JPH0436600A - Heat exchanger made of aluminum - Google Patents
Heat exchanger made of aluminumInfo
- Publication number
- JPH0436600A JPH0436600A JP14154890A JP14154890A JPH0436600A JP H0436600 A JPH0436600 A JP H0436600A JP 14154890 A JP14154890 A JP 14154890A JP 14154890 A JP14154890 A JP 14154890A JP H0436600 A JPH0436600 A JP H0436600A
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- core material
- weight
- alloy
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims abstract description 95
- 239000011162 core material Substances 0.000 claims abstract description 74
- 238000005219 brazing Methods 0.000 claims abstract description 61
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 28
- 239000000956 alloy Substances 0.000 claims abstract description 28
- 239000010405 anode material Substances 0.000 claims abstract description 20
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims abstract description 6
- 229910018137 Al-Zn Inorganic materials 0.000 claims abstract description 6
- 229910018573 Al—Zn Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 5
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 claims abstract description 3
- 238000007747 plating Methods 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 10
- 238000005260 corrosion Methods 0.000 abstract description 39
- 230000007797 corrosion Effects 0.000 abstract description 38
- 230000000694 effects Effects 0.000 description 18
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 238000003483 aging Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000004018 waxing Methods 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910009367 Zn M Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はろう付性が良好で、ろう付後の強度及び耐食性
に優れたチューブ、ヘッダープレート等を有するラジェ
ータやヒーターコアなどのアルミニウム製熱交換器に関
する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to aluminum heating devices such as radiators and heater cores having tubes, header plates, etc. that have good brazing properties and excellent strength and corrosion resistance after brazing. Regarding the exchanger.
[従来の技術]
自動車のラジェータやヒーターコアなどのチューブ材や
ヘッダプレート材には、3003などのA l−Mn系
合金を芯材とし、片面にAl−Si系合金のろう材、他
の片面にA l−Zn系合金やA I −Z−n −M
g系合金の犠牲陽極材をクラッドした3層クラッド材
が用いられている。[Prior art] Tube materials and header plate materials for automobile radiators, heater cores, etc. have a core material of Al-Mn alloy such as 3003, a brazing material of Al-Si alloy on one side, and a brazing material of Al-Si alloy on the other side. In addition, Al-Zn alloys and Al-Zn-M
A three-layer cladding material made of a sacrificial anode material made of a g-based alloy is used.
Al−Si系のろう材はチューブとフィンの接合、チニ
ーブとヘッダープレートとの接合のためのものである。The Al-Si brazing filler metal is used for joining tubes and fins, and joining chinives and header plates.
ろう付は不活性ガス雰囲気中で弗化物フラックスを用い
て行われることが多い。ろう何時の材料温度は580〜
600℃、保持時間は0〜5分であることが多い。Brazing is often performed using fluoride flux in an inert gas atmosphere. The material temperature during waxing is 580~
The temperature is 600°C and the holding time is often 0 to 5 minutes.
犠牲陽極材をクラッドした他の片面は、使用中に内側(
水側)になり、犠牲陽極作用を発揮して芯材の孔食や隙
間腐食を防止する。The other side clad with sacrificial anode material is inside (
water side) and acts as a sacrificial anode to prevent pitting and crevice corrosion of the core material.
[発明が解決しようとする課題]
近年ラジェータやヒーターコアなどの軽量化を求める要
求が強(、チューブ材やヘッダープレート材の薄肉化が
必要となっている。そのためには材料の高強度化特にろ
う何役の強度の向上が必要であり、高強度化のために芯
材中にMgを添加することが多くなってきている。しか
し、Mgはろう材中に表面に拡散していき、弗化物フラ
ックスと反応するため、綿状生成物(Mgの弗化物)が
生成して付着したり、接合不良を生じたりする。こうし
て芯材中へのMgの添加量は実用上0.2〜0.3重量
%に制限され、高強度化の妨げとなっている。[Problem to be solved by the invention] In recent years, there has been a strong demand to reduce the weight of radiators, heater cores, etc. (and thinner tube materials and header plate materials. It is necessary to improve the strength of the brazing material, and Mg is increasingly being added to the core material to increase the strength.However, Mg diffuses to the surface of the brazing material, and fluoride Because it reacts with the flux, a flocculent product (Mg fluoride) is generated and adheres to the core material, resulting in poor bonding.Thus, the amount of Mg added to the core material is practically 0.2 to 0. The content is limited to 3% by weight, which is an obstacle to increasing the strength.
本発明は、こうした実状に鑑み、ろう付性及び耐食性に
優れたアルミニウム製熱交換器を提供することを目的と
するものである。In view of these circumstances, it is an object of the present invention to provide an aluminum heat exchanger with excellent brazing properties and corrosion resistance.
[課題を解決するための手段]
本発明者らはMgが芯材から拡散して表面(ろう材側)
に゛到達する量を抑制するために芯材とろう材の間に中
間材を設け、中間材の合金種及び厚さについて種々検討
を加えた。その結果、中間材としてMn O,1〜2
.0重量%、TiO,06〜O45重量%を含み、更に
Cu0.5%以下、及び/又はSi0.5%以下を含む
合金を用い、その厚さを芯材中のMg量との関係におい
て決めることにより、表面に到達してフラックスと反応
するMgの量を抑制することができ、ろう付は性の低下
を防止すること、そして芯材から表面に拡散してフラッ
クスと反応したMgの量を0.80g/s 2以下に制
御すれば、接合不良や綿状生成物の生成のようなろう付
不良を生じないことを知見した。又、芯材中のCu量を
中間材中のCu量より0,15%以上多くすることによ
り、耐食性が著しく向上することを見出し、かくして本
発明を完成するに至った。[Means for solving the problem] The present inventors have discovered that Mg diffuses from the core material to the surface (brazing material side).
In order to suppress the amount reaching ゛, an intermediate material was provided between the core material and the brazing material, and various studies were conducted regarding the alloy type and thickness of the intermediate material. As a result, MnO,1~2 was used as an intermediate material.
