[go: up one dir, main page]

JPH04364017A - Organic semiconductor solid electrolytic capacitor - Google Patents

Organic semiconductor solid electrolytic capacitor

Info

Publication number
JPH04364017A
JPH04364017A JP13906691A JP13906691A JPH04364017A JP H04364017 A JPH04364017 A JP H04364017A JP 13906691 A JP13906691 A JP 13906691A JP 13906691 A JP13906691 A JP 13906691A JP H04364017 A JPH04364017 A JP H04364017A
Authority
JP
Japan
Prior art keywords
complex salt
solid electrolytic
organic semiconductor
electrolytic capacitor
anodization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13906691A
Other languages
Japanese (ja)
Other versions
JP3123772B2 (en
Inventor
Katsunori Minatomi
水富 勝則
Kenji Kaguma
健二 鹿熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03139066A priority Critical patent/JP3123772B2/en
Publication of JPH04364017A publication Critical patent/JPH04364017A/en
Application granted granted Critical
Publication of JP3123772B2 publication Critical patent/JP3123772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To substantally completely prevent a leakage current from being changed by forming an aromatic nitro compound coated film on a metal having a valve action, and further forming a solid electrolytic layer on the coated film by cooling and solidifying TCNQ complex salt after heating and melting of the same. CONSTITUTION:An aluminum foil after making etching and formation is used as an anode foil 1. Manila paper is held as a separator 3 between the anode foil 1 and an opposite cathode foil 2, and is wound into a cylinder shape. Hereby, a capacitor device 6 is formed by winding the separator 3 inserted between both electrodes and the anode foil 1 and the cathode foil 2 where an oxide coated film is formed on the aluminum foil. The capacitor device 6 is dipped in a methanol solution of any aromatic nitro compound, and is dried. Thereafter, TNC complex salt is heated and dissolved whereby the preheated capacitor device 6 is impregnated and annealed. Thereafter, the device is covered with resin and is subjected to a voltage treatment to complete a capacitor. Hereby, a leakage current characteristic is stabilized even after soldering.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体電解コンデンサに関
するものである。更に詳説すると、本発明は電解質とし
て7,7,8,8−テトラシアノキノジメタンの錯塩(
以下TCNQ錯塩と略す)を使用する有機半導体固体電
解コンデンサにおける漏れ電流の改善に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solid electrolytic capacitors. More specifically, the present invention provides a complex salt of 7,7,8,8-tetracyanoquinodimethane (
The present invention relates to improvement of leakage current in an organic semiconductor solid electrolytic capacitor using TCNQ complex salt (hereinafter abbreviated as TCNQ complex salt).

【0002】0002

【従来の技術】従来、固体電解コンデンサは固体電解質
として有機半導体、特に導電性の高いTCNQ錯塩を用
いることが提案されている(例えば特公昭62−529
39号公報(H01G  9/02)参照)。このよう
なTCNQ錯塩を用いたアルミ固体電解コンデンサは周
波数特性及び温度特性を著しく改善したものであり、従
来の乾式コンデンサのそれを遥かに凌いだものである。
[Prior Art] Conventionally, it has been proposed that solid electrolytic capacitors use an organic semiconductor, especially a highly conductive TCNQ complex salt, as a solid electrolyte (for example, Japanese Patent Publication No. 62-529
(See Publication No. 39 (H01G 9/02)). An aluminum solid electrolytic capacitor using such a TCNQ complex salt has significantly improved frequency characteristics and temperature characteristics, far exceeding those of conventional dry capacitors.

【0003】0003

【発明が解決しようとする課題】近年、電気機器の小形
化に伴い、TCNQ錯塩を用いたコンデンサにおいても
表面実装用のものが強く要求されている。しかしながら
、この種のコンデンサは、表面実装用部品として必須の
半田付け時の熱ストレス(通常230℃)に耐えられず
、漏れ電流の増大を招く欠点があり、耐熱性の向上が強
く望まれている。
[Problems to be Solved by the Invention] In recent years, with the miniaturization of electrical equipment, there has been a strong demand for capacitors using TCNQ complex salts for surface mounting. However, this type of capacitor cannot withstand the thermal stress (usually 230 degrees Celsius) during soldering, which is essential for surface-mount components, and has the drawback of increasing leakage current, so there is a strong desire for improved heat resistance. There is.

