[go: up one dir, main page]

JPH04365212A - Manufacture of surface acoustic wave device - Google Patents

Manufacture of surface acoustic wave device

Info

Publication number
JPH04365212A
JPH04365212A JP14195791A JP14195791A JPH04365212A JP H04365212 A JPH04365212 A JP H04365212A JP 14195791 A JP14195791 A JP 14195791A JP 14195791 A JP14195791 A JP 14195791A JP H04365212 A JPH04365212 A JP H04365212A
Authority
JP
Japan
Prior art keywords
conductive film
surface acoustic
acoustic wave
electrode
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14195791A
Other languages
Japanese (ja)
Inventor
Takeo Kondo
近藤 健雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14195791A priority Critical patent/JPH04365212A/en
Publication of JPH04365212A publication Critical patent/JPH04365212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To reduce the dispersion of a resonance frequency and to improve yield by forming plural electrode patterns differing in the electrode duty corresponding to the thickness of a conductive film of a wafer. CONSTITUTION:Metal such as aluminum or the like is deposited on the surface of a conductive material wafer 2 by vacuum deposition. When a conductive film 6 is formed by the vacuum deposition, the conductive film 6 shows the thickness distribution of a thick center and a thin outer periphery. Next, the surface of the conductive film 6 is uniformity coated with a resist film 5 and exposed by using the mask of the prescribed electrode pattern. In that case, the exposure amount is increased at the center corresponding to the thickness distribution of the conductive film 6 and gradually reduced toward the peripheral part. Therefore, the electrode patterns formed by etching have the various duties for each part of the wafer corresponding to the thickness distribution of the conductive film 6. Namely, since the electrode pattern is formed so that the electrode duty is larger at the central part and smaller at the peripheral part, the dispersion of the resonance frequency is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は弾性表面波装置の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a surface acoustic wave device.

【0002】0002

【従来の技術】一般に、VHF帯あるいはUHF帯用の
フィルターや発振器として用いられる弾性表面波装置に
おいては、LiTaO3、LiNbO3、SiO2等か
らなる圧電性材料ウエハ上にアルミニウム等の導電性膜
を蒸着等の方法により形成した後、フォトリソグラフィ
ー法によって圧電性基板上に複数の同一弾性表面波装置
用電極パターンを形成し、ウエハを切断することにより
複数個の弾性表面波装置を作製する。
[Prior Art] Generally, in surface acoustic wave devices used as filters or oscillators for VHF or UHF bands, a conductive film such as aluminum is deposited on a piezoelectric material wafer made of LiTaO3, LiNbO3, SiO2, etc. After forming the piezoelectric substrate by the method described above, a plurality of identical electrode patterns for surface acoustic wave devices are formed on the piezoelectric substrate by photolithography, and the wafer is cut to produce a plurality of surface acoustic wave devices.

【0003】図5に一般的な弾性表面波装置の模式的平
面図を示す。同図において、3は圧電性基板、4は圧電
性基板3上に形成されたくし型電極である。図6はこの
弾性表面波装置のX−X’断面図であり、Wは電極指4
Aの幅、hは電極指4Aの膜厚、Pは電極ピッチを示し
ている。
FIG. 5 shows a schematic plan view of a general surface acoustic wave device. In the figure, 3 is a piezoelectric substrate, and 4 is a comb-shaped electrode formed on the piezoelectric substrate 3. FIG. 6 is a cross-sectional view of this surface acoustic wave device taken along the line XX', where W is the electrode finger 4.
A indicates the width, h indicates the film thickness of the electrode finger 4A, and P indicates the electrode pitch.

【0004】弾性表面波装置における共振周波数は、圧
電性基板3表面を伝播する弾性表面波の伝播速度Vと圧
電性基板3上に形成するくし型電極4の電極間ピッチP
により決定される。
The resonance frequency of the surface acoustic wave device is determined by the propagation velocity V of the surface acoustic wave propagating on the surface of the piezoelectric substrate 3 and the interelectrode pitch P of the interdigitated electrodes 4 formed on the piezoelectric substrate 3.
Determined by

