JPH04364496A - Preamplifier for semicopnductor detector - Google Patents
Preamplifier for semicopnductor detectorInfo
- Publication number
- JPH04364496A JPH04364496A JP14019391A JP14019391A JPH04364496A JP H04364496 A JPH04364496 A JP H04364496A JP 14019391 A JP14019391 A JP 14019391A JP 14019391 A JP14019391 A JP 14019391A JP H04364496 A JPH04364496 A JP H04364496A
- Authority
- JP
- Japan
- Prior art keywords
- amplifier
- drain
- preamplifier
- semiconductor detector
- fet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 abstract description 19
- 238000005259 measurement Methods 0.000 abstract description 11
- 238000007599 discharging Methods 0.000 abstract 1
- 230000009469 supplementation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 12
- 239000003990 capacitor Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 101100484930 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) VPS41 gene Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006335 response to radiation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Landscapes
- Amplifiers (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、半導体検出器結晶を用
いて放射線のエネルギーをS/N比を良好にして測定す
るための半導体検出器用前置増幅器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor detector preamplifier for measuring radiation energy with a good S/N ratio using a semiconductor detector crystal.
【0002】0002
【従来の技術】半導体検出器の結晶はα線、β線、γ線
等の放射線のエネルギーを非常に高いエネルギー分解能
で測定できるセンサーである。この半導体検出器結晶に
放射線が入射すると、その都度そのエネルギーに比例し
たパルス状の電荷が半導体検出器結晶電極に収集されて
電荷信号として取出される。一般に、この電荷信号は帰
還容量などの積分器機能を備えた前置増幅器で電圧信号
(S)に変換される。この後に主増幅器で増幅して波形
整形される。この時、この系のエネルギー分解能は各段
で発生する雑音(N)との比(S/N比)により決定さ
れる。特に高エネルギー分解能を目的とした液体窒素温
度で使用する測定では半導体検出器から発生する雑音は
非常に少なくなるために前置増幅器からの雑音が大きな
比重を占めるようになる。従って低雑音の前置増幅器が
必要になる。2. Description of the Related Art A semiconductor detector crystal is a sensor capable of measuring the energy of radiation such as alpha rays, beta rays, gamma rays, etc. with very high energy resolution. When radiation is incident on the semiconductor detector crystal, a pulse-like charge proportional to the energy is collected on the semiconductor detector crystal electrode each time and is extracted as a charge signal. Generally, this charge signal is converted into a voltage signal (S) by a preamplifier equipped with an integrator function such as a feedback capacitor. After this, the main amplifier amplifies the signal and shapes the waveform. At this time, the energy resolution of this system is determined by the ratio (S/N ratio) to the noise (N) generated at each stage. Particularly in measurements used at liquid nitrogen temperatures for the purpose of high energy resolution, the noise generated from the semiconductor detector becomes very small, so that the noise from the preamplifier comes to dominate. Therefore, a low noise preamplifier is required.
【0003】従来の高い分解能を目的とした電荷増幅型
の前置増幅器としては、次ぎに記す各種のものがあった
。先ず図3のブロック回路図に示すものは抵抗帰還型と
呼ばれるもので、半導体検出器1に直列に接続した初段
にFET2を設けた増幅器3に、帰還容量4と帰還抵抗
5を並列に接続した構成で、通常最も広く用いられてい
るものである。Conventional charge amplification type preamplifiers aimed at high resolution include the following types. First, the block circuit diagram shown in Fig. 3 is called a resistive feedback type, in which a feedback capacitor 4 and a feedback resistor 5 are connected in parallel to an amplifier 3 which is connected in series to a semiconductor detector 1 and has an FET 2 in its first stage. configuration, and is usually the most widely used.