.. Using an alloy containing 0% by weight, TiO, 06 to 45% by weight, and further containing 0.5% or less of Cu and/or 0.5% or less of Si, the thickness is determined in relation to the amount of Mg in the core material. By doing so, it is possible to suppress the amount of Mg that reaches the surface and reacts with the flux, and brazing prevents a decrease in properties. It has been found that if the brazing temperature is controlled to 0.80 g/s 2 or less, brazing defects such as poor bonding and formation of flocculent products will not occur. Furthermore, it has been found that corrosion resistance is significantly improved by increasing the amount of Cu in the core material by 0.15% or more than the amount of Cu in the intermediate material, thus completing the present invention.
すなわち、本発明は、プレージングシートをフッ化物系
のフラックスを用いてろう付してなるアルミニウム製熱
交換器において、上記プレージングシートはMn:OJ
〜2.0重量%、Cu : 0.25〜1.0重量%、
Mg : 0.4〜1.0重量%、Si:0.1〜1
.0重量%、T i : 0.06〜0.35重量%を
含み、残りAlと不可避不純物からなるAl合金を芯材
とし、芯材の片面にMn:0.1〜2.0重量%、T
i : 0.06〜0.35重量%を含み、更にCuO
,5重量%以下及び/又はSiO05重量%以下を含み
、残りAlと不可避不純物からなるAl合金の中間材を
介してAl−Si系合金のろう材をクラッドし、他の面
にA l−Zn系合金及びAl−Zn−Mg系合金のい
ずれかからなる犠牲陽極材をクラッドした4層クラッド
材であって、中間材の厚さT(μm)と芯材中のMg量
(%)の間にT ≧ 58X ([Mg(%) コ
− 0.351 ”’の関係があり、かつ、芯
材中のCu量(%)が中間材中のCu量(%)よりo、
15%以上多いことを特徴とするアルミニウム製熱交換
器である。That is, the present invention provides an aluminum heat exchanger in which a plating sheet is brazed using a fluoride-based flux, wherein the plating sheet is Mn:OJ.
~2.0% by weight, Cu: 0.25~1.0% by weight,
Mg: 0.4-1.0% by weight, Si: 0.1-1
.. 0% by weight, Ti: 0.06 to 0.35% by weight, and the remaining Al alloy consisting of inevitable impurities is used as a core material, and one side of the core material has Mn: 0.1 to 2.0% by weight, T
i: Contains 0.06 to 0.35% by weight, and further contains CuO
, 5% by weight or less and/or 5% by weight or less of SiO, the remaining Al and unavoidable impurities are clad with an Al-Si alloy brazing filler metal, and the other surface is coated with Al-Zn. A four-layer clad material clad with a sacrificial anode material made of either a Zn-based alloy or an Al-Zn-Mg-based alloy, and between the thickness T (μm) of the intermediate material and the amount of Mg (%) in the core material. There is a relationship of T ≧ 58
This is an aluminum heat exchanger characterized by 15% more heat exchanger.
次に本発明に用いるプレージングシートにおける各成分
、その含量等の限定理由について説明する。Next, the reason for limiting each component and its content in the plating sheet used in the present invention will be explained.
(1)プレージングシートの芯材
Mn:強度を向上させる。又、芯材の電位を責にして犠
牲陽極材との電位差を大きくし耐食性を向上させる。0
.3重量%未満では効果が十分でなく、2.O1i量%
を越えると鋳造時に粗大な化合物が生成し、健全な板材
が得られない。(1) Core material Mn of praising sheet: Improves strength. Furthermore, the potential difference between the core material and the sacrificial anode material is increased to improve corrosion resistance. 0
.. If it is less than 3% by weight, the effect will not be sufficient; 2. O1i amount%
If this value is exceeded, coarse compounds will be generated during casting, making it impossible to obtain a sound board.
Cu:芯材の電位を責にして、犠牲陽極材及び中間材と
芯材との電位差を大きくし、犠牲陽極材及び中間材の犠
牲陽極効果による防食作用を大きくする。更に芯材中の
Cuはろう何時に犠牲陽極材中及び中間材中へ拡散して
なだらかな濃度勾配を形成し、芯材側が責な電位、犠牲
陽極材及び中間材の各々表面側が卑な電位となり、その
間になだらかな電位分布を形成して腐食形態を全面腐食
型にする。以上のようなCuの防食作用は犠牲陽極材中
のCu量あるいは中間材中のCu量より芯材中のCu量
の方が多くなければ発揮されず、特に芯材中のCu量の
方が0.15%以上多くなければ、拡散後の濃度勾配が
小さすぎて効果が十分でない。Cu: Uses the potential of the core material to increase the potential difference between the sacrificial anode material and the intermediate material and the core material, thereby increasing the anticorrosion effect due to the sacrificial anode effect of the sacrificial anode material and the intermediate material. Furthermore, Cu in the core material diffuses into the sacrificial anode material and the intermediate material during soldering, forming a gentle concentration gradient, with the core material having a higher potential and the surface sides of the sacrificial anode material and intermediate material having less base potential. A gentle potential distribution is formed in between, making the corrosion form a general corrosion type. The anti-corrosion effect of Cu as described above will not be exhibited unless the amount of Cu in the core material is greater than the amount of Cu in the sacrificial anode material or the amount of Cu in the intermediate material. If the amount is not 0.15% or more, the concentration gradient after diffusion will be too small and the effect will not be sufficient.
通常犠牲陽極材中にCuを添加することはないが、中間
材には強度向上を目的としてCuを添加することがある
ので、その場合は注意が必要である。Cu is not usually added to the sacrificial anode material, but Cu may be added to the intermediate material for the purpose of improving strength, so care must be taken in this case.
芯材中のCuは強度向上にも寄与する。Cu in the core material also contributes to improving strength.