【0005】そして、弾性表面波の伝播速度Vは圧電性
材料により略一定であるが、電極膜厚hや電極ピッチP
に対する電極の線幅Wの比W/P=D(以下、デューテ
ィと称す)により変化する。例えば、電極の膜厚hが増
加すると、質量効果により伝播速度が低下する。電極の
膜厚hが変化した場合の弾性表面波の伝播速度の変化量
ΔVは次式で表される。
[0005] The propagation velocity V of the surface acoustic wave is approximately constant depending on the piezoelectric material, but the electrode film thickness h and the electrode pitch P
It changes depending on the ratio of the line width W of the electrode to the line width W/P=D (hereinafter referred to as duty). For example, when the film thickness h of the electrode increases, the propagation speed decreases due to the mass effect. The amount of change ΔV in the propagation velocity of the surface acoustic wave when the film thickness h of the electrode changes is expressed by the following equation.

【0006】[0006]

【数1】[Math 1]

【0007】尚、(1)式において、Vは基板での弾性
表面波の伝播速度、K1,K2は電気機械結合係数を示
す。
In equation (1), V represents the propagation velocity of the surface acoustic wave in the substrate, and K1 and K2 represent the electromechanical coupling coefficients.

【0008】このように、弾性表面波装置においては、
電極の膜厚により基板表面を伝播する弾性表面波の伝播
速度が変化するので、これによって共振周波数が変化す
る。例えば、電極の膜厚が増加すると共振周波数は小さ
くなる。
[0008] In this way, in the surface acoustic wave device,
Since the propagation speed of the surface acoustic wave propagating on the substrate surface changes depending on the film thickness of the electrode, the resonant frequency changes accordingly. For example, as the film thickness of the electrode increases, the resonant frequency decreases.

【0009】したがって、ウエハ上に同じ電極パターン
を複数個形成した場合、導電性膜の膜厚が一様でないと
、ウエハの場所によって完成した弾性表面波装置の共振
周波数が異なる。
Therefore, when a plurality of the same electrode patterns are formed on a wafer, if the thickness of the conductive film is not uniform, the resonant frequency of the completed surface acoustic wave device will differ depending on the location on the wafer.

【0010】一般に、真空蒸着により基板上に導電性膜
を形成した場合、形成された導電性膜は膜厚が一様では
ない。図7に示すように蒸発炉の表面にあいた小穴1a
から蒸発分子が飛び出してくる蒸発源1の上に、ウエハ
2を配置して蒸着を行う場合を考えると、蒸発源1から
距離rだけ離れ、蒸発分子の方向と法線がθだけ傾いた
ウエハ面の単位面積に付着する物質の質量mは次式で表
される。
Generally, when a conductive film is formed on a substrate by vacuum deposition, the thickness of the formed conductive film is not uniform. As shown in Figure 7, a small hole 1a is made on the surface of the evaporation furnace.
If we consider the case where evaporation is performed by placing the wafer 2 on top of the evaporation source 1 from which evaporated molecules fly out, the wafer is separated by a distance r from the evaporation source 1, and the direction and normal of the evaporated molecules are inclined by θ. The mass m of a substance adhering to a unit area of a surface is expressed by the following formula.

【0011】[0011]

【数2】[Math 2]

【0012】尚、(2)式において、sは付着係数と呼
ばれる、蒸発してウエハ2に衝突した分子のうち反射さ
れずにウエハ2に残る割合を表す量、Mは一定時間に蒸
発した分子の全質量、ψは蒸発源の小穴1aの面の法線
と蒸発分子の蒸発方向とがなす角である。
In equation (2), s is a quantity called the adhesion coefficient, which represents the proportion of molecules that evaporated and collided with the wafer 2 and remains on the wafer 2 without being reflected, and M is the amount of molecules that evaporated in a certain period of time. The total mass of ψ is the angle between the normal to the surface of the small hole 1a of the evaporation source and the evaporation direction of the evaporated molecules.