【0004】本発明は上述の如き半田付け時の熱ストレ
スに対しても、漏れ電流が殆んど変わることのない耐熱
性の優れた固体電解コンデンサを提供するものである。
[0004] The present invention provides a solid electrolytic capacitor with excellent heat resistance in which the leakage current hardly changes even under the heat stress during soldering as described above.

【0005】[0005]

【課題を解決するための手段】実施例1及び3の発明は
、陽極酸化或いは陽極化成により表面に酸化被膜を設け
たアルミニウム、タンタル、ニオブ等の弁作用を有する
金属上に、芳香族ニトロ化合物の皮膜を形成し、該芳香
族ニトロ化合物の皮膜上に、TCNQ錯塩を加熱融解の
後冷却固化させて固体電解質層を形成することを特徴と
する有機半導体固体電解コンデンサである。
[Means for Solving the Problems] The inventions of Examples 1 and 3 provide an aromatic nitro compound on a metal having a valve action, such as aluminum, tantalum, or niobium, on which an oxide film is formed on the surface by anodization or anodization. The organic semiconductor solid electrolytic capacitor is characterized in that a solid electrolyte layer is formed on the aromatic nitro compound film by heating and melting a TCNQ complex salt and then cooling and solidifying it.

【0006】また、実施例2及び3の発明は陽極酸化或
いは陽極化成により表面に酸化皮膜を設けたアルミニウ
ム、タンタル、ニオブ等の弁作用を有する金属上に、T
CNQ錯塩と芳香族ニトロ化合物との混合物を加熱融解
の後冷却固化させて固体電解質層を形成することを特徴
とする有機半導体固体電解コンデンサである。
[0006] In addition, the inventions of Examples 2 and 3 apply T to a metal having a valve action, such as aluminum, tantalum, or niobium, on which an oxide film is formed on the surface by anodization or anodization.
This organic semiconductor solid electrolytic capacitor is characterized in that a mixture of a CNQ complex salt and an aromatic nitro compound is heated and melted, then cooled and solidified to form a solid electrolyte layer.

【0007】この時、前記芳香族ニトロ化合物はジニト
ロベンゼンであることが好ましい。
At this time, the aromatic nitro compound is preferably dinitrobenzene.

【0008】さらに、実施例4の発明は陽極酸化或いは
陽極化成により表面に酸化被膜を設けたアルミニウム、
タンタル、ニオブ等の弁作用を有する金属上に、植物ゴ
ム質の皮膜を形成し、該植物ゴム質の皮膜上に、TCN
Q錯塩を加熱融解の後冷却固化させて固体電解質層を形
成することを特徴とする有機半導体固体電解コンデンサ
である。
[0008] Furthermore, the invention of Embodiment 4 is made of aluminum having an oxide film formed on its surface by anodization or anodization.
A vegetable rubber film is formed on a metal with valve action such as tantalum or niobium, and TCN is applied on the vegetable rubber film.
This is an organic semiconductor solid electrolytic capacitor characterized in that a Q complex salt is heated and melted, then cooled and solidified to form a solid electrolyte layer.

【0009】また、実施例5の発明は陽極酸化或いは陽
極化成により表面に酸化皮膜を設けたアルミニウム、タ
ンタル、ニオブ等の弁作用を有する金属上に、TCNQ
錯塩と植物ゴム質の混合物を加熱融解の後冷却固化させ
て固体電解質層を形成することを特徴とする有機半導体
固体電解コンデンサである。
[0009] In addition, the invention of Embodiment 5 provides TCNQ on a metal having a valve action, such as aluminum, tantalum, or niobium, on which an oxide film is formed on the surface by anodization or anodization.
This organic semiconductor solid electrolytic capacitor is characterized in that a solid electrolyte layer is formed by heating and melting a mixture of a complex salt and a plant gum substance, and then cooling and solidifying the mixture.