以上に示したCuの防食作用と強度向上効果は芯材中の
Cu量が0.25重量%未満では発揮されず、一方、1
.0重量%を越えると芯材自体の耐食性が悪くなると共
に芯材の融点が下がってろう何時に局部的な溶融を生ず
るようになる。The anticorrosion effect and strength improvement effect of Cu shown above are not exhibited when the amount of Cu in the core material is less than 0.25% by weight;
.. If it exceeds 0% by weight, the corrosion resistance of the core material itself deteriorates, and the melting point of the core material decreases, causing local melting during waxing.
Mg:芯材の強度を向上させる。強度向上効果はSi及
び/又はCuと共存するとろう付後の時効硬化により更
によく発揮される。Mg: Improves the strength of the core material. The strength improving effect is better exhibited by age hardening after brazing when it coexists with Si and/or Cu.
0.4重量%未満では効果が十分でなく、1.0重量%
を越えると耐食性が低下するとともに芯材の融点が下が
ってろう何時に局部的な溶融を生ずるようになる。If it is less than 0.4% by weight, the effect is not sufficient, and if it is less than 1.0% by weight,
If it exceeds this, the corrosion resistance decreases and the melting point of the core material decreases, causing local melting during soldering.
Si:芯材の強度を向上させる。強度向上効果はMgと
共存すると、ろう付後の時効硬化によりよく発揮される
。0.1重量%未満では効果が十分でなく、1.0重量
%を越えると耐食性が低下するとともに芯材の融点が下
がってろう何時に局部的な溶融を生ずるようになる。Si: Improves the strength of the core material. When coexisting with Mg, the strength improving effect is better exhibited by age hardening after brazing. If it is less than 0.1% by weight, the effect will not be sufficient, and if it exceeds 1.0% by weight, the corrosion resistance will decrease and the melting point of the core material will drop, causing local melting during soldering.
Ti:芯材の耐食性をより一層向上させる。すなわちT
iは濃度の高い領域と低い領域に分かれ、それらが板厚
方向に交互に分布して層状となり、Ti濃度が低い領域
が高い領域に比べて優先的に腐食することにより、腐食
形態を層状にする。その結果板厚方向への腐食の進行を
妨げて材料の耐孔食性を向上させる。0.06重量%未
満では効果が十分でなく、0.35重量%を越えると鋳
造時に粗大な化合物が生成し、健全な板材が得られない
。Ti: Further improves the corrosion resistance of the core material. That is, T
i is divided into regions with high and low Ti concentrations, which are distributed alternately in the thickness direction to form a layered structure, and regions with a low Ti concentration corrode preferentially compared to regions with a high Ti concentration, resulting in a layered corrosion pattern. do. As a result, the progress of corrosion in the thickness direction is inhibited and the pitting corrosion resistance of the material is improved. If it is less than 0.06% by weight, the effect will not be sufficient, and if it exceeds 0.35% by weight, coarse compounds will be produced during casting, making it impossible to obtain a sound plate.
その他の元素:Fe、Zn、(rSZrなどは本発明の
効果を損わない範囲で含まれてもよい。ただし、Feは
多量に含まれると耐食性を害するので0.7重量%以下
にする必要がある。Znは芯材の電位を卑にし、犠牲陽
極材及び中間材との電位差を小さくするので062重量
%以下にする必要がある。Other elements: Fe, Zn, (rSZr, etc.) may be included within a range that does not impair the effects of the present invention. However, if Fe is included in a large amount, corrosion resistance will be impaired, so it is necessary to limit the content to 0.7% by weight or less. Since Zn makes the potential of the core material base and reduces the potential difference between the sacrificial anode material and the intermediate material, it needs to be contained in an amount of 0.62% by weight or less.
(2)プレージングシートの中間材
Mn:強度を向上させる。0.1重量%未満では効果が
十分でなく、2.0重量%を越えると鋳造時に粗大な化
合物が生成し健全な板材が得られない。(2) Intermediate material Mn for plating sheet: Improves strength. If it is less than 0.1% by weight, the effect will not be sufficient, and if it exceeds 2.0% by weight, coarse compounds will be produced during casting, making it impossible to obtain a sound plate.
Ti:Tiは濃度の高い領域と低い領域に分かれ、それ
らが板厚方向に交互に分布して層状となり、Ti濃度が
低い領域が高い領域に比べて優先的に腐食することによ
り、腐食形態を層状にする。その結果、板厚方向への腐
食の進行を妨げて材料の耐孔食性を向上させる。0,0
6重量%未満では効果が十分でなく 、0.35重量%
を越えると鋳造時に粗大な化合物が生成し、健全な板材
が得られない。Ti: Ti is divided into high- and low-concentration regions, which are distributed alternately in the thickness direction to form a layered structure, and regions with low Ti concentration corrode preferentially compared to regions with high Ti concentration, resulting in a corrosion pattern. Layer. As a result, the progress of corrosion in the thickness direction is inhibited and the pitting corrosion resistance of the material is improved. 0,0
If it is less than 6% by weight, the effect is not sufficient, and 0.35% by weight.
If this value is exceeded, coarse compounds will be generated during casting, making it impossible to obtain a sound board.
Cu、Si:これらの元素は強度向上に寄与する。特に
ろう何時に芯材からMgが拡散してくるので、ろう付後
にはMgとCu。Cu, Si: These elements contribute to improving strength. In particular, Mg diffuses from the core material during brazing, so Mg and Cu are mixed together after brazing.
Siが共存することになり、時効硬化により強度が向上
する。しかしながら、これらの元素は芯材からろう材に
向ってMgが拡散するのを促進するため、含有量が多く
なるとろう付性が悪くなる。従ってろう付性の確保のた
めにCu、 0.5重量%以下、Si0.5重量%以下
に限定する必要がある。又、前記のように芯材から中間
材の表面(ろう材側)に向ってCuのなだらかな濃度勾
配を形成し、腐食形態を全面腐食型にするために、中間
材中のCu量は芯材中のCu量より0.15重量%以上
少なくする必要がある。Since Si coexists, the strength is improved by age hardening. However, since these elements promote the diffusion of Mg from the core material to the brazing material, the brazing properties deteriorate as the content increases. Therefore, in order to ensure brazability, it is necessary to limit Cu to 0.5% by weight or less and Si to 0.5% by weight or less. In addition, as mentioned above, in order to form a gentle concentration gradient of Cu from the core material to the surface of the intermediate material (brazing material side) and to make the corrosion form a general corrosion type, the amount of Cu in the intermediate material is adjusted to the core material. It is necessary to reduce the amount of Cu in the material by 0.15% by weight or more.
