technology, and has the advantage of being able to have a compact device configuration.
【図1】本発明にかかる光ディスクの初期化の原理を示
す図である。FIG. 1 is a diagram showing the principle of initializing an optical disc according to the present invention.
【図2】従来の初期化における初期化部分の結晶と記録
点周囲の結晶を示す図である。FIG. 2 is a diagram showing a crystal in an initialization part and a crystal around a recording point in conventional initialization.
【図3】相変化型光ディスクの一構成を示す断面図であ
る。FIG. 3 is a cross-sectional view showing one configuration of a phase change optical disc.
【図4】本発明を用いて初期化を行った一実施例の初期
化の結果を示す図である。FIG. 4 is a diagram showing the results of initialization of an embodiment in which initialization was performed using the present invention.
2 集光レーザ光 11 プリグルーブ凸部 12 プリグルーブ凹部 21 溶融非晶質領域 22 溶融結晶化領域 31 初期化部分の結晶 32 記録点周囲の結晶 33 記録点 61 基板 62 第1の誘電体層 63 記録層 64 第2の誘電体層 65 金属反射層 2 Focused laser beam 11 Pregroove convex part 12 Pregroove recess 21 Molten amorphous region 22 Melt crystallization region 31 Crystal of initialization part 32 Crystals around the recording point 33 Record points 61 Substrate 62 First dielectric layer 63 Recording layer 64 Second dielectric layer 65 Metal reflective layer
Claims (2)
る情報記録膜の相状態変化によって情報の記録・再生・
消去を行う相変化型光ディスクの初期化方法であって、
記録時に形成される記録ビット周囲の環状結晶部の結晶
粒と同じ粒径の結晶粒を前記相変化形光ディスク全体に
形成することを特徴とする光ディスク初期化方法。[Claim 1] Using reversible phase change, information can be recorded, reproduced, and
A method for initializing a phase change optical disc for erasing, the method comprising:
An optical disk initialization method characterized in that crystal grains having the same grain size as the crystal grains of the annular crystal portion around the recording bit formed during recording are formed on the entire phase change optical disk.
いて、集光レーザ光の照射位置を、前記相変化型光ディ
スクの1回転あたりに、前記相変化型光ディスクの半径
方向に一定量送りながら前記集光レーザ光を前記相変化
型光ディスクに照射し、前記粒径の結晶からなる結晶化
領域を同心円状もしくはスパイラル状に連続して形成す
ることを特徴とする光ディスク初期化方法。2. The optical disc initialization method according to claim 1, wherein the irradiation position of the focused laser beam is moved by a certain amount in the radial direction of the phase change optical disc per one revolution of the phase change optical disc. A method for initializing an optical disc, comprising irradiating the phase change optical disc with a focused laser beam to continuously form crystallized regions made of crystals having the grain size in a concentric or spiral shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14218991A JPH04366424A (en) | 1991-06-14 | 1991-06-14 | Method for initializing optical disk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14218991A JPH04366424A (en) | 1991-06-14 | 1991-06-14 | Method for initializing optical disk |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04366424A true JPH04366424A (en) | 1992-12-18 |
Family
ID=15309459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14218991A Pending JPH04366424A (en) | 1991-06-14 | 1991-06-14 | Method for initializing optical disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04366424A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5557599A (en) * | 1994-04-15 | 1996-09-17 | Nec Corporation | Method for initializing a phase-change type of optical disk utilizing either absorption rates or mark lengths |
US5627012A (en) * | 1995-02-13 | 1997-05-06 | Tdk Corporation | Method for preparing phase change optical recording medium |
US5965323A (en) * | 1997-02-27 | 1999-10-12 | Tdk Corporation | Method for preparing optical recording medium |
US6094405A (en) * | 1997-11-07 | 2000-07-25 | Nec Corporation | Initialization method for phase change type recording medium |
US6242157B1 (en) | 1996-08-09 | 2001-06-05 | Tdk Corporation | Optical recording medium and method for making |
US6256286B1 (en) | 1997-02-21 | 2001-07-03 | Nec Corporation | Method for initiating a phase change recording medium |
US6537721B2 (en) | 1999-02-15 | 2003-03-25 | Tdk Corporation | Optical recording medium and method for its initialization |
US6898174B2 (en) | 2000-11-27 | 2005-05-24 | Tdk Corporation | Optical recording medium |
-
1991
- 1991-06-14 JP JP14218991A patent/JPH04366424A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5557599A (en) * | 1994-04-15 | 1996-09-17 | Nec Corporation | Method for initializing a phase-change type of optical disk utilizing either absorption rates or mark lengths |
US5627012A (en) * | 1995-02-13 | 1997-05-06 | Tdk Corporation | Method for preparing phase change optical recording medium |
US6242157B1 (en) | 1996-08-09 | 2001-06-05 | Tdk Corporation | Optical recording medium and method for making |
US6256286B1 (en) | 1997-02-21 | 2001-07-03 | Nec Corporation | Method for initiating a phase change recording medium |
US5965323A (en) * | 1997-02-27 | 1999-10-12 | Tdk Corporation | Method for preparing optical recording medium |
US6094405A (en) * | 1997-11-07 | 2000-07-25 | Nec Corporation | Initialization method for phase change type recording medium |
US6537721B2 (en) | 1999-02-15 | 2003-03-25 | Tdk Corporation | Optical recording medium and method for its initialization |
US6898174B2 (en) | 2000-11-27 | 2005-05-24 | Tdk Corporation | Optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2850754B2 (en) | Phase change optical disk | |
JPS60231928A (en) | Method for recording and erasing optical information | |
JPH08115534A (en) | Optical information recording medium | |
JP2796290B2 (en) | Information recording method using reversible phase change | |
JPH05159360A (en) | Phase change optical disk | |
JPH04366424A (en) | Method for initializing optical disk | |
JP2583929B2 (en) | Information signal recording method on optical disk | |
JP2897532B2 (en) | Reproduction method of phase change optical disk | |
JP2674837B2 (en) | Phase change optical disk | |
JPH0376027A (en) | Method and device for initializing recording medium | |
JP3076083B2 (en) | Optical disk initialization method and optical disk recording method | |
JP3080844B2 (en) | Phase change optical disk | |
JP2941703B2 (en) | Information recording method and information recording device | |
JP2850506B2 (en) | Optical disk initialization device | |
JPH03141028A (en) | Recording and erasing method for optical disk | |
JP2637825B2 (en) | Phase change optical disk | |
JPH03224791A (en) | Data recording medium | |
JP2639174B2 (en) | Optical recording medium | |
JP2655093B2 (en) | Optical head and optical disk device | |
JPH10162363A (en) | Method and device for initializing optical disk | |
JPH10334509A (en) | Optical information recording medium | |
JPH0388148A (en) | Phase change type optical disk | |
JPS59140638A (en) | Information recording method | |
JPH05109113A (en) | Phase transition type optical disk | |
JPH09212918A (en) | INFORMATION RECORDING MEDIUM, ITS INITIALIZATION METHOD, AND INITIALIZATION DEVICE |