【0010】この時、前記植物ゴム質はアラビアゴム、
グアールゴム、カラヤゴム、トラガカントゴムの内少な
くとも1種類を含むことが好ましい。
[0010] At this time, the vegetable gum substance is gum arabic,
It is preferable that at least one of guar gum, karaya gum, and tragacanth gum is included.

【0011】[0011]

【作用】実施例1〜3の発明は、脱電子作用を有する芳
香族ニトロ化合物を使用している。このため、TCNQ
錯塩内の水素を吸引し、TCNQ錯塩の分解を抑制する
ものと思われる。この結果半田付け後においても漏れ電
流特性の安定したコンデンサが得られるものと推察され
る。
[Function] The inventions of Examples 1 to 3 use an aromatic nitro compound having an electron removing action. For this reason, TCNQ
It is thought that the hydrogen in the complex salt is sucked and the decomposition of the TCNQ complex salt is suppressed. As a result, it is presumed that a capacitor with stable leakage current characteristics can be obtained even after soldering.

【0012】また、漏れ電流が大きくなる原因として酸
化皮膜の欠損が考えられる。そこで、実施例4,5の発
明は、植物ゴム質を使用しているため、コンデンサ素子
中の陽極箔の酸化皮膜の欠損部分が存在する場合、該欠
損部分でジュール熱が発生すると、植物ゴム質によりT
CNQ錯塩の分解反応が進行して部分的に絶縁化してい
くものと推測される。従って、半田付け後においても漏
れ電流特性の安定したコンデンサの実現が可能になると
思われる。
[0012] Furthermore, defects in the oxide film are considered to be a cause of the increase in leakage current. Therefore, in the inventions of Examples 4 and 5, since vegetable rubber is used, if there is a defective part of the oxide film of the anode foil in the capacitor element, if Joule heat is generated in the defective part, the vegetable rubber T depending on quality
It is presumed that the decomposition reaction of the CNQ complex salt progresses, resulting in partial insulation. Therefore, it seems possible to realize a capacitor with stable leakage current characteristics even after soldering.

【0013】[0013]

【実施例】次に本発明の実施例について説明する。[Example] Next, an example of the present invention will be described.

【0014】図1に本発明に使用するコンデンサ素子を
示す。まず、高純度(99.99%以上)のアルミニウ
ム箔を化学的処理により粗面化し、実効表面積を増加さ
せるためのいわゆるエッチング処理を行う。次に電解液
中にて、電気化学的にアルミニウム箔表面に酸化皮膜(
酸化アルミニウムの薄膜)を形成する(化成処理)。 次にエッチング処理、化成処理を行ったアルミニウム箔
を陽極箔1とし、対向陰極箔2との間にセパレータ3と
してマニラ紙を挟み、図2に示すように円筒状に巻き取
る。こうしてアルミニウム箔に酸化皮膜を形成した陽極
箔1及び陰極箔2との両電極箔間に介挿されたセパレー
タ3とを巻回してコンデンサ素子6が形成される。なお
4,4’はアルミリード、5,5’はリード線である。
FIG. 1 shows a capacitor element used in the present invention. First, a high-purity (99.99% or higher) aluminum foil is roughened by chemical treatment, and a so-called etching treatment is performed to increase the effective surface area. Next, an oxide film (
forming a thin film of aluminum oxide (chemical conversion treatment). Next, the etched and chemically treated aluminum foil is used as an anode foil 1, manila paper is sandwiched between it and a counter cathode foil 2 as a separator 3, and the aluminum foil is rolled up into a cylindrical shape as shown in FIG. In this way, a capacitor element 6 is formed by winding the anode foil 1 and the cathode foil 2, which are aluminum foils with an oxide film formed thereon, and the separator 3 inserted between the two electrode foils. Note that 4 and 4' are aluminum leads, and 5 and 5' are lead wires.