その他の元素: F e s Cr SZ r s Z
nなどは本発明の効果を損わない範囲で含まれてもよ
い。ただし、Feは多量に含まれると耐食性を害するの
で0.7%以下にする必要がある。又、Znは、犠牲陽
極効果を付与するために中間材に添加することがあるが
、その場合、Mgの拡散を促進しないように0.3%以
下としなければならない。Other elements: F e s Cr SZ r s Z
n, etc. may be included within a range that does not impair the effects of the present invention. However, since Fe impairs corrosion resistance if contained in a large amount, it must be kept at 0.7% or less. Further, Zn may be added to the intermediate material to provide a sacrificial anode effect, but in this case, the content must be 0.3% or less so as not to promote the diffusion of Mg.
厚さ:中間材は芯材中のMgが拡散してろう材側に到達
する量を抑制するためのものであり、その厚さT(μm
)は芯材中のMg量(%)に応じて次の式で決められる
。Thickness: The intermediate material is used to suppress the amount of Mg in the core material that diffuses and reaches the brazing material, and its thickness T (μm
) is determined by the following formula depending on the Mg amount (%) in the core material.
T≧58×l[Mg(%)]−0J5) ”2この式は
実験により求められたものであるが、芯材中のMg量が
多いほど中間材の厚さを厚くしなければならないことを
示している。そして中間材の厚さがこの式を満たさない
とき、すなわち58x I[Mg(%)] −0,15
) ”’より小さいときは、ろう何時にろう材側へのM
gの拡散量が多く、Mgと弗化物フラックスが反応して
接合不良が発生したり、綿状生成物が生成して外観を損
ねたりする。T≧58×l [Mg (%)] - 0J5) ”2 This formula was determined through experiments, but it means that the greater the amount of Mg in the core material, the thicker the intermediate material must be. When the thickness of the intermediate material does not satisfy this formula, that is, 58x I[Mg(%)] -0,15
) If it is smaller than '', the M to the filler metal side when soldering.
The amount of diffusion of Mg is large, and Mg and fluoride flux react with each other, resulting in defective bonding or producing flocculent products, which impairs the appearance.
(3)プレージングシートのろう材
ろう材は通常用いられるAl−Si系合金である。通常
6〜13重量%のSiを含む合金が用いられる。(3) Brazing material of the plating sheet The brazing material is a commonly used Al-Si alloy. Usually, an alloy containing 6 to 13% by weight of Si is used.
(4)プレージングシートの犠牲陽極材ラジェータやヒ
ーターコアなどで水と接する側(内面側)にクラッドさ
れ、犠牲陽極作用により芯材の孔食や隙間腐食を防止す
る。(4) Sacrificial anode material of the plating sheet The radiator, heater core, etc. are clad on the side (inner surface) that comes into contact with water, and the sacrificial anode action prevents pitting corrosion and crevice corrosion of the core material.
単に水と接するのみの場合はAl−Zn系合金が、ゴム
バッキングなどと接して隙間を形成する場合にはAl−
Zn−Mg系合金が用いられることが多い。又、いずれ
の場合もI ns 5nSGaSB sなどの電位を卑
にする元素を含んでもよい。Al-Zn alloy is used when it comes into contact with water only, and Al-Zn alloy is used when it comes into contact with rubber backing etc. to form a gap.
Zn-Mg alloys are often used. Further, in either case, an element that makes the potential less noble, such as I ns 5nSGaSB s, may be included.
(5)フラックスと反応したMgの量
プレージングシートの芯材中のMgは、ろう材中に中間
材中を拡散しろう材表面でフラックスと反応する。この
反応したMgの量、すなわちプレージングシートの単位
表面積当りの反応量が0.80g/lr”以下であれば
、綿状生成物の生成や接合不良などが生じない。(5) Amount of Mg Reacted with Flux Mg in the core material of the plating sheet diffuses through the intermediate material into the brazing material and reacts with the flux on the surface of the brazing material. If the amount of reacted Mg, that is, the amount of reacted Mg per unit surface area of the plating sheet is 0.80 g/lr" or less, no flocculent products or poor bonding will occur.
方、0.80g/m2を越えるとこれらのろう付不良が
生ずる。On the other hand, if it exceeds 0.80 g/m2, these brazing defects will occur.
ここで反応したMgの量は以下のように測定される。す
なわち、まず、ろう付換のプレージングシートの断面に
おいてEPMA線分析を行いMgの分布を求める。この
とき第1図のような分布曲線が得られる。そしてこの分
布曲線から、次式により反応したMgの量R(g/s’
)を計算する。The amount of Mg reacted here is measured as follows. That is, first, an EPMA line analysis is performed on a cross section of a plating sheet to be replaced with brazing to determine the distribution of Mg. At this time, a distribution curve as shown in FIG. 1 is obtained. From this distribution curve, the amount of Mg reacted R (g/s'
).
R= (Co / 100) ・p ・(A−B)/)
’ここで、Co:芯材中の初期Mg濃度(vt%)ρニ
ブレージングシートの密度
(g/g3)
A:拡散により芯材から失われた部
分の面積(腸2)
B:拡散により中間材とろう材中に
出現した部分の面積(12)
y;第1図におけるMg濃度0〜
Coまでの長さ(■)
なお、第1図におけるyの大きさは任意である。R= (Co/100) ・p ・(A-B)/)
'Here, Co: Initial Mg concentration in the core material (vt%) ρ Density of the nibrating sheet (g/g3) A: Area of the part lost from the core material due to diffusion (intestine 2) B: Intermediate area due to diffusion Area of the portion appearing in the material and brazing material (12) y; Length from Mg concentration 0 to Co in FIG. 1 (■) The size of y in FIG. 1 is arbitrary.