【0013】図7のようにウエハを置いた場合、θ及び
ψは、ウエハの中央では0であり、中央部から周辺部に
行くにしたがって大きくなる。また、蒸発源1からの距
離rも同様に変化する。よって、(2)式から明らかな
ようにウエハ中央部では形成される導電性膜の膜厚が厚
くなり、周辺に行くにつれて薄くなる。従って、ウエハ
2上に真空蒸着により導電性膜を形成し、同じ電極パタ
ーンを複数個形成した場合、完成した弾性表面波装置は
共振周波数にバラツキが生じる。
When the wafer is placed as shown in FIG. 7, θ and ψ are 0 at the center of the wafer and increase from the center to the periphery. Moreover, the distance r from the evaporation source 1 changes similarly. Therefore, as is clear from equation (2), the thickness of the conductive film formed is thicker at the center of the wafer and becomes thinner toward the periphery. Therefore, when a conductive film is formed on the wafer 2 by vacuum deposition and a plurality of the same electrode patterns are formed, the resonant frequency of the completed surface acoustic wave device will vary.

【0014】従来、このような共振周波数のバラツキの
ため、周波数調整を行う方法がある。例えば特開平1−
24007号(H03H  3/10)公報には、ドラ
イエッチングにより圧電性基板をエッチングして周波数
調整を行う方法が開示されている。このような方法では
ドライエッチング装置が必要であり、製造工数が増加す
るという問題がある。
[0014] Conventionally, there is a method of frequency adjustment to account for such variations in resonance frequency. For example, JP-A-1-
No. 24007 (H03H 3/10) discloses a method of etching a piezoelectric substrate by dry etching to adjust the frequency. Such a method requires a dry etching device, which poses a problem in that the number of manufacturing steps increases.

【0015】また、特開昭61−157110号(H0
3H  3/08)公報には、弾性表面波の伝播速度の
バラツキの予想される範囲内で所定の周波数特性が得ら
れる複数枚のパターニング用マスクを用意しておき、圧
電性基板の弾性表面波の伝播速度に応じて所定のパター
ニング用マスクを選択し、これを用いて所定のレジスト
膜パターンをウエハの導電性膜上に形成する方法が開示
されている。しかしながら、この方法では、ウエハごと
の弾性表面波の伝播速度のバラツキには対応できるが、
一枚のウエハ上での場所によるバラツキについては補償
できるものではない。
[0015] Also, Japanese Patent Application Laid-Open No. 61-157110 (H0
3H 3/08) Publication states that a plurality of patterning masks that can obtain predetermined frequency characteristics within the expected range of variation in the propagation velocity of surface acoustic waves are prepared, and surface acoustic wave A method is disclosed in which a predetermined patterning mask is selected depending on the propagation speed of the patterning mask, and a predetermined resist film pattern is formed on a conductive film of a wafer using the mask. However, although this method can accommodate variations in the propagation speed of surface acoustic waves from wafer to wafer,
It is not possible to compensate for variations depending on location on a single wafer.

【0016】[0016]

【発明が解決しようとする課題】本発明は弾性表面波装
置において、共振周波数を調整するための装置を必要と
せず、また製造工数の増加を招くことなく共振周波数の
バラツキを低減し、歩留まりを向上させ得る製造方法を
提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce variations in resonance frequency in a surface acoustic wave device without requiring a device for adjusting the resonance frequency and without increasing manufacturing man-hours, thereby improving yield. The present invention provides an improved manufacturing method.

【0017】[0017]

【課題を解決するための手段】上述の点に鑑み、本発明
の弾性表面波装置の製造方法は、各弾性表面波装置の共
振周波数が等しくなるように、導電性膜の膜厚に応じて
電極デューティを相違させて複数の電極パターンを圧電
性材料ウエハ上に形成することを特徴とするものである
[Means for Solving the Problems] In view of the above-mentioned points, the method for manufacturing a surface acoustic wave device of the present invention provides a method for manufacturing a surface acoustic wave device according to the thickness of the conductive film so that the resonant frequency of each surface acoustic wave device becomes equal. This method is characterized in that a plurality of electrode patterns are formed on a piezoelectric material wafer with different electrode duties.

【0018】[0018]

【作用】弾性表面波の伝播速度に影響を与える電極の質
量が膜厚の違いにより、ウエハの部分によって異なるの
を、ウエハ上に形成する電極パターンのデューティを変
えて補償することにより、同一ウエハ内の弾性表面波装
置における共振周波数のバラツキが低減される。
[Operation] By changing the duty of the electrode pattern formed on the wafer to compensate for the fact that the mass of the electrode, which affects the propagation speed of surface acoustic waves, differs depending on the part of the wafer due to the difference in film thickness, it is possible to The variation in resonance frequency in the surface acoustic wave device inside is reduced.

【0019】[0019]

【実施例】以下、本発明による弾性表面波装置の製造方
法の一実施例を図面に従い説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for manufacturing a surface acoustic wave device according to the present invention will be described below with reference to the drawings.

【0020】簡単に電極パターンの製造工程について述
べる。先ず、圧電性材料ウエハ表面に真空蒸着にてアル
ミニウム等の金属を数千Å蒸着する。前述のように真空
蒸着にて導電性膜を形成した場合、形成された導電性膜
はウエハの中央が最も膜厚が厚く、外周に行くにしたが
って薄くなるような膜厚分布を呈している。次いで、導
電性膜上に均一にレジストをコーティングする。そして
、所定の電極パターンのマスクを使用してレジストを露
光し、現像することにより、所定の電極パターン形状の
レジスト膜を導電性膜上に形成する。このウエハをエッ
チングにより導電性膜の不要部分を除去し、続いてレジ
スト膜を除去してウエハ上に所定パターンの電極が形成
される。
The manufacturing process of the electrode pattern will be briefly described. First, several thousand Å of metal such as aluminum is deposited on the surface of a piezoelectric material wafer by vacuum deposition. When a conductive film is formed by vacuum evaporation as described above, the formed conductive film exhibits a film thickness distribution such that it is thickest at the center of the wafer and becomes thinner toward the outer periphery. Next, a resist is uniformly coated on the conductive film. Then, by exposing the resist using a mask with a predetermined electrode pattern and developing it, a resist film having a predetermined electrode pattern shape is formed on the conductive film. This wafer is etched to remove unnecessary portions of the conductive film, and then the resist film is removed to form electrodes in a predetermined pattern on the wafer.

【0021】本発明においては、共振周波数が一定とな
るように、導電性膜の膜厚分布に応じて形成する各電極
パターンの電極デューティをウエハの部分毎に変える。 そのために導電性膜上に形成したレジスト膜をそのよう
な電極パターン形状に加工する。
In the present invention, the electrode duty of each electrode pattern to be formed is changed for each part of the wafer in accordance with the film thickness distribution of the conductive film so that the resonance frequency is constant. For this purpose, a resist film formed on the conductive film is processed into such an electrode pattern shape.

【0022】その方法として、レジストをコーティング
したウエハをパターンニング用マスクを用いて露光機で
露光する際に、露光量を変えることにより行う。使用す
る露光機は決められたリピートピッチで移動を行い、マ
スクのパターンを縮小露光するタイプのものである。
The method is to change the amount of exposure when exposing a resist-coated wafer with an exposure machine using a patterning mask. The exposure machine used is of a type that moves at a predetermined repeat pitch and exposes the mask pattern in a reduced size.

【0023】図2はこの露光工程を説明するための図で
あり、簡単のため等倍露光の例を示している。この露光
工程で露光量を一定にして行った場合、ウエハ2上に形
成される電極のデューティは一定となるが、ウエハ2の
部分毎に露光量を変えることによって電極デューティを
異ならせる。つまり、使用するレジストがネガ形である
場合は、導電性膜5の膜厚分布に応じて、導電性膜5の
膜厚が厚い中央部では露光量を多くし、周辺部に行くに
したがって露光量を少なくする。
FIG. 2 is a diagram for explaining this exposure process, and shows an example of equal-magnification exposure for simplicity. If this exposure step is performed with a constant exposure amount, the duty of the electrodes formed on the wafer 2 will be constant, but by changing the exposure amount for each portion of the wafer 2, the electrode duty is varied. In other words, when the resist used is a negative type, the amount of exposure is increased in the central part where the thickness of the conductive film 5 is thick, and the amount of exposure is increased as it goes to the periphery, depending on the film thickness distribution of the conductive film 5. Reduce quantity.

【0024】これによって、ウエハ2上に形成される各
弾性表面波装置用電極パターンは、そのデューティが図
1に示すような分布を持って形成される。すなわち、中
央部Aでは、露光量を多くすることにより、レジスト膜
5は図2で示す破線Aまで、マスク7の透過部分7Aの
幅よりも広く露光され、現像工程で破線A部まで取り除
かれる。また、ウエハ2のB部及びC部では、夫々図2
の破線B及びCまで露光されるように露光量を調整する
As a result, each surface acoustic wave device electrode pattern formed on the wafer 2 has a duty distribution as shown in FIG. That is, in the central part A, by increasing the exposure amount, the resist film 5 is exposed to the dotted line A shown in FIG. 2, wider than the width of the transparent part 7A of the mask 7, and is removed up to the dotted line A in the development process. . In addition, in the B section and C section of the wafer 2, FIG.
Adjust the exposure amount so that the dotted lines B and C are exposed.

【0025】このようにすることによって、レジスト膜
5を現像した後に形成されるレジストパターンは、ウエ
ハ2の部分毎に異なるデューティのパターンとなる。従
って、エッチングにより形成される電極パターンは、導
電性膜6の膜厚分布に応じて、ウエハ2の部分毎に異な
ったデューティを持つこととなる。
By doing this, the resist pattern formed after developing the resist film 5 becomes a pattern with a different duty for each part of the wafer 2. Therefore, the electrode pattern formed by etching has a different duty for each part of the wafer 2, depending on the thickness distribution of the conductive film 6.

【0026】このように、真空蒸着により形成された一
定の膜厚分布を呈する導電性膜をフォトリソグラフィー
により、電極デューティが中央部で大きく、周辺部に行
くにしたがい小さくなるような電極パターンを形成する
ことにより、共振周波数のバラツキの少ない弾性表面波
装置を得ることができる。
[0026] In this way, an electrode pattern is formed in which the electrode duty is large in the center and becomes smaller toward the periphery by photolithography of a conductive film formed by vacuum evaporation and exhibiting a constant film thickness distribution. By doing so, it is possible to obtain a surface acoustic wave device with less variation in resonance frequency.

【0027】また、レジスト膜5をウエハ2の部分毎に
異なるデューティのパターンに形成する他の方法として
は、露光量は一定とし、現像工程で行う方法がある。即
ち、露光したウエハに現像液を滴下する際に、中央部に
現像液を多く滴下することにより、現像工程で中央部ほ
どレジスト膜5が余分に除去されるようにし、上述の方
法と同様のレジストパターンを形成する。
Another method for forming the resist film 5 in a pattern with a different duty for each portion of the wafer 2 is to use a constant exposure amount and perform the pattern in a developing process. That is, when dropping the developer onto the exposed wafer, more of the developer is dropped at the center so that more of the resist film 5 is removed from the center during the development process, and the method is similar to the method described above. Form a resist pattern.

【0028】図3は上述の方法により製作された一枚の
ウエハからできる弾性表面波装置の共振周波数の分布を
示す図である。図4に示す全て同じデューティの電極パ
ターンを形成した場合の周波数分布と比して、共振周波
数のバラツキが少なくなっている。
FIG. 3 is a diagram showing the distribution of resonant frequencies of a surface acoustic wave device manufactured from a single wafer manufactured by the method described above. Compared to the frequency distribution shown in FIG. 4 when electrode patterns with the same duty are formed, the variation in resonance frequency is reduced.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば同
一ウエハから製造される弾性表面波装置の共振周波数の
バラツキを低減することができ、歩留まりを向上させる
ことができる。
As described above, according to the present invention, it is possible to reduce variations in the resonance frequency of surface acoustic wave devices manufactured from the same wafer, and it is possible to improve the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の製造方法によりウエハ上に形成された
電極のデューティの分布を模式的に示したものである。
FIG. 1 schematically shows the duty distribution of electrodes formed on a wafer by the manufacturing method of the present invention.

【図2】本発明のレジスト膜の露光工程を示す図である
FIG. 2 is a diagram showing a resist film exposure process of the present invention.

【図3】本発明による一枚のウエハからできる弾性表面
波装置の共振周波数の分布を示す図である。
FIG. 3 is a diagram showing the distribution of resonant frequencies of a surface acoustic wave device made from a single wafer according to the present invention.

【図4】従来の方法による一枚のウエハからできる弾性
表面波装置の共振周波数の分布を示す図である。
FIG. 4 is a diagram showing the distribution of resonant frequencies of a surface acoustic wave device manufactured from a single wafer by a conventional method.

【図5】弾性表面波装置を示す模式図である。FIG. 5 is a schematic diagram showing a surface acoustic wave device.

【図6】図5の弾性表面波装置のX−X’断面図である
6 is a sectional view taken along line XX' of the surface acoustic wave device of FIG. 5. FIG.

【図7】真空蒸着による導電性膜の形成について説明す
るための図である。
FIG. 7 is a diagram for explaining the formation of a conductive film by vacuum evaporation.

【符号の説明】[Explanation of symbols]

2  圧電材料ウエハ 5  レジスト膜 6  導電性膜 7  パターンニング用マスク 2 Piezoelectric material wafer 5 Resist film 6 Conductive film 7 Patterning mask

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  一面に導電性膜を形成した圧電性材料
ウエハをフォトリソグラフィー法にて加工することによ
り該ウエハ上に複数の弾性表面波装置用の電極パターン
を形成する弾性表面波装置の製造方法において、各弾性
表面波装置の共振周波数が等しくなるように、前記導電
性膜の膜厚に応じて各電極パターンにおける電極ピッチ
に対する電極の線幅の比を相違させて前記複数の電極パ
ターンを形成することを特徴とする弾性表面波装置の製
造方法。
1. Manufacture of a surface acoustic wave device in which electrode patterns for a plurality of surface acoustic wave devices are formed on a piezoelectric material wafer with a conductive film formed on one surface by processing the wafer using a photolithography method. In the method, the plurality of electrode patterns are formed by varying the ratio of the line width of the electrode to the electrode pitch in each electrode pattern according to the thickness of the conductive film so that the resonance frequency of each surface acoustic wave device is equal. 1. A method of manufacturing a surface acoustic wave device, comprising: forming a surface acoustic wave device.
【請求項2】  圧電性材料ウエハ上に導電性膜を形成
する工程と、前記導電性膜上にレジスト膜を形成する工
程と、各弾性表面波装置の共振周波数が等しくなるよう
に、パターンニング用マスクを用いて前記導電性膜の電
極パターンが形成される部分の膜厚に応じて当該部分の
前記レジスト膜を露光量を変えて露光する工程と、その
後、現像により前記導電性膜上に複数の電極パターン形
状のレジストパターンを形成し、エッチングにより前記
導電性膜の不要部分を除去する工程と、からなることを
特徴とする請求項1記載の弾性表面波装置の製造方法。
2. A process of forming a conductive film on a piezoelectric material wafer, a process of forming a resist film on the conductive film, and patterning so that the resonance frequencies of each surface acoustic wave device are equal. a step of exposing the resist film in a portion of the conductive film at a different exposure amount depending on the film thickness of the portion where the electrode pattern is to be formed using a mask; 2. The method of manufacturing a surface acoustic wave device according to claim 1, further comprising the steps of forming a resist pattern in the shape of a plurality of electrode patterns and removing unnecessary portions of the conductive film by etching.
【請求項3】  圧電性材料ウエハ上に導電性膜を形成
する工程と、前記導電性膜上にレジスト膜を形成する工
程と、前記導電性膜の電極パターンが形成される各部分
のレジスト膜をパターンニング用マスクを用いて一定の
露光量で露光する工程と、各弾性表面波装置の共振周波
数が等しくなるように、前記導電性膜の電極パターンが
形成される部分の膜厚に応じて当該部分の前記レジスト
膜の現像量を変えて現像することにより前記導電性膜上
に複数の電極パターン形状のレジストパターンを形成し
、エッチングにより前記導電性膜の不要部分を除去する
工程と、からなることを特徴とする請求項1記載の弾性
表面波装置の製造方法。
3. A step of forming a conductive film on a piezoelectric material wafer, a step of forming a resist film on the conductive film, and a resist film on each portion of the conductive film where an electrode pattern is formed. A step of exposing the conductive film at a constant exposure amount using a patterning mask, and adjusting the thickness of the conductive film at a portion where the electrode pattern is formed so that the resonance frequency of each surface acoustic wave device is equal. forming resist patterns in the shape of a plurality of electrode patterns on the conductive film by changing the development amount of the resist film in the portion, and removing unnecessary portions of the conductive film by etching; The method for manufacturing a surface acoustic wave device according to claim 1, characterized in that:
JP14195791A 1991-06-13 1991-06-13 Manufacture of surface acoustic wave device Pending JPH04365212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14195791A JPH04365212A (en) 1991-06-13 1991-06-13 Manufacture of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14195791A JPH04365212A (en) 1991-06-13 1991-06-13 Manufacture of surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPH04365212A true JPH04365212A (en) 1992-12-17

Family

ID=15304062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14195791A Pending JPH04365212A (en) 1991-06-13 1991-06-13 Manufacture of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH04365212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339786A (en) * 2005-05-31 2006-12-14 Seiko Epson Corp IDT design method for surface acoustic wave element, photomask for forming surface acoustic wave element, surface acoustic wave element manufacturing method, surface acoustic wave element
JP2007209000A (en) * 2007-02-21 2007-08-16 Infineon Technologies Ag Method for producing a layer having a predetermined layer thickness characteristic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415166A (en) * 1987-07-10 1989-01-19 Toshio Takagi Sprinkler nozzle
JPH02189011A (en) * 1989-01-18 1990-07-25 Fujitsu Ltd Manufacture of surface acoustic wave device
JPH035753A (en) * 1989-06-01 1991-01-11 Fujitsu Ltd Method for forming thin film patterns
JPH0370308A (en) * 1989-08-10 1991-03-26 Nec Corp Mask pattern for elastic surface wave device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415166A (en) * 1987-07-10 1989-01-19 Toshio Takagi Sprinkler nozzle
JPH02189011A (en) * 1989-01-18 1990-07-25 Fujitsu Ltd Manufacture of surface acoustic wave device
JPH035753A (en) * 1989-06-01 1991-01-11 Fujitsu Ltd Method for forming thin film patterns
JPH0370308A (en) * 1989-08-10 1991-03-26 Nec Corp Mask pattern for elastic surface wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339786A (en) * 2005-05-31 2006-12-14 Seiko Epson Corp IDT design method for surface acoustic wave element, photomask for forming surface acoustic wave element, surface acoustic wave element manufacturing method, surface acoustic wave element
JP4706337B2 (en) * 2005-05-31 2011-06-22 セイコーエプソン株式会社 IDT design method for surface acoustic wave element, photomask for forming surface acoustic wave element, surface acoustic wave element manufacturing method, surface acoustic wave element
JP2007209000A (en) * 2007-02-21 2007-08-16 Infineon Technologies Ag Method for producing a layer having a predetermined layer thickness characteristic

Similar Documents

Publication Publication Date Title
JP5142001B2 (en) Method for forming thin film acoustic resonator
JP2010226636A (en) Elastic wave device and manufacturing method thereof
JPH0590865A (en) Central frequency adjusting method for acoustic surface wave filter
US20020079987A1 (en) Recessed reflector single phase unidirectional transducer
JPH04365212A (en) Manufacture of surface acoustic wave device
JPH07209853A (en) Manufacture of phase inversion mask
JPH04158612A (en) Manufacture of surface acoustic wave element
GB1594980A (en) Tuning fork-type quartz crystal vibrator and method of forming the same
JP4706337B2 (en) IDT design method for surface acoustic wave element, photomask for forming surface acoustic wave element, surface acoustic wave element manufacturing method, surface acoustic wave element
JPH10256114A (en) Method for forming patterns on photoresist film
JP3132898B2 (en) Manufacturing method of surface acoustic wave device
JP2007036670A (en) Manufacturing method of surface acoustic wave element and surface acoustic wave element
JPH06164286A (en) Manufacture of surface acoustic wave resonator
JP2005191703A (en) Manufacturing method of surface acoustic wave element
JPH02301210A (en) Frequency adjustment method for surface acoustic wave device
JPH09107259A (en) Photo mask and electrode pattern for production of surface acoustic wave element
JP2001053569A (en) Manufacturing method of surface acoustic wave device
JP3992985B2 (en) Method for manufacturing piezoelectric vibrator
JP4756452B2 (en) Photomask for forming surface acoustic wave element, method for manufacturing surface acoustic wave element, and surface acoustic wave element
JPS61236207A (en) Manufacturing method of surface acoustic wave resonator
JPH09270661A (en) Surface acoustic wave device
JP3426127B2 (en) Frequency adjustment method for surface acoustic wave device
JPH0115166B2 (en)
KR0128832B1 (en) Drom-mask fabrication method
JP2001217673A (en) Surface acoustic wave device and method of manufacturing the same