【0015】更にコンデンサ素子6に熱処理及び再化成
処理を施し、セパレータ3を構成するマニラ紙を炭化し
て繊維の細径化による密度の低下を図る。
Furthermore, the capacitor element 6 is subjected to heat treatment and reconversion treatment, and the manila paper constituting the separator 3 is carbonized to reduce the density by reducing the diameter of the fibers.

【0016】なお、セパレータとしてマニラ紙にあらか
じめ所定の温度と時間(例えば240℃、40分間)で
熱処理を施して炭化したものやカーボン不織布を用い、
陽極箔と陰極箔との間に挟んで巻回してもよい。
[0016] As a separator, Manila paper that has been heat-treated and carbonized at a predetermined temperature and time (for example, 240°C for 40 minutes) or a carbon non-woven fabric can be used.
It may be sandwiched and wound between an anode foil and a cathode foil.

【0017】(実施例1)まず、上述の如く作製された
巻回型コンデンサ素子6を芳香族ニトロ化合物(例えば
ジニトロベンゼン)の2%メタノール溶液に浸漬し、8
5℃で乾燥する。その後TCNQ錯塩(例えば、N,N
,−ペンタメチレンルチジニウム2・TCNQ4とN−
フェネチルルチジニウム・TCNQ2の等量混合物)を
300℃で加熱融解し、予熱したコンデンサ素子6を含
浸し、急冷する。その後、樹脂にて外装し、電圧処理(
エージング)を行ない、目的とするコンデンサを完成さ
せる。
(Example 1) First, the wound capacitor element 6 manufactured as described above was immersed in a 2% methanol solution of an aromatic nitro compound (for example, dinitrobenzene).
Dry at 5°C. Then TCNQ complex salt (e.g., N,N
,-pentamethylenerutidinium 2・TCNQ4 and N-
A mixture of equal amounts of phenethylrutidinium/TCNQ2) is heated and melted at 300°C, impregnated into the preheated capacitor element 6, and rapidly cooled. After that, it is covered with resin and voltage treated (
aging) to complete the desired capacitor.

【0018】(実施例2)まず、TCNQ錯塩とこの錯
塩の4重量パーセントのジニトロベンゼンを均一になる
ように混合する。そして、その混合物を300℃で加熱
融解し、予熱したコンデンサ素子6を含浸し、急冷する
。その後、樹脂にて外装し、電圧処理(エージング)を
行ない、目的とするコンデンサを完成させる。
(Example 2) First, TCNQ complex salt and dinitrobenzene of 4% by weight of this complex salt are mixed uniformly. Then, the mixture is heated and melted at 300° C., impregnated with the preheated capacitor element 6, and rapidly cooled. After that, it is packaged with resin and subjected to voltage treatment (aging) to complete the desired capacitor.

【0019】(実施例3)まず、上述の如く作製された
巻回型コンデンサ素子6をジニトロベンゼンの2%メタ
ノール溶液に浸漬し、85℃で乾燥する。その後TCN
Q錯塩とその錯塩の4重量パーセントのジニトロベンゼ
ンの混合物を300℃で加熱融解し、予熱したコンデン
サ素子6を含浸し、急冷する。その後、樹脂にて外装し
、電圧処理(エージング)を行ない、目的とするコンデ
ンサを完成させる。
(Example 3) First, the wound capacitor element 6 manufactured as described above is immersed in a 2% methanol solution of dinitrobenzene and dried at 85°C. Then TCN
A mixture of Q complex salt and 4 weight percent dinitrobenzene of the complex salt is heated and melted at 300° C., impregnated into the preheated capacitor element 6, and rapidly cooled. After that, it is packaged with resin and subjected to voltage treatment (aging) to complete the desired capacitor.

【0020】表1に実施例1,実施例2及び実施例3に
よる本発明品と従来品における表面実装時のハンダ付け
時の熱を想定したリフロー試験前後の静電容量と漏れ電
流の結果を示す。
Table 1 shows the results of capacitance and leakage current before and after a reflow test assuming heat during soldering during surface mounting for products of the present invention and conventional products according to Examples 1, 2, and 3. show.