上記のMg反応量は、前記本発明の中間材の厚さと芯材
中のMg含量の関係式壬満足していれば、0.80g/
m2以下となる。The above Mg reaction amount is 0.80g/if the relational expression between the thickness of the intermediate material of the present invention and the Mg content in the core material is satisfied.
m2 or less.
[実施例コ 以下に実施例を挙げて、本発明を更に詳細に説明する。[Example code] The present invention will be explained in more detail with reference to Examples below.
実施例1
第1表に示す芯材用合金、第2表に示す中間材用合金〈
第3表に示するう材用合金、:14表に示す犠牲陽極材
用合金の鋳塊を準備し、中間材用合金、ろう材用合金及
び犠牲陽極材用合金を熱間圧延して所定の厚さとし、こ
れらと芯材用合金の鋳塊とを組み合わせて熱間圧延しク
ララド材を得た。その後冷間圧延、中間焼鈍、冷間圧延
により厚さ0.30m5の板(HI3材)を作成した。Example 1 Alloys for core materials shown in Table 1, alloys for intermediate materials shown in Table 2
An alloy for the filling material shown in Table 3: An ingot of the alloy for the sacrificial anode material shown in Table 14 is prepared, and the alloy for the intermediate material, the alloy for the brazing material, and the alloy for the sacrificial anode material are hot-rolled to the specified size. These were combined with a core alloy ingot and hot rolled to obtain a Clarado material. Thereafter, a plate (HI3 material) with a thickness of 0.30 m5 was created by cold rolling, intermediate annealing, and cold rolling.
クラッドの構成は第2図のとおりであり、合金の組合せ
は第5表のとおりとした。The composition of the cladding was as shown in FIG. 2, and the alloy combinations were as shown in Table 5.
得られたプレージングシートのろう材側にフッ化物フラ
ッフを塗布し、N2ガス中で材料温度を600℃(保持
時間5分)に加熱したー。その後、引張試験及び腐食試
験を行った。腐食試験の方法は外面側(ろう材側)につ
いてはCASS試験、30日間とし、内面側(犠牲陽極
材側)についてはCI ”’ 1100pp、 S O
4”−100ppm、HCO3″″1100pp、 C
u ”loppmを含む水溶液中に浸漬し、8hrの間
80℃に加熱し、その後室温まで放冷しなから16hr
放置するというサイクルを繰返し、3ケ月間行った。Fluoride fluff was applied to the brazing material side of the obtained plating sheet, and the material temperature was heated to 600°C (holding time: 5 minutes) in N2 gas. After that, a tensile test and a corrosion test were conducted. The corrosion test method was CASS test for 30 days on the outside side (brazing metal side), and CI''' 1100pp, SO on the inside side (sacrificial anode side).
4"-100ppm, HCO3""1100pp, C
Immerse it in an aqueous solution containing u''loppm, heat it to 80℃ for 8 hours, then let it cool to room temperature and then heat it for 16 hours.
The cycle of leaving it alone was repeated for three months.
又、上記プレージングシートをロールフォーミングして
、その端部を溶接した後、偏平管形状にしてチューブを
作成した。このとき犠牲陽極材をチューブの内面側、ろ
う材をチューブの外面側になるようにした。得られたチ
ューブをコルゲートフィン、ヘッダープレート及びサイ
ドプレートと組付け、フッ化物フラックスろう付(材料
温度600℃、保持時間5分)を行って、第3図のよう
な熱交換器を作成した。Further, the above-mentioned plating sheet was roll-formed, the ends of which were welded, and then a tube was made into a flat tube shape. At this time, the sacrificial anode material was placed on the inner surface of the tube, and the brazing material was placed on the outer surface of the tube. The obtained tube was assembled with corrugated fins, a header plate, and a side plate, and fluoride flux brazing was performed (material temperature: 600° C., holding time: 5 minutes) to produce a heat exchanger as shown in FIG. 3.
フィン材はAl−1,2%M n −1,5%Zn合金
で、厚さ0.1ha、ヘッダープレート材はAl1.2
%Mn−0,15%Cu合金の芯材の片面にAl−7,
4%Si合金のろう材を、他の片面にAl−1,5%Z
n合金の犠牲陽極材をクラッドしたもので、厚さ 1.
2msであった。なお、樹脂タンクはろう何役に0リン
グを介して機械的かしめによりヘッダープレートに取付
けたものである。こうして得た熱交換器について、チュ
ーブ芯材から外面側に拡散してフラックスと反応したM
gの量、チューブとフィンの接合状態、チューブ外面で
の綿状生成物(Mgのフッ化物)の生成状態を調べた。The fin material is Al-1.2% M n -1.5% Zn alloy, 0.1 ha in thickness, and the header plate material is Al1.2.
%Mn-0, Al-7 on one side of the 15% Cu alloy core material.
4%Si alloy brazing material and Al-1,5%Z on the other side.
It is clad with n-alloy sacrificial anode material, and has a thickness of 1.
It was 2ms. The resin tank was attached to the header plate by mechanical caulking via an O-ring. Regarding the heat exchanger obtained in this way, M diffused from the tube core material to the outer surface side and reacted with the flux.
The amount of g, the state of connection between the tube and fins, and the state of formation of flocculent products (Mg fluoride) on the outer surface of the tube were investigated.
以上の結果をまとめて第5表に示す。発明例No、1、
No、3〜13の場合、引張強さが18kgf/l1m
12以上と高く、最大腐食深さも小さい。反応したMg
量も0.80g/s’以下であり、ろう付性も良好であ
る。The above results are summarized in Table 5. Invention example No. 1,
For No. 3 to 13, the tensile strength is 18 kgf/l1m
12 or higher, and the maximum corrosion depth is also small. Reacted Mg
The amount is also 0.80 g/s' or less, and the brazing property is also good.