【0004】次の図4のブロック回路図のものは光リセ
ット型と呼ぶもので、半導体検出器1に直列に接続した
増幅器3に帰還容量4を並列に接続すると共に、コンパ
レータ6を直列に接続して、さらにこのコンパレータ6
の出力端と接地間にリセットパルス発生器7と発光ダイ
オード8を直列にして接続したパルスリセット型で、発
光ダイオード8の光パルスにより増幅器3初段のFET
2のゲート電流を増大させて帰還容量4に蓄積された電
荷を間欠的に放電させる方式であって、入力には分解能
を低下させる要因である帰還抵抗などの回路素子が設け
られていないため高い分解能が得られる。なお、発光ダ
イオード8のリセット光パルスの時間応答により高計数
率特性が決まる。The block circuit diagram shown in FIG. 4 below is called an optical reset type, in which a feedback capacitor 4 is connected in parallel to an amplifier 3 connected in series to a semiconductor detector 1, and a comparator 6 is connected in series. Then, furthermore, this comparator 6
This is a pulse reset type in which a reset pulse generator 7 and a light emitting diode 8 are connected in series between the output terminal of the amplifier 3 and the ground.
It is a method in which the charge accumulated in the feedback capacitor 4 is intermittently discharged by increasing the gate current of 2, and the input is not equipped with circuit elements such as a feedback resistor that reduce resolution, so it is expensive. Resolution can be obtained. Note that the high count rate characteristic is determined by the time response of the reset light pulse of the light emitting diode 8.
【0005】図5のブロック回路図に示すものは抵抗リ
セット型で、前記図4の光リセット型と同様の構成で、
発光ダイオード8の代わりにリセットトランジスタ9及
びリセット抵抗10を設けたもので、光リセット型に比
べて速い応答の帰還容量4に蓄積された電荷のリセット
が可能である。また図6のブロック回路図に示したドレ
ーン帰還型と呼ばれるものは、半導体検出器1に直列に
接続した増幅器3に、帰還容量4を並列に接続すると共
に増幅器3の出力端と増幅器3初段のFET2のドレー
ンの間に積分回路11を接続した構成であり、ドレーン
電圧の僅かな上昇でもゲート電流が大幅に増大すること
を利用した方式で、入力には分解能を低下させる要因で
ある帰還抵抗などが接続されていないため、高い分解能
が得られる特徴がある。The block circuit diagram shown in FIG. 5 is a resistance reset type, and has the same configuration as the optical reset type shown in FIG.
A reset transistor 9 and a reset resistor 10 are provided in place of the light emitting diode 8, and it is possible to reset the charges accumulated in the feedback capacitor 4, which has a faster response than the optical reset type. In addition, the so-called drain feedback type shown in the block circuit diagram of FIG. It has a configuration in which an integrating circuit 11 is connected between the drain of FET 2, and this method takes advantage of the fact that the gate current increases significantly even with a slight increase in drain voltage.The input is equipped with a feedback resistor, etc., which is a factor that reduces resolution. Since it is not connected, it has the characteristic of obtaining high resolution.
【0006】[0006]
【発明が解決しようとする課題】上記した各種の電荷増
幅型の前置増幅器において、図3の抵抗帰還型では帰還
抵抗5が入力に接続されているために、半導体検出器1
の漏洩電流と等価で並列雑音抵抗を低くし、結果的に他
の方式に比して高い分解能が得られない問題がある。ま
た図4,5の光リセット型及び抵抗リセット型は、増幅
器3での波形整形においてポールゼロキャンセルの必要
がないが、光リセット型については発光ダイオード8に
おいて残光時間があるために高計数率での測定には限界
があり、抵抗リセット型ではリセット抵抗10が入力に
接続されているため前記抵抗帰還型と同様に高い分解能
が得られにくい問題がある。[Problems to be Solved by the Invention] Among the various charge amplification type preamplifiers described above, in the resistor feedback type shown in FIG. 3, since the feedback resistor 5 is connected to the input, the semiconductor detector 1
This method has the problem of lowering the parallel noise resistance by equivalent to the leakage current of In addition, the optical reset type and resistance reset type shown in FIGS. 4 and 5 do not require pole-zero cancellation during waveform shaping in the amplifier 3, but the optical reset type has a high counting rate due to the afterglow time in the light emitting diode 8. There is a limit to the measurement possible, and in the resistance reset type, the reset resistor 10 is connected to the input, so there is a problem that it is difficult to obtain high resolution like the resistance feedback type.
【0007】さらに図6のドレーン帰還型にあっては、
連続的に電荷を放電させるものであるため、計数率が高
いときに当然ゲート電流も増大して並列雑音が増加して
エネルギー分解能が低下する。さらに放電の時の時定数
が変わることからポールゼロキャンセルが十分でなく、
分解能の低下をもたらす支障がある。以上のように従来
の各方式の前置増幅器においては高分解能測定と高計数
率測定という点で互いに一長一短があり、高分解能で、
かつ高計数率測定の可能な前置増幅器が要望されていた
。Furthermore, in the drain feedback type shown in FIG.
Since charges are continuously discharged, when the counting rate is high, the gate current naturally increases, parallel noise increases, and energy resolution decreases. Furthermore, since the time constant during discharge changes, pole-zero cancellation is not sufficient.
There is a problem that causes a decrease in resolution. As mentioned above, each type of conventional preamplifier has its advantages and disadvantages in terms of high resolution measurement and high count rate measurement.
There was also a demand for a preamplifier capable of high count rate measurement.
【0008】本発明の目的は、帰還容量に蓄積された電
荷を間欠的に放電させるパルスリセット型とFETのド
レーンに帰還するドレーン帰還型との相互補填による、
高分解能で高計数率測定の可能な半導体検出器用前置増
幅器を提供することにある。An object of the present invention is to achieve mutual compensation between a pulse reset type in which the charge accumulated in the feedback capacitance is discharged intermittently and a drain feedback type in which the charge is fed back to the drain of the FET.
An object of the present invention is to provide a preamplifier for a semiconductor detector capable of high resolution and high count rate measurement.
【0009】[0009]
【課題を解決するための手段】半導体検出器に接続した
増幅器と、この増幅器と並列に接続した帰還容量と、前
記増幅器と接続したコンパレータと、このコンパレータ
の出力端と前記増幅器初段のFETのドレーン間に直列
に接続した複数の電圧を切換える電源切換器と電流制限
抵抗を具備する。[Means for Solving the Problem] An amplifier connected to a semiconductor detector, a feedback capacitor connected in parallel with the amplifier, a comparator connected to the amplifier, an output terminal of the comparator, and a drain of an FET in the first stage of the amplifier. It is equipped with a power supply switching device that switches a plurality of voltages connected in series between them, and a current limiting resistor.
【0010】0010
【作用】放射線のエネルギーを受けて半導体検出器に収
集された負の電荷は帰還容量に蓄積され、増幅器の出力
端には入射する放射線のエネルギー比例したステップ状
の鋸歯状の電圧波形が得られる。増幅器の出力が予め設
定した基準電圧に達すると、コンパレータの出力端にパ
ルス電圧が発生する。このパルス電圧の立上りのタイミ
ングで電源切換器を切換えて、増幅器初段のFETのド
レーンに高電圧を加える。このドレーン電圧の上昇によ
りFETのゲート電流を急増させて、これにより帰還容
量が蓄積されていた電荷をリセットする。このリセット
の応答時間は短く、S/N比が高く高計数率で作動する
。[Operation] Negative charges collected in the semiconductor detector in response to radiation energy are accumulated in the feedback capacitance, and a step-like sawtooth voltage waveform proportional to the energy of the incident radiation is obtained at the output end of the amplifier. . When the output of the amplifier reaches a preset reference voltage, a pulse voltage is generated at the output of the comparator. The power supply switch is switched at the timing of the rise of this pulse voltage, and a high voltage is applied to the drain of the FET in the first stage of the amplifier. This increase in drain voltage causes the gate current of the FET to rapidly increase, thereby resetting the charge accumulated in the feedback capacitance. The response time of this reset is short, and the S/N ratio is high and the counting rate is high.
【0011】[0011]
【実施例】本発明の一実施例について図面を参照して説
明する。なお、上記した従来技術と同じ構成部分につい
ては同一符号を付して詳細な説明を省略する。図1は半
導体検出器用の前置増幅器のブロック回路図で、半導体
検出器1に直列に接続した初段にFET2を設けた増幅
器3に帰還容量4を並列に接続すると共に、コンパレー
タ6を直列に接続する。さらにこのコンパレータ6の出
力端6aと増幅器3のFET2のドレーン2b間に電源
切換器12と電流制限抵抗13を介挿、接続して構成さ
れている。なお、これをドレーンリセット型と呼ぶ。ま
た電源切換器12はFET2のドレーン2bにかかる電
圧を電流制限抵抗13を介して電源E1 あるいは電源
E2 に切換えるが、ここで電源E1 とE2 の電圧
はE1 <E2 としている。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. Note that the same components as those in the prior art described above are designated by the same reference numerals, and detailed description thereof will be omitted. Figure 1 is a block circuit diagram of a preamplifier for a semiconductor detector, in which a feedback capacitor 4 is connected in parallel to an amplifier 3 which is connected in series to a semiconductor detector 1 and has an FET 2 in the first stage, and a comparator 6 is connected in series. do. Further, a power supply switch 12 and a current limiting resistor 13 are inserted and connected between the output end 6a of the comparator 6 and the drain 2b of the FET 2 of the amplifier 3. Note that this is called a drain reset type. Further, the power supply switch 12 switches the voltage applied to the drain 2b of the FET 2 to the power supply E1 or the power supply E2 via the current limiting resistor 13, but here the voltages of the power supplies E1 and E2 satisfy E1 < E2.
【0012】次ぎに上記構成による作用について図2の
動作タイミング特性図により説明する。一般に逆バイア
ス高電圧を印加したPN接合型の半導体検出器1の結晶
に放射線が入射すると結晶の空乏で電離が起こり、この
結晶の両端の電極には印加した高電圧と反対の極性の電
荷が収集される。図1においては負の高電圧−Hv を
印加しているため、PN接合型の半導体検出器1の結晶
には負の電荷が収集される。従って増幅器3のFET2
のゲート2a及び帰還容量4の入力側の電極には、図2
の特性線20で示すような負の電荷が蓄積されて、増幅
器3の出力端3aには特性線21のように放射線が入射
する度にステップ状に上昇する鋸歯状の電圧波形が得ら
れ、しかもこの一つ一つのステップ電圧値は入射する放
射線のエネルギーに比例している。Next, the operation of the above structure will be explained with reference to the operation timing characteristic diagram shown in FIG. In general, when radiation enters the crystal of the PN junction type semiconductor detector 1 to which a high reverse bias voltage is applied, ionization occurs due to depletion of the crystal, and the electrodes at both ends of the crystal have charges with the opposite polarity to the applied high voltage. collected. In FIG. 1, since a negative high voltage -Hv is applied, negative charges are collected in the crystal of the PN junction type semiconductor detector 1. Therefore, FET2 of amplifier 3
The electrodes on the input side of the gate 2a and the feedback capacitor 4 are as shown in FIG.
Negative charges are accumulated as shown by the characteristic line 20, and a sawtooth voltage waveform is obtained at the output terminal 3a of the amplifier 3, which rises in steps every time radiation is incident, as shown by the characteristic line 21. Furthermore, each step voltage value is proportional to the energy of the incident radiation.
【0013】増幅器3の出力が特性線21のように基準
電圧Vref に達すると、コンパレータ6の出力端6
aには特性線22のようなステップ(パルス)電圧が発
生する。この電圧の立上りのタイミングで電源切換器1
2が切換わり、この時FET2のドレーン2bには特性
線23のように電源E1 の低電圧より電源E2 の高
電圧が加わる。このドレーン2bにおけるドレーン電圧
が上昇する結果、FET2のゲート2aに流れるゲート
電流も急速に増大する。このゲート電流の増大により帰
還容量4の入力側に蓄積されていた電荷は、特性線20
のようにリセットされて初期状態に戻る。When the output of the amplifier 3 reaches the reference voltage Vref as shown by the characteristic line 21, the output terminal 6 of the comparator 6
A step (pulse) voltage as shown by the characteristic line 22 is generated at a. At the timing of this voltage rise, power switch 1
2 is switched, and at this time, a higher voltage from the power source E2 is applied to the drain 2b of the FET 2 than a low voltage from the power source E1, as shown by a characteristic line 23. As a result of this increase in the drain voltage at the drain 2b, the gate current flowing through the gate 2a of the FET 2 also increases rapidly. The charge accumulated on the input side of the feedback capacitor 4 due to this increase in gate current is expressed by the characteristic line 20.
It will be reset and return to the initial state.
【0014】このように本発明では、ドレーン電圧の僅
かな上昇でゲート電流の大幅な増加が可能であり、この
リセットの応答時間は短く、高計数率で作動差せること
ができる。また高エネルギー分解能を目的とした液体窒
素温度で使用する測定では、ドレーン電圧上昇によるゲ
ート電流の増加は少なくなるので、ドレーン電圧の上昇
幅を大きくする必要はあるが、これによりゲート電流を
大幅に増加させることは容易である。なお、電流制限抵
抗13はこれら大幅なドレーン電圧上昇の際に、これに
伴って増加するドレーン電流及びゲート電流の増大を制
限して、最適な電流値に設定すると共に、ブレークダウ
ン領域におけるFET2の保護をする。As described above, in the present invention, it is possible to significantly increase the gate current with a slight increase in the drain voltage, the response time of this reset is short, and the operation can be performed at a high counting rate. In addition, in measurements using liquid nitrogen temperatures for high energy resolution, the increase in gate current due to an increase in drain voltage is small, so although it is necessary to increase the width of increase in drain voltage, this significantly increases the gate current. It is easy to increase. In addition, the current limiting resistor 13 limits the increase in drain current and gate current that increase due to this large increase in drain voltage, sets the current value to an optimum value, and also controls the current value of FET 2 in the breakdown region. provide protection.
【0015】また本発明の前置増幅器においてはゲート
電流が大きい間は、従来の光リセット型及び抵抗リセッ
ト型と同様に雑音は大きくなるが、このリセット期間は
不感期間として使用されないので、増幅系としてのS/
N比の劣化は生じない。Furthermore, in the preamplifier of the present invention, while the gate current is large, the noise becomes large as in the conventional optical reset type and resistance reset type, but since this reset period is not used as a dead period, the amplification system S/ as
No deterioration of the N ratio occurs.
【0016】[0016]
【発明の効果】以上本発明によれば、高分解能と高計数
率が可能な前置増幅器の採用により高精度な放射線のエ
ネルギー測定が行え、測定結果及びこれによる各種計測
、制御の信頼性が向上する効果がある。[Effects of the Invention] According to the present invention, highly accurate radiation energy measurement can be performed by employing a preamplifier capable of high resolution and high counting rate, and the reliability of measurement results and various measurements and controls based on this can be improved. It has an improving effect.
【図1】本発明のドレーンリセット型前置増幅器のブロ
ック回路図。FIG. 1 is a block circuit diagram of a drain reset type preamplifier according to the present invention.
【図2】本発明の前置増幅器の作動説明のための動作タ
イミング特性図。FIG. 2 is an operation timing characteristic diagram for explaining the operation of the preamplifier of the present invention.
【図3】従来の抵抗帰還型型前置増幅器のブロック回路
図。FIG. 3 is a block circuit diagram of a conventional resistive feedback type preamplifier.
【図4】従来の光リセット型前置増幅器のブロック回路
図。FIG. 4 is a block circuit diagram of a conventional optical reset type preamplifier.
【図5】従来の抵抗リセット型前置増幅器のブロック回
路図。FIG. 5 is a block circuit diagram of a conventional resistance reset type preamplifier.
【図6】従来のドレーン帰還型前置増幅器のブロック回
路図。FIG. 6 is a block circuit diagram of a conventional drain feedback preamplifier.
1…半導体検出器、2…FET、2a…FETのゲート
、2b…FETのドレーン、3…増幅器、3a…増幅器
の出力端、4…帰還容量、6…コンパレータ、6a…コ
ンパレータの出力端、12…電源切換器、13…電流制
限抵抗。1... Semiconductor detector, 2... FET, 2a... Gate of FET, 2b... Drain of FET, 3... Amplifier, 3a... Output end of amplifier, 4... Feedback capacitor, 6... Comparator, 6a... Output end of comparator, 12 ...Power supply switch, 13...Current limiting resistor.
Claims (1)
の増幅器と並列に接続した帰還容量と、前記増幅器に接
続したコンパレータと、このコンパレータの出力端と前
記増幅器のFETのドレーン間に直列に複数の電圧を切
換て導入する電源切換器と電流制限抵抗を接続したこと
を特徴とする半導体検出器用前置増幅器。1. An amplifier connected to a semiconductor detector, a feedback capacitor connected in parallel with the amplifier, a comparator connected to the amplifier, and a plurality of capacitors connected in series between the output terminal of the comparator and the drain of the FET of the amplifier. 1. A preamplifier for a semiconductor detector, characterized in that a power supply switch that switches and introduces a voltage and a current limiting resistor are connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14019391A JPH04364496A (en) | 1991-06-12 | 1991-06-12 | Preamplifier for semicopnductor detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14019391A JPH04364496A (en) | 1991-06-12 | 1991-06-12 | Preamplifier for semicopnductor detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04364496A true JPH04364496A (en) | 1992-12-16 |
Family
ID=15263078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14019391A Pending JPH04364496A (en) | 1991-06-12 | 1991-06-12 | Preamplifier for semicopnductor detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04364496A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006047296A (en) * | 2004-06-29 | 2006-02-16 | Oxford Instruments Analytical Oy | Drift type detector with low noise |
JP2007516636A (en) * | 2003-07-17 | 2007-06-21 | コミツサリア タ レネルジー アトミーク | Low power consumption voltage amplifier |
JP2009041942A (en) * | 2007-08-06 | 2009-02-26 | Fuji Electric Systems Co Ltd | Semiconductor radiation detector |
-
1991
- 1991-06-12 JP JP14019391A patent/JPH04364496A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516636A (en) * | 2003-07-17 | 2007-06-21 | コミツサリア タ レネルジー アトミーク | Low power consumption voltage amplifier |
JP2006047296A (en) * | 2004-06-29 | 2006-02-16 | Oxford Instruments Analytical Oy | Drift type detector with low noise |
EP1628143A3 (en) * | 2004-06-29 | 2016-11-02 | Oxford Instruments Analytical Oy | Drift-type detector with reduced noise level |
JP2009041942A (en) * | 2007-08-06 | 2009-02-26 | Fuji Electric Systems Co Ltd | Semiconductor radiation detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3780647T2 (en) | QUENCH CIRCUIT FOR AVALANCHE PHOTODIODS. | |
JP4409764B2 (en) | High-speed logarithmic photodetector | |
US6541752B2 (en) | Monolithic circuit of active quenching and active reset for avalanche photodiodes | |
US6587003B2 (en) | Charge sensitive preamplifier with pulsed source reset | |
US9116040B2 (en) | Radiation detection device with improved illumination range having a photodetector that operates in two detecting modes | |
CN111121986B (en) | A Single-Photon Detection System with Post-pulse Correction | |
JP4448484B2 (en) | Circuit, detection device and method for correcting rate dependent changes in conversion coefficient of detection device | |
CN107462334B (en) | Infrared focal plane readout circuit and its feedback control loop | |
US5322995A (en) | Charge integration preamplifier for use in radiation detection circuitry | |
JPH04364496A (en) | Preamplifier for semicopnductor detector | |
Low | Integrating amplifiers using cooled JFETs | |
Nashashibi | The Pentafet and its applications in high resolution and high rate radiation spectrometers | |
Winkler et al. | Study on transient light emission of SiC power MOSFETs regarding the sensing of source-drain currents in hard-switched power electronic applications | |
JP2003279410A (en) | Photodetector | |
Corsi et al. | Preliminary results from a current mode CMOS front-end circuit for silicon photomultiplier detectors | |
KR102445626B1 (en) | photon detector | |
Albuquerque et al. | A full current-mode timing circuit with dark noise suppression for the CERN CMS experiment | |
US2938123A (en) | Stabilized pulse-rate counting meter | |
Goulding et al. | A Double-Delay-Line Linear Amplifier Employing Transistors I | |
US3702936A (en) | Dose rate dosimeter circuit | |
Franklin et al. | The application of transistors to the trigger, ratemeter and power-supply circuits of radiation monitors | |
JP2000329855A (en) | Radiation distribution detecting device | |
Gola et al. | A passive-quenching active-recharge analog silicon photomultiplier | |
DE60016884T2 (en) | RADIATION DETECTION DEVICE | |
US6229377B1 (en) | Dual amplitude pulse generator for radiation detectors |