【0021】[0021]

【表1】[Table 1]

【0022】このリフロー試験とはリフロー炉の中でコ
ンデンサを160℃に2分間保持し、それに引き続いて
230℃に30秒間保持する試験である。
[0022] This reflow test is a test in which a capacitor is held at 160°C for 2 minutes in a reflow oven, and then held at 230°C for 30 seconds.

【0023】表1において、全てのコンデンサは定格2
5V、容量1.5μFであり、固体電解質はN,N,−
ペンタメチレンルチジニウム2・TCNQ4とN−フェ
ネチルルチジニウム・TCNQ2の等量混合物を使用し
ている。
In Table 1, all capacitors are rated 2
5V, capacity 1.5μF, solid electrolyte is N,N,-
A mixture of equal amounts of pentamethylenerutidinium 2.TCNQ4 and N-phenethylrutidinium.TCNQ2 is used.

【0024】なお、TCNQ錯塩の融解温度の関係から
、芳香族ニトロ化合物の沸点は250℃以上のものが好
ましい。
In view of the melting temperature of the TCNQ complex salt, the aromatic nitro compound preferably has a boiling point of 250° C. or higher.

【0025】(実施例4)まず、上述の如く作製された
巻回型コンデンサ素子6を植物ゴム質(例えばアラビア
ゴム、グアールゴム、カラヤゴム、トラガカントゴム)
の0.5〜2%水溶液に浸漬し、85℃で乾燥する。そ
の後TCNQ錯塩(例えば、N,N,−ペンタメチレン
ルチジニウム2・TCNQ4とN−フェネチルルチジニ
ウム・TCNQ2の等量混合物)を320℃で加熱融解
し、予熱したコンデンサ素子6を含浸し、急冷する。そ
の後、樹脂にて外装し、電圧処理(エージング)を行な
い、目的とするコンデンサを完成させる。
(Example 4) First, the wound type capacitor element 6 manufactured as described above is made of vegetable rubber (for example, gum arabic, gum guar, gum karaya, gum tragacanth).
and dried at 85°C. Thereafter, a TCNQ complex salt (e.g., a mixture of equal amounts of N,N,-pentamethylenerutidinium 2.TCNQ4 and N-phenethyrutidinium.TCNQ2) is heated and melted at 320° C., and the preheated capacitor element 6 is impregnated with it. Cool quickly. After that, it is packaged with resin and subjected to voltage treatment (aging) to complete the desired capacitor.

【0026】(実施例5)まず、TCNQ錯塩とその錯
塩の2重量パーセントの植物ゴム質を均一になるように
混合する。そして、その混合物を320℃で加熱融解し
、予熱したコンデンサ素子6を含浸し、急冷する。その
後、樹脂にて外装し、電圧処理(エージング)を行ない
、目的とするコンデンサを完成させる。
(Example 5) First, TCNQ complex salt and 2% by weight of the complex salt of vegetable gum are mixed uniformly. Then, the mixture is heated and melted at 320° C., impregnated with the preheated capacitor element 6, and rapidly cooled. After that, it is packaged with resin and subjected to voltage treatment (aging) to complete the desired capacitor.

【0027】表2に実施例4及び実施例5による本発明
品と従来品における表面実装時のハンダ付け時の熱を想
定したリフロー試験前後の静電容量と漏れ電流の結果を
示す。
Table 2 shows the results of capacitance and leakage current before and after a reflow test assuming heat during soldering during surface mounting for products of the present invention according to Examples 4 and 5 and conventional products.

【0028】[0028]

【表2】[Table 2]

【0029】表2において、全てのコンデンサは定格1
0V、容量10μFであり、固体電解質はN,N,−ペ
ンタメチレンルチジニウム2・TCNQ4とN−フェネ
チルルチジニウム・TCNQ2の等量混合物を使用して
いる。
In Table 2, all capacitors are rated 1
The solid electrolyte used was a mixture of equal amounts of N,N,-pentamethylenerutidinium 2.TCNQ4 and N-phenethylrutidinium.TCNQ2.

【0030】実施例(4a)〜(4b)は上述の実施例
4によるコンデンサ、実施例(5a)〜(5b)は上述
の実施例5によるコンデンサである。
Examples (4a) to (4b) are capacitors according to the fourth embodiment described above, and Examples (5a) to (5b) are capacitors according to the fifth embodiment described above.

【0031】また、表中のtanδ[%](120Hz
)は損失角の正接である。
[0031] In addition, tan δ [%] (120 Hz
) is the tangent of the loss angle.

【0032】なお、本発明で使用している植物ゴム質は
上述の実施例において使用されているものに限定される
ものではなく、TCNQ錯塩含浸時の素子余熱、若しく
はTCNQ錯塩溶融時の熱に耐えるものであれば、他の
植物ゴム質でも同様の効果が得られることはいうまでも
ない。
[0032] The vegetable rubber used in the present invention is not limited to that used in the above-mentioned embodiments, but can be applied to the residual heat of the element during impregnation with the TCNQ complex salt or the heat during the melting of the TCNQ complex salt. It goes without saying that similar effects can be obtained with other plant gums as long as they are durable.

【0033】[0033]

【発明の効果】上述の表1及び表2より、リフロー試験
後においても本発明による有機半導体固体電解コンデン
サは優れた漏れ電流特性を有することは明らかである。 即ち、、半田付け後においても漏れ電流特性の極めて優
れた有機半導体固体電解コンデンサを実現すること可能
となる。
Effects of the Invention From Tables 1 and 2 above, it is clear that the organic semiconductor solid electrolytic capacitor according to the present invention has excellent leakage current characteristics even after the reflow test. That is, it is possible to realize an organic semiconductor solid electrolytic capacitor with extremely excellent leakage current characteristics even after soldering.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に使用するコンデンサ素子の斜視図であ
る。
FIG. 1 is a perspective view of a capacitor element used in the present invention.

【符号の説明】[Explanation of symbols]