比較例N o、 2の場合、芯材中のCu量と中間材中
のCu量の差が0.10%と少ないために、外面側の腐
食が深くなっている。In the case of Comparative Example No. 2, the difference between the amount of Cu in the core material and the amount of Cu in the intermediate material was as small as 0.10%, so the corrosion on the outer surface side was deep.
N o、14の場合、芯材中のMnが少ないために引張
強さが低く、外面側の腐食も深い。No、15は芯材中
のMnが多いために健全な板材が得られていない。In the case of No. 14, the tensile strength is low due to the small amount of Mn in the core material, and the corrosion on the outer surface side is also deep. In No. 15, a healthy plate material was not obtained because the core material contained a large amount of Mn.
No、18は芯材中のCu量が少ないために引張り強さ
がやや低く、外面側の腐食も深い。No。No. 18 had a rather low tensile strength because the amount of Cu in the core material was small, and the corrosion on the outer surface was deep. No.
17は芯材中のCuが多く、ろう材中に局部溶融を生じ
、そのため引張強さが低く、外面側及び内面側の腐食深
さが大きい。No. 17 has a large amount of Cu in the core material, causing local melting in the brazing material, resulting in low tensile strength and large corrosion depth on the outer and inner surfaces.
No、18は芯材中のMgが少ないために引張強さが低
く、No、19は芯材中のMgが多いためにろう付不良
を生じ、外面側の腐食も深い。No. 18 has a low tensile strength due to a small amount of Mg in the core material, and No. 19 has a large amount of Mg in the core material, resulting in poor brazing and deep corrosion on the outer surface side.
No、20は芯材中のSiが少ないために引張強さが低
(、No、21は芯材中のSiが多いために局部溶融を
生じ、引張強さが低く、外面側及び内面側の腐食が深い
。No. 20 has a low tensile strength due to a small amount of Si in the core material (No. 21 has a low tensile strength due to a large amount of Si in the core material, resulting in local melting, and the tensile strength is low on the outer and inner surfaces. Deep corrosion.
No、22は芯材中のT1が少ないために外面側及び内
面側の腐食がやや深い。No、23は芯材中のTiが多
いために健全な板材が得られていない。In No. 22, the corrosion on the outer and inner surfaces was slightly deeper due to less T1 in the core material. In No. 23, a healthy plate material was not obtained because the core material contained a large amount of Ti.
No、24は3003合金を芯材とし中間材を設けな0
3層クラッド材であるが、引張強さが低く、外面側及び
内面側の腐食が深い。No. 24 uses 3003 alloy as the core material and does not have an intermediate material.
Although it is a three-layer cladding material, its tensile strength is low and the outer and inner surfaces are deeply corroded.
No、25は中間材のMnが少ないために引張強さがや
や低い。No、26は中間材のMnが多いために健全な
板材が得られていない。No. 25 has a slightly lower tensile strength because the intermediate material has less Mn. In No. 26, a healthy plate material was not obtained because the intermediate material contained a large amount of Mn.
N o、27は中間材のTiが少ないために外面側の腐
食がやや深い。N o、28は中間材のTiが多いため
に健全な鋳塊が得られていない。In No. 27, the corrosion on the outer surface side was slightly deeper due to less Ti in the intermediate material. In No. 28, a healthy ingot was not obtained because the intermediate material contained a large amount of Ti.
N o、29は芯材中のCu量の方が中間材中のCu量
より少ないために外面側の腐食が深く、又、中間材のC
uが多いためにろう付時に綿状生成物が生じている。In No. 29, the amount of Cu in the core material is smaller than the amount of Cu in the intermediate material, so the corrosion on the outer surface side is deep, and the C of the intermediate material
Due to the large amount of u, flocculent products are produced during brazing.
N o、30は中間材のStが多いためにろう付時に綿
状生成物が生じている。No. 30 has a large amount of St in the intermediate material, so flocculent products are produced during brazing.
*
3003合金
第
1表
第2表
実施例2
第6表の組合せにより実施例1と同様に0.301■の
プレージングシートを作成した。ここではろう材と犠牲
陽極材の厚さは実施例1と同一とし、中間材と芯材の厚
さを種々に変えた。*3003 Alloy Table 1 Table 2 Example 2 A 0.301 square plating sheet was prepared in the same manner as in Example 1 using the combinations shown in Table 6. Here, the thicknesses of the brazing material and the sacrificial anode material were the same as in Example 1, and the thicknesses of the intermediate material and core material were varied.
得られたプレージングシートについて、実施例1と同様
に引張試験、腐食試験を行い、又、熱交換器のろう付テ
ストを行なって、フラックスと反応したMg量、チュー
ブとフィンの接合状態、チューブ外面での綿状生成物の
生成状態を調べた。The obtained plating sheet was subjected to a tensile test and a corrosion test in the same manner as in Example 1, and a heat exchanger brazing test was conducted to determine the amount of Mg reacted with the flux, the joining condition of the tube and fin, and the tube. The formation of flocculent products on the outer surface was investigated.
結果を第6表に示す。The results are shown in Table 6.
T≧58x ([Mg(%)−0,35) ””を満た
さない場合にろう付不良が生じている。If T≧58x ([Mg (%) - 0,35) "" is not satisfied, brazing failure has occurred.
第6表のろう付テストの結果と、第5表のNo、5〜8
のろう付テストの結果をまとめて図示すると、第4図の
ようになる。曲線T−58X([Mg(%)−0,35
) ”2の上方にあればろう付性が良好であり、下方に
あればろう付性が不良であることが分かる。この実施例
で用いたろう付条件(材料温度、保持時間)は通常行わ
れる条件のほぼ上限のものである。従って、通常のろう
付条件で行う限り、
T≧58X ([Mg(%)−0,351”2であれば
ろう付不良は生じないと言える。Brazing test results in Table 6 and Nos. 5 to 8 in Table 5
The results of the brazing test are summarized in Figure 4. Curve T-58X ([Mg(%)-0,35
) If it is above 2, it means that the brazing property is good, and if it is below it, it is found that the brazing property is poor.The brazing conditions (material temperature, holding time) used in this example are normal. This is almost the upper limit of the conditions. Therefore, as long as normal brazing conditions are used, it can be said that no brazing failure will occur if T≧58X ([Mg (%) - 0,351"2).
[発明の効果コ
以上説明したように、本発明のアルミニウム製熱交換器
は、フッ化物フラックスによるろう付性に優れると共に
、その材料強度及び耐食性にもすぐれるので、薄肉化に
よる軽量化及びコストダウンが可能になる。[Effects of the Invention] As explained above, the aluminum heat exchanger of the present invention has excellent brazing properties with fluoride flux, as well as excellent material strength and corrosion resistance. down is possible.
第1図はろう付は後のプレージングシート断面における
EPMA線分析によるMg分布を模式的に表わす図、
第2図は実施例におけるクラッド材の構成を示す図、
第3図は実施例における熱交換器の構成を示す図、
第4図は実施例2におけるろう付テストの結果を示す図
、
深さ(rn)
第1図Figure 1 is a diagram schematically showing the Mg distribution according to EPMA line analysis in the cross section of the plating sheet after brazing. Figure 2 is a diagram showing the structure of the cladding material in the example. Figure 3 is a diagram showing the heat distribution in the example. A diagram showing the configuration of the exchanger, Figure 4 is a diagram showing the results of the brazing test in Example 2, Depth (rn) Figure 1
Claims (1)
用いてろう付してなるアルミニウム製熱交換器において
、上記プレージングシートはMn:0.3〜2.0重量
%、Cu:0.25〜1.0重量%、Mg:0.4〜1
.0重量%、Si:0.1〜1.0重量%、Ti:0.
06〜0.35重量%を含み、残りAlと不可避不純物
からなる Al合金を芯材とし、芯材の片面にMn: 0.l〜2.0重量%、Ti:0.06〜0.35重量
%を含み、更にCu0.5重量%以下及び/又はSi0
.5重量%以下含み、残りAlと不可避不純物からなる
Al合金の中間材を介して Al−Si系合金のろう材をクラッドし、 他の面にAl−Zn系合金及びAl−Zn−Mg系合金
のいずれかからなる犠牲陽極材をクラッドした4層クラ
ッド材であって、中間材の厚さT(μm)と芯材中のM
g量(X)の間に T≧58×{[Mg(%)]−0.35}^1^/^2
の関係があり、かつ、芯材中のCu量(%)が中間材中
のCu量(%)より0.15%以上多いことを特徴とす
るアルミニウム製熱交換器。(1) In an aluminum heat exchanger formed by brazing a plating sheet using a fluoride-based flux, the plating sheet has Mn: 0.3 to 2.0% by weight, Cu: 0.25 to 1.0% by weight, Mg: 0.4-1
.. 0% by weight, Si: 0.1-1.0% by weight, Ti: 0.
The core material is an Al alloy containing 0.06 to 0.35% by weight, the remainder being Al and unavoidable impurities, and one side of the core material is coated with Mn: 0.06 to 0.35% by weight. 1 to 2.0% by weight, Ti: 0.06 to 0.35% by weight, and further contains 0.5% by weight or less of Cu and/or Si0
.. A brazing material of Al-Si alloy is clad through an intermediate material of Al alloy containing 5% by weight or less and consisting of the remaining Al and unavoidable impurities, and the other side is coated with Al-Zn alloy and Al-Zn-Mg alloy. A four-layer clad material clad with a sacrificial anode material made of any of the following, the thickness T (μm) of the intermediate material and the M
Between g amount (X), T≧58×{[Mg(%)]-0.35}^1^/^2
An aluminum heat exchanger having the following relationship and characterized in that the amount (%) of Cu in the core material is greater than the amount (%) of Cu in the intermediate material by 0.15% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14154890A JP2842665B2 (en) | 1990-06-01 | 1990-06-01 | Aluminum heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14154890A JP2842665B2 (en) | 1990-06-01 | 1990-06-01 | Aluminum heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0436600A true JPH0436600A (en) | 1992-02-06 |
JP2842665B2 JP2842665B2 (en) | 1999-01-06 |
Family
ID=15294529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14154890A Expired - Fee Related JP2842665B2 (en) | 1990-06-01 | 1990-06-01 | Aluminum heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2842665B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0712681A3 (en) * | 1994-11-11 | 1997-01-29 | Furukawa Electric Co Ltd | Aluminum alloy brazing sheet, method of producing said brazing sheet, heat-exchanger used said brazing sheet and method of producing said heat-exchanger |
EP0823305A2 (en) * | 1996-08-08 | 1998-02-11 | Denso Corporation | A brazing sheet having an excellent corrosion resistance for use in a heat exchanger, and a heat exchanger using the same |
JP2004025297A (en) * | 2001-09-28 | 2004-01-29 | Furukawa Electric Co Ltd:The | Brazing method for aluminum or aluminum alloy material and brazing sheet made of aluminum alloy |
EP1795294A1 (en) * | 2005-12-08 | 2007-06-13 | Furukawa-Sky Aluminum Corp. | Method of producing an aluminum alloy brazing sheet |
EP1795295A1 (en) * | 2005-12-08 | 2007-06-13 | Furukawa-Sky Aluminum Corp. | Aluminum alloy brazing sheet |
JP2008517152A (en) * | 2004-10-19 | 2008-05-22 | アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング | Aluminum alloy brazing sheet and method for manufacturing lightweight brazed heat exchanger assembly |
WO2007133286A3 (en) * | 2006-04-21 | 2008-12-18 | Alcoa Inc | Multilayer braze-able sheet |
JP2009226456A (en) * | 2008-03-24 | 2009-10-08 | Toyota Motor Corp | Manufacturing method and joining apparatus of joined structure |
WO2009128766A1 (en) * | 2008-04-18 | 2009-10-22 | Sapa Heat Transfer Ab | Sandwich material for brazing with high strength at high temperature |
JP2012148344A (en) * | 2012-03-12 | 2012-08-09 | Kobe Steel Ltd | Aluminum alloy composite material and heat exchanger |
JP2013507258A (en) * | 2009-10-13 | 2013-03-04 | エスアーペーアー・ヒート・トランスファー・アーベー | High temperature high strength sandwich material for thin sheet in heat exchanger |
US11458577B2 (en) * | 2017-08-17 | 2022-10-04 | Uacj Corporation | Aluminum alloy brazing sheet for heat exchanger |
-
1990
- 1990-06-01 JP JP14154890A patent/JP2842665B2/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0712681A3 (en) * | 1994-11-11 | 1997-01-29 | Furukawa Electric Co Ltd | Aluminum alloy brazing sheet, method of producing said brazing sheet, heat-exchanger used said brazing sheet and method of producing said heat-exchanger |
EP0823305A2 (en) * | 1996-08-08 | 1998-02-11 | Denso Corporation | A brazing sheet having an excellent corrosion resistance for use in a heat exchanger, and a heat exchanger using the same |
EP0823305A3 (en) * | 1996-08-08 | 1998-10-28 | Denso Corporation | A brazing sheet having an excellent corrosion resistance for use in a heat exchanger, and a heat exchanger using the same |
JP2004025297A (en) * | 2001-09-28 | 2004-01-29 | Furukawa Electric Co Ltd:The | Brazing method for aluminum or aluminum alloy material and brazing sheet made of aluminum alloy |
JP2008517152A (en) * | 2004-10-19 | 2008-05-22 | アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング | Aluminum alloy brazing sheet and method for manufacturing lightweight brazed heat exchanger assembly |
EP1795294A1 (en) * | 2005-12-08 | 2007-06-13 | Furukawa-Sky Aluminum Corp. | Method of producing an aluminum alloy brazing sheet |
EP1795295A1 (en) * | 2005-12-08 | 2007-06-13 | Furukawa-Sky Aluminum Corp. | Aluminum alloy brazing sheet |
JP2007152422A (en) * | 2005-12-08 | 2007-06-21 | Furukawa Sky Kk | Method for producing aluminum alloy brazing sheet |
JP2007152421A (en) * | 2005-12-08 | 2007-06-21 | Furukawa Sky Kk | Aluminum alloy brazing sheet |
US7771839B2 (en) | 2005-12-08 | 2010-08-10 | Furukawa-Sky Aluminum Corp. | Aluminum alloy brazing sheet |
JP2009534531A (en) * | 2006-04-21 | 2009-09-24 | アルコア インコーポレイテッド | Brazed multilayer sheet |
US7749613B2 (en) * | 2006-04-21 | 2010-07-06 | Alcoa Inc. | Multilayer braze-able sheet |
WO2007133286A3 (en) * | 2006-04-21 | 2008-12-18 | Alcoa Inc | Multilayer braze-able sheet |
JP2009226456A (en) * | 2008-03-24 | 2009-10-08 | Toyota Motor Corp | Manufacturing method and joining apparatus of joined structure |
WO2009128766A1 (en) * | 2008-04-18 | 2009-10-22 | Sapa Heat Transfer Ab | Sandwich material for brazing with high strength at high temperature |
JP2011520032A (en) * | 2008-04-18 | 2011-07-14 | サパ ヒート トランスファー アーベー | High strength and high strength brazing sandwich material |
US8574723B2 (en) | 2008-04-18 | 2013-11-05 | Sapa Heat Transfer Ab | Sandwich material for brazing with high strength at high temperature |
EA025938B1 (en) * | 2008-04-18 | 2017-02-28 | Сапа Хит Трансфер Аб | Sandwich material for brazing |
JP2013507258A (en) * | 2009-10-13 | 2013-03-04 | エスアーペーアー・ヒート・トランスファー・アーベー | High temperature high strength sandwich material for thin sheet in heat exchanger |
US9169541B2 (en) | 2009-10-13 | 2015-10-27 | Gränges Sweden Ab | Sandwich material with high strength at high temperature for thin strips in heat exchangers |
JP2012148344A (en) * | 2012-03-12 | 2012-08-09 | Kobe Steel Ltd | Aluminum alloy composite material and heat exchanger |
US11458577B2 (en) * | 2017-08-17 | 2022-10-04 | Uacj Corporation | Aluminum alloy brazing sheet for heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2842665B2 (en) | 1999-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4991647A (en) | Heat exchanger | |
JP4993440B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
JP2007515293A (en) | High strength aluminum alloy brazing sheet | |
JP5030487B2 (en) | Clad material and manufacturing method thereof | |
JP3772017B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger | |
JPH0436600A (en) | Heat exchanger made of aluminum | |
JPH10158769A (en) | Brazing sheet made of aluminum alloy | |
JP5498213B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP5632175B2 (en) | Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties | |
JP3759215B2 (en) | Al brazing sheet for vacuum brazing, tube element for drone cup type heat exchanger and drone cup type heat exchanger | |
JPH0436434A (en) | High strength and high corrosion resistant al alloy clad material for al heat exchanger | |
JP2842668B2 (en) | High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger | |
JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
JP4263160B2 (en) | Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same | |
JP3876179B2 (en) | Aluminum alloy three-layer clad material | |
JP2842666B2 (en) | High strength and high corrosion resistance clad material for A1 heat exchanger | |
JP2842667B2 (en) | High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger | |
JP4596618B2 (en) | High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger | |
JPH0261536B2 (en) | ||
JP2933382B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger | |
JP3234619B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger | |
JP4386225B2 (en) | Automotive heat exchanger components | |
JP2749660B2 (en) | Aluminum heat exchanger | |
JPH04198448A (en) | Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger | |
JP3538507B2 (en) | Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |