[go: up one dir, main page]

JPH04365939A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH04365939A
JPH04365939A JP13927591A JP13927591A JPH04365939A JP H04365939 A JPH04365939 A JP H04365939A JP 13927591 A JP13927591 A JP 13927591A JP 13927591 A JP13927591 A JP 13927591A JP H04365939 A JPH04365939 A JP H04365939A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel injection
fuel ratio
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13927591A
Other languages
Japanese (ja)
Inventor
Makoto Sotomiya
誠 外宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13927591A priority Critical patent/JPH04365939A/en
Publication of JPH04365939A publication Critical patent/JPH04365939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air-fuel ratio from being overrich which may caused by evaporated fuel purge, and prevent catalyst from being overheated. CONSTITUTION:A loadless racing preventive controlling means M3 stops fuel injection when an engine speed reaches a firs value or more over a specified period under a vehicle stopping or a nearly stopping condition, and restarts the fuel injection when the engine speed reaches a second value lower than the first value. Thus, the engine speed is controlled to be around the first and second values. A purging means M4 discharges evaporated fuel generated in a fuel tank into an intake passage. A reduction correction means M5 carries out reduction correction of the fuel injection amount during performing the loadless racing preventive controlling and with a small opening of throttle, in which condition the evaporated fuel largely incluences on an air-fuel ratio.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は内燃機関の運転状態に応
じて燃料噴射料を演算し空燃比を制御する内燃機関の空
燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine that calculates fuel injection charges and controls the air-fuel ratio according to the operating conditions of the internal combustion engine.

【0002】0002

【従来の技術】従来より、特開昭63−176646号
公報に記載の如く、車両が停止中に機関回転数が所定値
より高くなると、燃料カットし、前記所定値より低い他
の所定値より低くなると燃料噴射再開を行ない、燃料カ
ット及び復帰のハンチングを続けることで無負荷レーシ
ングを防止するオーバーヒート防止装置がある。
2. Description of the Related Art Conventionally, as described in Japanese Unexamined Patent Publication No. 63-176646, when the engine speed becomes higher than a predetermined value while the vehicle is stopped, fuel is cut and There is an overheat prevention device that prevents no-load racing by restarting fuel injection when the temperature drops and continuing hunting for fuel cut and recovery.

【0003】0003

【発明が解決しようとする課題】燃料タンク等から発生
する蒸発燃料を活性炭に吸着させ、これを吸気系へパー
ジ(放出)して処理するエバポパージシステムを持つ内
燃機関の場合、無負荷レーシング防止のために高回転状
態でハンチングが継続すると、高温で燃料タンクに戻る
燃料が増大し、燃料タンク内の温度が上昇して蒸発燃料
が増大する。
[Problem to be solved by the invention] In the case of an internal combustion engine equipped with an evaporative purge system that adsorbs evaporated fuel generated from a fuel tank, etc. onto activated carbon and purges (releases) it into the intake system, it is necessary to prevent no-load racing. If hunting continues at high engine speeds, the amount of high-temperature fuel that returns to the fuel tank will increase, the temperature inside the fuel tank will rise, and the amount of evaporated fuel will increase.

【0004】エバポパージシステムでは蒸発燃料を吸気
通路のスロットルバルブ全閉時の直上流のパージポート
より吸気負圧に応じてパージしており、低スロットル開
度では吸入空気量が少ないがパージポート負圧が大きく
なるため、パージ量は多くなりパージされる蒸発燃料の
空燃比に与える影響が大きくなり、空燃比がオーバーリ
ッチとなって失火してしまう。このため、未燃ガスが三
元触媒で燃焼し、三元触媒が過熱されるという問題があ
った。本発明は上記の点に鑑みなされたもので、無負荷
レーシング防止制御中の小スロットル開度時に燃料噴射
料の減量補正を行なうことにより、エバポパージによる
空燃比のオーバーリッチ化を防止し、触媒の過熱を防止
する内燃機関の空燃比制御装置を提供することを目的と
する。
In the evaporative purge system, vaporized fuel is purged from the purge port immediately upstream of the intake passage when the throttle valve is fully closed, depending on the intake negative pressure.At low throttle openings, the amount of intake air is small, but the purge port Since the pressure increases, the amount of purge increases, which has a greater effect on the air-fuel ratio of the purged vaporized fuel, causing the air-fuel ratio to become overrich and cause a misfire. Therefore, there was a problem in that unburned gas was burned in the three-way catalyst and the three-way catalyst was overheated. The present invention has been developed in view of the above points, and by correcting the reduction in fuel injection amount at a small throttle opening during no-load racing prevention control, it prevents the air-fuel ratio from becoming overrich due to evaporative purge and improves the catalyst. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that prevents overheating.

【0005】[0005]

【課題を解決するための手段】図1は本発明の原理図を
示す。同図中、演算手段M1は機関回転数及び吸入空気
量等に基づいて内燃機関M2の燃料噴射量を演算する。
Means for Solving the Problems FIG. 1 shows a diagram of the principle of the present invention. In the figure, a calculation means M1 calculates the fuel injection amount of the internal combustion engine M2 based on the engine speed, intake air amount, and the like.

【0006】無負荷レーシング防止制御手段M3は、車
両停止又は車両停止に近い状態で所定時間を越えて第1
の所定回転数以上となったとき燃料噴射を中止し、前記
第1の所定回転数以下の第2の所定回転数以下となると
燃料噴射を再開して回転数を前記第1及び第2の所定回
転数の近傍に規制する。
[0006] The no-load lacing prevention control means M3 is configured to prevent the first rac-
When the number of revolutions reaches a predetermined number of revolutions or more, fuel injection is stopped, and when the number of revolutions reaches a second predetermined number of revolutions that is equal to or less than the first predetermined number of revolutions, fuel injection is restarted and the number of revolutions reaches the first and second predetermined numbers. Regulate around the rotation speed.

【0007】パージ手段M4は、燃料タンクで発生した
蒸発燃料を吸気通路に放出する。
The purge means M4 discharges evaporated fuel generated in the fuel tank into the intake passage.

【0008】減量補正手段M5は、前記無負荷レーシン
グ防止制御の実行中で、蒸発燃料が空燃比に与える影響
が大きい小スロットル開度時に燃料噴射料の減量補正を
行なう。
The reduction correction means M5 performs reduction correction of the fuel injection amount during execution of the no-load racing prevention control at a small throttle opening degree where the influence of evaporated fuel on the air-fuel ratio is large.

【0009】[0009]

【作用】本発明においては、無負荷レーシング防止制御
中に小スロットル開度であれば燃料噴射量が減量補正さ
れるため、小スロットル開度で吸入空気量が小さくても
パージされる蒸発燃料によって空燃比がオーバーリッチ
になることが防止される。
[Operation] In the present invention, if the throttle opening is small during the no-load racing prevention control, the fuel injection amount is corrected to be reduced. This prevents the air-fuel ratio from becoming overrich.

【0010】0010

【実施例】図2は本発明装置の適用した内燃機関の一実
施例の構成図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a block diagram of an embodiment of an internal combustion engine to which the device of the present invention is applied.

【0011】同図中、1はガソリンエンジン本体、2は
ピストン、3は点火プラグ、4は排気マニホールド、5
は吸気マニホールドであり、6は吸入空気の脈動を吸収
するサージタンク、7は吸入空気量を調節するスロット
ルバルブ、8は吸入空気量を測定するエアフローメータ
である。排気マニホールド4には排気ガス中の残存酸素
濃度を検出する酸素センサ9が設けられ、吸気マニホー
ルド5にはガソリンエンジン本体1の吸入空気中に燃料
を噴射する燃料噴射弁10が設けられている。吸気温セ
ンサ11は吸入空気の温度を検出し、スロットルセンサ
12はスロットルバルブ7の開度を検出し、水温センサ
13はエンジンブロック14に締結され冷却水の水温を
検出する。
In the figure, 1 is a gasoline engine body, 2 is a piston, 3 is a spark plug, 4 is an exhaust manifold, and 5 is a gasoline engine body.
6 is an intake manifold, 6 is a surge tank that absorbs the pulsation of intake air, 7 is a throttle valve that adjusts the amount of intake air, and 8 is an air flow meter that measures the amount of intake air. The exhaust manifold 4 is provided with an oxygen sensor 9 that detects the residual oxygen concentration in the exhaust gas, and the intake manifold 5 is provided with a fuel injection valve 10 that injects fuel into the intake air of the gasoline engine body 1. The intake temperature sensor 11 detects the temperature of intake air, the throttle sensor 12 detects the opening degree of the throttle valve 7, and the water temperature sensor 13 is connected to the engine block 14 and detects the temperature of cooling water.

【0012】また、イグナイタ16は点火に必要な高電
圧を発生してディストリビュータ17に供給し、ディス
トリビュータ17はクランクシャフト(図示せず)の回
転に連動して上記高電圧を各気筒の点火プラグに分配供
給する。回転角センサ18はディストリビュータ17の
1回転即ちクランクシャフト2回転に24パルスの回転
角信号NEを出力し、気筒判別センサ19はディストリ
ビュータ17の1回転に1パルスの回転検出信号Gを出
力する。
Further, the igniter 16 generates a high voltage necessary for ignition and supplies it to the distributor 17, and the distributor 17, in conjunction with the rotation of the crankshaft (not shown), applies the high voltage to the spark plugs of each cylinder. Distribute and supply. The rotation angle sensor 18 outputs a rotation angle signal NE of 24 pulses for one revolution of the distributor 17, that is, two revolutions of the crankshaft, and the cylinder discrimination sensor 19 outputs a rotation detection signal G of one pulse for each revolution of the distributor 17.

【0013】21はキャニスタであり、燃料タンク22
の上底とベーパ通路23で結合されており、燃料タンク
22から蒸発する蒸発燃料(ベーパ)を吸着する。また
キャニスタ21はパージ通路24により吸気通路のスロ
ットルバルブ7の全閉時の直上流に結合されている。ま
た車速センサ25は車両の速度を検出する。
21 is a canister, and a fuel tank 22
It is connected to the upper bottom of the fuel tank 22 by a vapor passage 23, and adsorbs evaporated fuel (vapor) that evaporates from the fuel tank 22. Further, the canister 21 is connected by a purge passage 24 to the intake passage immediately upstream of the throttle valve 7 when the throttle valve 7 is fully closed. Further, the vehicle speed sensor 25 detects the speed of the vehicle.

【0014】電子制御回路20は図3に示す構成で、中
央処理装置(CPU)30と、処理プログラムを格納し
たリードオンリメモリ(ROM)31と、作業領域とし
て使用されるランダムアクセスメモリ(RAM)32と
通電停止後もデータを保持するバックアップRAM33
と、マルチプレクサ機能を持つA/D変換器34と、バ
ッファ機能を持つI/Oインタフェース35とよりなり
、これらの間はバスライン37で相互に接続されている
The electronic control circuit 20 has a configuration shown in FIG. 3, and includes a central processing unit (CPU) 30, a read-only memory (ROM) 31 that stores processing programs, and a random access memory (RAM) used as a work area. 32 and a backup RAM 33 that retains data even after power is turned off.
, an A/D converter 34 with a multiplexer function, and an I/O interface 35 with a buffer function, which are interconnected by a bus line 37.

【0015】A/D変換器34はエアフローメータ8よ
りの空気流量信号と、吸気温センサ11よりの吸気温度
信号と、スロットルセンサ12よりのスロットル開度信
号と、水温センサ13よりの水温信号、車速センサ25
の車速信号とを供給されて、各信号のディジタル化を行
ない、これらのディジタル信号はCPU30により読み
取られる。またI/Oインタフェース35には酸素セン
サ9、回転角センサ18、気筒判別センサ19夫々より
の信号が入来し、各信号はCPU30により読み取られ
る。
The A/D converter 34 receives an air flow rate signal from the air flow meter 8, an intake air temperature signal from the intake air temperature sensor 11, a throttle opening signal from the throttle sensor 12, a water temperature signal from the water temperature sensor 13, Vehicle speed sensor 25
The CPU 30 receives the vehicle speed signal and digitizes each signal, and these digital signals are read by the CPU 30. Further, signals from the oxygen sensor 9, rotation angle sensor 18, and cylinder discrimination sensor 19 are input to the I/O interface 35, and each signal is read by the CPU 30.

【0016】CPU30は各センサ検出データに基づい
て点火タイミング、燃料噴射量夫々を算出し、得られた
点火信号、燃料噴射信号がI/Oインタフェース35を
通してイグナイタ16、燃料噴射弁10夫々に供給され
る。
The CPU 30 calculates the ignition timing and fuel injection amount based on the sensor detection data, and the obtained ignition signal and fuel injection signal are supplied to the igniter 16 and the fuel injection valve 10 through the I/O interface 35. Ru.

【0017】次に本発明装置の一実施例の制御プログラ
ムについて説明する。
Next, a control program for an embodiment of the apparatus of the present invention will be explained.

【0018】図4〜図6夫々は本発明の空燃比制御処理
の一実施例のフローチャートを示す。これらのルーチン
はメインルーチンの一部であり、例えば4msecの所
定時間毎に実行される。
FIGS. 4 to 6 each show a flowchart of an embodiment of the air-fuel ratio control process of the present invention. These routines are part of the main routine and are executed at predetermined intervals of, for example, 4 msec.

【0019】図4の前提条件ルーチンにおいて、ステッ
プ50では車速センサ25で検出した車速が時速10k
m/h未満か否かを判別し、ステップ51では水温セン
サ13で検出した水温が70℃以上か否かを判別し、ス
テップ52ではスロットルセンサ8のアイドル信号がオ
フつまりアイドル状態でないか否かを判別する。
In the precondition routine shown in FIG. 4, in step 50, the vehicle speed detected by the vehicle speed sensor 25 is 10 km/h.
m/h or less, in step 51 it is determined whether the water temperature detected by the water temperature sensor 13 is 70° C. or higher, and in step 52 it is determined whether the idle signal of the throttle sensor 8 is off, that is, it is not in an idle state. Determine.

【0020】上記ステップ50〜52のいずれか1つで
も満足しない場合はステップ53でカウンタCORをゼ
ロリセットしてこのルーチンを終了する。
If any one of the above steps 50 to 52 is not satisfied, the counter COR is reset to zero in step 53, and this routine is ended.

【0021】ステップ50〜52を全て満足する車速が
10km/h未満で、水温が70℃以上、かつアイドル
状態ではない場合は、ステップ54で機関回転数NEを
過回転フューエルカット用の所定値NCUTH(例えば
2000rpm)と比較し、回転数NEが所定値NCU
TH以上のときステップ55でカウンタCORを変数A
だけインクリメントし、回転数NEが所定値NCUTH
未満のときステップ56でカウンタCORを定数Bだけ
デクリメントする。ここで変数Aは例えば回転数NEが
3600rpm未満のとき4で、3600rpm以上4
400rpm未満のとき5で、4400rpm以上52
00rpm未満のとき6で、5200rpm以上600
0rpm未満のとき8で、6000rpm以上のとき1
2となるような回転数NEに応じた値であり、定数Bは
例えば1である。
If all of steps 50 to 52 are satisfied, the vehicle speed is less than 10 km/h, the water temperature is 70° C. or higher, and the engine is not idling, in step 54 the engine speed NE is set to a predetermined value NCUTH for overspeed fuel cut. (for example, 2000 rpm), and the rotation speed NE is a predetermined value NCU.
When the value is greater than or equal to TH, the counter COR is set to variable A in step 55.
is incremented until the rotation speed NE reaches the predetermined value NCUTH.
When the value is less than B, the counter COR is decremented by a constant B in step 56. Here, the variable A is, for example, 4 when the rotation speed NE is less than 3600 rpm, and 4 when the rotation speed NE is 3600 rpm or more.
5 when below 400 rpm, 52 above 4400 rpm
6 when below 00 rpm, 600 above 5200 rpm
8 when below 0 rpm, 1 when above 6000 rpm
2, and the constant B is, for example, 1.

【0022】図5の無負荷レーシング防止ルーチンにお
いて、ステップ60ではカウンタCORを例えば1分に
相当する所定値CORSET1と比較し、カウンタCO
Rが所定値COREST1以上のときステップ61でT
AU補正フラグXFTAUに1をセットして減量補正の
指示を行ないステップ62で回転数NEが過回転フュー
エルカットの所定値NCUTH以上かどうかを判別する
In the no-load racing prevention routine of FIG. 5, in step 60, the counter COR is compared with a predetermined value CORSET1 corresponding to, for example, one minute, and the counter CO
When R is greater than or equal to the predetermined value COREST1, T
The AU correction flag XFTAU is set to 1 to issue an instruction for weight reduction correction, and in step 62 it is determined whether the rotational speed NE is greater than or equal to a predetermined value NCUTH for overspeed fuel cut.

【0023】回転数NEが所定値NCUTH以上のとき
はフューエルカットフラグXFCNEに1をセットして
フューエルカットを実行し、このルーチンを終了する。
When the rotational speed NE is equal to or higher than the predetermined value NCUTH, the fuel cut flag XFCNE is set to 1, a fuel cut is executed, and this routine ends.

【0024】カウンタCORが所定値CORSET1未
満のとき、又は回転数NEが所定値NCUTH未満のと
きはステップ64でフューエルカットフラグXFCNE
に0をセットしてフューエルカットを中止し、このルー
チンを終了する。
When the counter COR is less than the predetermined value CORSET1 or when the rotational speed NE is less than the predetermined value NCUTH, the fuel cut flag XFCNE is set in step 64.
is set to 0 to cancel the fuel cut and end this routine.

【0025】図6の減量補正ルーチンにおいて、ステッ
プ70でTAU補正フラグXFTAUが1で減量補正が
指示されているかどうかを判別し、フラグXFTAUが
1のときはステップ71でカウンタCORが所定値CO
RSET2以上かどうかを判別する。この所定値COR
SET2は所定値CORSET1以下の値で、カウンタ
CORが所定値CORSET2未満の場合はステップ7
2でTAU補正フラグXFTAUを0にリセットして減
量補正の指示を取り止める。
In the weight loss correction routine shown in FIG. 6, it is determined in step 70 whether the TAU correction flag XFTAU is 1 and weight loss correction is instructed, and if the flag
Determine whether RSET is 2 or higher. This predetermined value COR
SET2 is a value less than the predetermined value CORSET1, and if the counter COR is less than the predetermined value CORSET2, step 7
2, the TAU correction flag XFTAU is reset to 0 and the instruction for weight loss correction is canceled.

【0026】なお、所定値CORSET2を所定値CO
RSET1と同一とした場合はフラグXFTAUを設け
る必要はなくカウンタCORをCORSET1と比較す
るだけで減量補正を行なうかどうかを判別する。
Note that the predetermined value CORSET2 is set to the predetermined value CO
If it is set to be the same as RSET1, there is no need to provide the flag XFTAU, and it is determined whether or not to perform the reduction correction by simply comparing the counter COR with CORSET1.

【0027】ステップ71でカウンタCORが所定値C
ORSET2以上のときはステップ73でスロットル開
度TAが30°以下かどうかを判別する。スロットル開
度TAが30°以下の状態はパージされる蒸発燃料の空
燃比に与える影響が大きくオーバーリッチとなる可能性
が大きい場合でありステップ74で別途演算された燃料
噴射量ベースTAUに減量補正係数Kを乗算して、実際
の燃料噴射量TAUとし、このルーチンを終了する。こ
の減量補正係数Kは実際にパージによるリッチ化がなか
った場合でもKによるリーン化で失火することがない程
度の値、例えば0.85である。実際にリッチ化が行な
われないとは、エバポパージが進み燃料タンク22内の
燃料中の揮発成分が殆ど揮発して重度燃料となっている
と、ベーパが減りパージが行なわれるような運転状態と
なってもパージが成されないことである。上記燃料噴射
量ベースTAUは吸入空気量Qと回転数Nとから基本噴
射量TPを求め、この基本噴射量TPに吸気温や水温で
定まる補正係数及び空燃比フィードバック補正係数を乗
算して得た値である。
At step 71, the counter COR reaches a predetermined value C.
If ORSET2 or more, it is determined in step 73 whether the throttle opening TA is 30 degrees or less. When the throttle opening degree TA is 30 degrees or less, the effect on the air-fuel ratio of the vaporized fuel to be purged is large, and there is a high possibility that over-richness will occur, and a reduction correction is made to the fuel injection amount base TAU calculated separately in step 74. The actual fuel injection amount TAU is obtained by multiplying by the coefficient K, and this routine ends. This reduction correction coefficient K is a value such as 0.85, which is such a value that even if there is no actual enrichment due to purge, a misfire will not occur due to lean conversion due to K. The fact that enrichment is not actually carried out means that as the evaporative purge progresses and most of the volatile components in the fuel in the fuel tank 22 are volatilized, resulting in a heavy fuel, the amount of vapor decreases and the operating state is such that purge is performed. However, the purge is not completed. The above fuel injection amount base TAU is obtained by calculating the basic injection amount TP from the intake air amount Q and the rotation speed N, and multiplying this basic injection amount TP by a correction coefficient determined by the intake air temperature and water temperature and an air-fuel ratio feedback correction coefficient. It is a value.

【0028】また、スロットル開度TAが30°を越え
る場合、又はステップ72でTAU補正フラグXFTA
Uが0とされた場合にはステップ75で演算された燃料
噴射量ベースTAUをそのまま実際の燃料噴射量TAU
とし、このルーチンを終了する。
Further, if the throttle opening degree TA exceeds 30°, or in step 72, the TAU correction flag
If U is set to 0, the fuel injection amount base TAU calculated in step 75 is used as the actual fuel injection amount TAU.
and ends this routine.

【0029】そして、図示しない制御ルーチンで所定ク
ランク角となったときに、フューエルカットフラグXF
CNEが0であれば燃料噴射量TAUに相当する時間、
燃料噴射弁10を開弁して燃料噴射を実行する。フラグ
XFCNEが1であれば燃料噴射は行なわない。
Then, when a predetermined crank angle is reached in a control routine (not shown), the fuel cut flag
If CNE is 0, the time corresponding to the fuel injection amount TAU,
The fuel injection valve 10 is opened to perform fuel injection. If the flag XFCNE is 1, no fuel injection is performed.

【0030】ここでステップ50〜52の条件を満足し
て、図7(A)に示す如く、回転数NEが上昇して所定
値NCUTHを越えると、図7(B)に示す如くカウン
タCORがインクリメントされる。カウンタCORが所
定値CORSET1を越えると図7(C)に示す如くフ
ューエルカットフラグXFCNEが1となってフューエ
ルカットがなされる。これによって回転数NEが低下し
て所定値NCUTH未満となるとフューエルカットフラ
グが0とされて燃料噴射が再開されると共にカウンタC
ORがデクリメントされる。このとき、スロットル開度
が30°以下であれば、図7(D)に示す如く最初にフ
ラグXFCNEが1となった後、カウンタCORが所定
値CORSET2未満となるまでの期間、燃料噴射量T
AUはベースTAUに減量補正係数Kを乗算した値とさ
れる。
When the conditions of steps 50 to 52 are satisfied and the rotational speed NE increases and exceeds the predetermined value NCUTH as shown in FIG. 7(A), the counter COR increases as shown in FIG. 7(B). Incremented. When the counter COR exceeds the predetermined value CORSET1, the fuel cut flag XFCNE becomes 1 and the fuel is cut as shown in FIG. 7(C). As a result, when the rotational speed NE decreases and becomes less than the predetermined value NCUTH, the fuel cut flag is set to 0, fuel injection is restarted, and the counter C
OR is decremented. At this time, if the throttle opening is 30 degrees or less, the fuel injection amount T
AU is a value obtained by multiplying the base TAU by a weight loss correction coefficient K.

【0031】本実施例では、無負荷レーシング防止制御
に於けるフューエルカット回転数(NCUTH)とフュ
ーエルカットを中止する回転数を同一の回転数としたも
のに、本発明を適応した場合について説明しているが、
フューエルカットを中止する回転数をフューエルカット
回転数よりも小さくしたもの、あるいは所定時間毎にフ
ューエルカット回転数を暫時下げるようにしたものに於
いても、本発明は適応可能である。
In this embodiment, a case will be described in which the present invention is applied to a case where the fuel cut rotation speed (NCUTH) in no-load racing prevention control and the rotation speed at which fuel cut is stopped are the same rotation speed. Although,
The present invention is also applicable to a system in which the engine speed at which the fuel cut is stopped is lower than the fuel cut engine speed, or where the fuel cut engine speed is temporarily lowered at predetermined intervals.

【0032】図8は減量補正ルーチンの変形例のフロー
チャートを示す。同図中、図6と同一部分には同一符号
を付し、その説明を省略する。図8において、ステップ
71でカウンタCORが所定値CORSET2以上であ
ればステップ80でスロットル開度TAにより図9の破
線に示すマップを検索して減量補正係数Kを求める。係
数Kはスロットル開度TAが20°くらいまで略0.7
5で、スロットル開度TAが50°くらいまでリニアに
上昇し、スロットル開度TAが50°以上で1とされて
いる。
FIG. 8 shows a flowchart of a modification of the weight loss correction routine. In the figure, the same parts as in FIG. 6 are denoted by the same reference numerals, and the explanation thereof will be omitted. In FIG. 8, if the counter COR is equal to or greater than the predetermined value CORSET2 in step 71, then in step 80, the map indicated by the broken line in FIG. 9 is searched using the throttle opening TA to determine the reduction correction coefficient K. The coefficient K is approximately 0.7 until the throttle opening TA is around 20°.
5, the throttle opening TA increases linearly up to about 50°, and is set to 1 when the throttle opening TA is 50° or more.

【0033】ステップ74ではステップ80で求めた係
数Kを演算された燃料噴射量ベースTAUに乗算して燃
料噴射量TAUを求め,ステップ72を実行したときに
のみステップ75で演算された燃料噴射量ベースTAU
をそのまま燃料噴射量TAUとする。
In step 74, the calculated fuel injection amount base TAU is multiplied by the coefficient K obtained in step 80 to obtain the fuel injection amount TAU, and only when step 72 is executed, the fuel injection amount calculated in step 75 is calculated. Base TAU
is taken as the fuel injection amount TAU.

【0034】ところで図9に示す如く実線IIで示す実
吸入空気量はスロットル開度と共にリニアに上昇するが
実線III に示すパージポート負圧はスロットル開度
が15°程度でピークを持ち、スロットル開度が30°
以上で0に近づく特性をもっており、図6のステップ7
3でスロットル開度TAを30°と比較しているのは上
記のパージポート負圧特性に基づいている。
By the way, as shown in FIG. 9, the actual intake air amount indicated by the solid line II increases linearly with the throttle opening, but the purge port negative pressure indicated by the solid line III peaks when the throttle opening is about 15°, and degree is 30°
As described above, it has a characteristic that approaches 0, and step 7 in Figure 6
The reason why the throttle opening degree TA is compared with 30° in No. 3 is based on the above-mentioned purge port negative pressure characteristics.

【0035】このように無負荷レーシング防止制御中に
小スロットル開度であれば燃料噴射量が減量補正される
ため、小スロットル開度で吸入空気量が小さくてもパー
ジされる蒸発燃料によって空燃比がオーバーリッチにな
ることが防止され、未燃ガスの三元触媒での燃焼による
過熱が防止される。
As described above, if the throttle opening is small during no-load racing prevention control, the fuel injection amount is corrected to be reduced, so even if the intake air amount is small at a small throttle opening, the air-fuel ratio will be reduced by the vaporized fuel purged. is prevented from becoming overrich, and overheating due to combustion of unburned gas in the three-way catalyst is prevented.

【0036】[0036]

【発明の効果】上述の如く、本発明の内燃機関の空燃比
制御装置によれば、無負荷レーシング防止制御中のエバ
ポパージによる空燃比のオーバーリッチ化を防止し、触
媒の過熱を防止することができ、実用上きわめて有用で
ある。
As described above, according to the air-fuel ratio control device for an internal combustion engine of the present invention, it is possible to prevent the air-fuel ratio from becoming overrich due to evaporative purge during no-load racing prevention control, and to prevent overheating of the catalyst. This is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明装置を適用した内燃機関の一実施例の構
成図である。
FIG. 2 is a configuration diagram of an embodiment of an internal combustion engine to which the device of the present invention is applied.

【図3】電子制御回路のブロック図である。FIG. 3 is a block diagram of an electronic control circuit.

【図4】前提条件ルーチンのフローチャートである。FIG. 4 is a flowchart of a precondition routine.

【図5】無負荷レーシング防止ルーチンのフローチャー
トである。
FIG. 5 is a flowchart of a no-load lacing prevention routine.

【図6】減量補正ルーチンのフローチャートである。FIG. 6 is a flowchart of a weight loss correction routine.

【図7】本発明を説明するためのタイミングチャートで
ある。
FIG. 7 is a timing chart for explaining the present invention.

【図8】減量補正ルーチンの変形例のフローチャートで
ある。
FIG. 8 is a flowchart of a modification of the weight loss correction routine.

【図9】減量補正係数のマップである。FIG. 9 is a map of weight loss correction coefficients.

【符号の説明】[Explanation of symbols]

M1  演算手段 M2  内燃機関 M3  無負荷レーシング防止制御手段M4  パージ
手段 M5  減量補正手段 8  エアフローメータ 10  燃料噴射弁 12  スロットルセンサ 18  回転角センサ 21  キャニスタ 22  燃料タンク
M1 Calculation means M2 Internal combustion engine M3 No-load racing prevention control means M4 Purge means M5 Weight loss correction means 8 Air flow meter 10 Fuel injection valve 12 Throttle sensor 18 Rotation angle sensor 21 Canister 22 Fuel tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  車両停止又は車両停止に近い状態で所
定時間を越えて第1の所定回転数以上となったとき燃料
噴射を中止し、前記第1の所定回転数以下の第2の所定
回転数以下となると燃料噴射を再開して回転数を前記第
1及び第2の所定回転数の近傍に規制する無負荷レーシ
ング防止制御を行ない、かつ燃料タンクで発生した蒸発
燃料を吸気通路に放出する内燃機関の空燃比制御装置に
おいて、前記無負荷レーシング防止制御の実行中で、蒸
発燃料が空燃比に与える影響が大きい小スロットル開度
時に燃料噴射量の減量補正を行なう減量補正手段を有す
ることを特徴とする内燃機関の空燃比制御装置。
Claim 1: Stop fuel injection when the number of rotations exceeds a first predetermined number of revolutions for a predetermined period of time while the vehicle is stopped or nearly stopped, and the fuel injection is performed at a second predetermined number of revolutions that is less than or equal to the first predetermined number of revolutions. When the number falls below the number, fuel injection is restarted, no-load racing prevention control is performed to regulate the rotational speed to near the first and second predetermined rotational speeds, and vaporized fuel generated in the fuel tank is released into the intake passage. The air-fuel ratio control device for an internal combustion engine is provided with a reduction correction means for reducing the fuel injection amount at a small throttle opening when the effect of vaporized fuel on the air-fuel ratio is large during execution of the no-load racing prevention control. Features: Air-fuel ratio control device for internal combustion engines.
JP13927591A 1991-06-11 1991-06-11 Air-fuel ratio control device for internal combustion engine Pending JPH04365939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13927591A JPH04365939A (en) 1991-06-11 1991-06-11 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13927591A JPH04365939A (en) 1991-06-11 1991-06-11 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04365939A true JPH04365939A (en) 1992-12-17

Family

ID=15241493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13927591A Pending JPH04365939A (en) 1991-06-11 1991-06-11 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04365939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009881A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168944A (en) * 1986-01-20 1987-07-25 Toyota Motor Corp Speed control device for internal combustion engine
JPS6341642A (en) * 1986-08-07 1988-02-22 Mazda Motor Corp Electronic control device for engine
JPS63186955A (en) * 1987-01-28 1988-08-02 Toyota Motor Corp Air-fuel ratio control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168944A (en) * 1986-01-20 1987-07-25 Toyota Motor Corp Speed control device for internal combustion engine
JPS6341642A (en) * 1986-08-07 1988-02-22 Mazda Motor Corp Electronic control device for engine
JPS63186955A (en) * 1987-01-28 1988-08-02 Toyota Motor Corp Air-fuel ratio control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009881A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing device of internal combustion engine
US6438945B1 (en) 1998-08-10 2002-08-27 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine

Similar Documents

Publication Publication Date Title
JP2782862B2 (en) Evaporative fuel treatment system for internal combustion engines
EP0785355B1 (en) Evaporative control system for internal combustion engine and method therefor
JPS6338537B2 (en)
JPH025751A (en) Method for controlling air-fuel ratio
JP2011220253A (en) Air-fuel ratio learning control device for bifuel engine
JPH08170557A (en) Electronic control fuel injection device
JPS63186955A (en) Air-fuel ratio control device
JPH08121266A (en) Evaporating fuel treatment device of internal combustion engine
JPH04365939A (en) Air-fuel ratio control device for internal combustion engine
JP3152024B2 (en) Fuel injection control device for starting internal combustion engine
JP3104374B2 (en) Evaporative fuel treatment system for internal combustion engine
JP2700128B2 (en) Evaporative fuel processing control device for internal combustion engine
JPH1018890A (en) Electrically controlled fuel injection device of internal combustion engine
JP3823010B2 (en) Evaporative fuel processing device for internal combustion engine
US6273063B1 (en) Apparatus and method for controlling idle rotation speed of an internal combustion engine
JP2889418B2 (en) Air-fuel ratio learning control method
JP4376767B2 (en) Fuel property determination device and fuel control device for internal combustion engine
JPS58144634A (en) Method for electronically controlling fuel injection in internal-combustion engine
JP2822716B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3134650B2 (en) Evaporative fuel treatment system for internal combustion engine
JP2654669B2 (en) Engine ignition timing control device
JPH06257491A (en) Air/fuel ratio control device for engine
JP2889432B2 (en) Evaporative purge control method
JPH04362244A (en) Evapopurge system of internal combustion engine
JP2705267B2 (en) Air-fuel ratio feedback control device for internal combustion engine