1  陽極箔 2  陰極箔 3  セパレータ 6  コンデンサ素子 1 Anode foil 2 Cathode foil 3 Separator 6 Capacitor element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  陽極酸化或いは陽極化成により表面に
酸化被膜を設けたアルミニウム、タンタル、ニオブ等の
弁作用を有する金属上に、芳香族ニトロ化合物の皮膜を
形成し、該芳香族ニトロ化合物の皮膜上に、TCNQ錯
塩を加熱融解の後冷却固化させて固体電解質層を形成す
ることを特徴とする有機半導体固体電解コンデンサ。
Claim 1: A film of an aromatic nitro compound is formed on a metal having a valve action, such as aluminum, tantalum, or niobium, on which an oxide film is provided on the surface by anodization or anodization, and the film of the aromatic nitro compound is formed. An organic semiconductor solid electrolytic capacitor characterized in that a solid electrolyte layer is formed by heating and melting a TCNQ complex salt and then cooling and solidifying the TCNQ complex salt.
【請求項2】  陽極酸化或いは陽極化成により表面に
酸化皮膜を設けたアルミニウム、タンタル、ニオブ等の
弁作用を有する金属上に、TCNQ錯塩と芳香族ニトロ
化合物との混合物を加熱融解の後冷却固化させて固体電
解質層を形成することを特徴とする有機半導体固体電解
コンデンサ。
[Claim 2] A mixture of a TCNQ complex salt and an aromatic nitro compound is heated and melted on a valve metal such as aluminum, tantalum, or niobium, on which an oxide film is formed on the surface by anodization or anodization, and then cooled and solidified. An organic semiconductor solid electrolytic capacitor characterized by forming a solid electrolyte layer.
【請求項3】  前記芳香族ニトロ化合物はジニトロベ
ンゼンである請求項1若しくは2に記載の有機半導体固
体電解コンデンサ。
3. The organic semiconductor solid electrolytic capacitor according to claim 1, wherein the aromatic nitro compound is dinitrobenzene.
【請求項4】  陽極酸化或いは陽極化成により表面に
酸化被膜を設けたアルミニウム、タンタル、ニオブ等の
弁作用を有する金属上に、植物ゴム質の皮膜を形成し、
該植物ゴム質の皮膜上に、TCNQ錯塩を加熱融解の後
冷却固化させて固体電解質層を形成することを特徴とす
る有機半導体固体電解コンデンサ。
4. A vegetable rubber film is formed on a metal having a valve action such as aluminum, tantalum, or niobium, which has an oxide film on its surface by anodizing or anodizing,
An organic semiconductor solid electrolytic capacitor characterized in that a solid electrolyte layer is formed on the vegetable rubber film by heating and melting a TCNQ complex salt and then cooling and solidifying it.
【請求項5】  陽極酸化或いは陽極化成により表面に
酸化皮膜を設けたアルミニウム、タンタル、ニオブ等の
弁作用を有する金属上に、TCNQ錯塩と植物ゴム質の
混合物を加熱融解の後冷却固化させて固体電解質層を形
成することを特徴とする有機半導体固体電解コンデンサ
5. A mixture of TCNQ complex salt and vegetable rubber is heated and melted on a valve metal such as aluminum, tantalum, or niobium, which has an oxide film formed on its surface by anodization or anodization, and then cooled and solidified. An organic semiconductor solid electrolytic capacitor characterized by forming a solid electrolyte layer.
【請求項6】  前記植物ゴム質はアラビアゴム、グア
ールゴム、カラヤゴム、トラガカントゴムの内少なくと
も1種類を含むことを特徴とする請求項4若しくは5に
記載の有機半導体固体電解コンデンサ。
6. The organic semiconductor solid electrolytic capacitor according to claim 4, wherein the vegetable gum contains at least one of gum arabic, gum guar, gum karaya, and gum tragacanth.
JP03139066A 1991-06-11 1991-06-11 Organic semiconductor solid electrolytic capacitors Expired - Fee Related JP3123772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03139066A JP3123772B2 (en) 1991-06-11 1991-06-11 Organic semiconductor solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03139066A JP3123772B2 (en) 1991-06-11 1991-06-11 Organic semiconductor solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH04364017A true JPH04364017A (en) 1992-12-16
JP3123772B2 JP3123772B2 (en) 2001-01-15

Family

ID=15236703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03139066A Expired - Fee Related JP3123772B2 (en) 1991-06-11 1991-06-11 Organic semiconductor solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3123772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539006B2 (en) * 2001-09-26 2009-05-26 Rubycon Corporation Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor
JP4505774B2 (en) * 1999-02-18 2010-07-21 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505774B2 (en) * 1999-02-18 2010-07-21 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
US7539006B2 (en) * 2001-09-26 2009-05-26 Rubycon Corporation Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor

Also Published As

Publication number Publication date
JP3123772B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH04229611A (en) Solid electrolytic capacitor
TW200919511A (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
JPH04364017A (en) Organic semiconductor solid electrolytic capacitor
JP3416637B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
KR0154126B1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2714281B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3162738B2 (en) Solid electrolytic capacitors
JPH06151257A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP2999842B2 (en) Organic semiconductor solid electrolytic capacitors
JP3438900B2 (en) Solid electrolytic capacitors
JPH06163323A (en) Manufacture of organic semiconductor solid state electrolytic capacitor
JPH04206922A (en) Solid-state electrolytic capacitor
JP3326196B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JP3123773B2 (en) Organic semiconductor solid electrolytic capacitors
JP2003142344A (en) Method for manufacturing solid electrolytic capacitor
JP3459151B2 (en) Method for manufacturing solid electrolytic capacitor
JP2840516B2 (en) Solid electrolytic capacitors
JPH04312910A (en) Production of solid-state electrolytic capacitor
JP3363664B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3474986B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0260047B2 (en)
JPH0337854B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees